Optimal Calibration Designs for Computerized Adaptive Testing

Angela Verschoor, Cito angela.verschoor@cito.nl

- Development phases of a test
- Some common designs
- Homogeneous designs
- Simulations & live results
- Conclusions

Development of a CAT

- Specifications: Purpose, Blueprint, etc.
- Item development
- Gathering data about items: parameters
- Design of the CAT
- Test administration

Gathering Data

- Estimation of item parameters through a sample of the population: errors!
- CAT pretesting or linear pretesting?
- More items need to be analyzed than test booklet length:
- Incomplete design: not every student in sample will take all items
- How to divide the items over the test booklets?

Some Common Designs (1)

Unlinked:

- How can we compare item difficulties over different test booklets?
- Item difficulties Student abilities

Some Common Designs (2)

Central Anchor:

- Some item parameters are estimated more precisely than others.
- Is this efficient?

Some Common Designs (3)

Some Common Designs (4)

• Balanced Block Design:

- All items observed equally
- All item pairs observed: detection of misfit (dependency!)

Optimization

- Can we exploit the advantages of BB while keeping the logistics manageable?
- Maximize number of item pairs
- Subject to maximum number of test booklets
- Subject to other constraints
- Homogeneous Designs:
- Overlap between test booklets as regular as possible

Experiments

- Simulations
- Rasch model
- Items: b ~ N(0,1)
- Population: theta ~N(0.2,1)
- a constant number of observations per booklet, and per item

Simulations (1)

- 3 item pools, 3 designs for each pool:
- 150 items, 30 items per booklet, 10 booklets
- 180 items, 30 items per booklet, 12 booklets
- 160 items, 20 items per booklet, 16 booklets
- Homogeneous, BI, BB
- 45, 66, 120 booklets (BB)
- 2250, 2640, 3600 students
- 450, 440, 450 observations per item
- Overlap (Hom.) 4-5, 2-3, 1-2

Simulations (2)

• Average Standard Error of b:

	Hom	BI	BB
150	0.114	0.121	0.114
180	0.114	0.122	0.114
160	0.117	0.134	0.117

- Reduction of 6 12%
- Reduction of 12 24% of sample size

Simulations (3)

Simulations (4)-Misfit

- Multidimensionality:
- Pool 150 items, booklet length = 30
- 10 items 2nd trait, uncorrelated

Item Fit Test: (p-value)

Item	Hom.	BI	BB
141	0.000	0.306	0.106
142	0.000	0.003	0.028
143	0.015	0.485	0.024
144	0.000	0.003	0.000
145	0.000	0.601	0.979
146	0.000	0.000	0.001
147	0.000	0.046	0.069
148	0.000	0.077	0.035
149	0.000	0.097	0.049
150	0.000	0.015	0.007

Simulations (5)

- describe a perfect world
- Can we find similar advantages in the real world?
- Entrance test (11 yr. olds): approx. 130000 students per year 120 items Arithmetic, 2 PL

Arithmetic

Length 20, 3168 students sampled – 528 per item

100 repl.	Hom	BI	BB
Booklets	12	12	66
se(b)	0.116	0.127	0.116
sd(b)	0.115	0.130	0.117

Length 30, 2240 students sampled – 560 per item

100 repl.	Hom	BI	BB
Booklets	8	8	28
se(b)	0.110	0.113	0.111
sd(b)	0.109	0.115	0.110

Conclusions

- Establish overlaps as regular as possible between **all** test booklets
- Or, at least as many test booklets as possible

Thank you

?

angela.verschoor@cito.nl

