Small-Sample Shadow Testing

Wallace Judd, Ph.D.

President,

Authentic Testing Corporation

WJudd@AuthenticTesting.com

Shadow Testing

... is a generalized constraint-satisfaction algorithm.

Shadow Testing

... is computerized adaptive test in that it adapts to the constraints being resolved...

Not necessarily to examinee ability.

Shadow Testing

Technical Explication

Qi Diao

Hao Ren

Optimal Solution to Constraints

vs

Sufficing Solution to Constraints

You can do shadow testing, successfully,

Without mathematical formalisms.

- Without mathematical formalisms
- With relatively small calibration samples

- Without mathematical formalisms
- With relatively small calibration samples
- With small item pools

- Without mathematical formalisms
- With relatively small calibration samples
- With small item pools
- Using a pseudo-information function

- Without mathematical formalisms
- With relatively small calibration samples
- With small item pools
- Using a pseudo-information function
- To create unique equivalent test forms
 ... for each examinee

This Case:

... involves a client with a very common set of constraints

Frequently encountered...

That Shadow-Testing resolved.

Constraints: CAT vs. Shadow

Constraint CAT Shadow-Test

Goal Measure Ability Pass/Fail

Maximize Precision Equivalence

Length Variable Fixed

Stopping Rule Posterior Est. N of Items

Domains No Multiple

Item Exposure Insignificant Critical

Constraints: CAT vs. Shadow

Item Pool Large Small: 3:1

Calibration N 500+ <50

Constraints One 5:

Domain Count

= Difficulty

Exposure

Cognitive Level

≈ Time

Equivalent Difficulty

Multiple (7) Domains

Fixed Length (41 items)

Pass / Fail Result

Conditions:

Calibration Sample: . . 30 !!!

Annual Tests: 200-300

Item Pool: 120 Items

Domains: 7

Items Administered. . 41

Constraint #1:

Draw Items from Domains as specified in Test Blueprint

Classical Test Theory:

P-Val_i = Probability Correct Response, for Item i

Constraint #2:

Minimize: μ P-Val – Target P-Val

Acceptable: μ P-Val – Target P-Val <= 0.04

Constraint #3:

Minimize item exposure

Constraint #4:

Match Blueprint for Item Cognitive Level

Constraint #5:

Create forms of equivalent expected ltem Latency

Constraint #5:

Create forms of equivalent expected ltem Latency

First Attempt:

Program it all as a set of conditions solved in multiple passes.

First Attempt:

eto conditions solved in multiple passes.

Constraint #1:

Draw Items from Domains as specified in Test Blueprint

Some domains had few items over and above the minimum.

Constraint #2:

Minimize: μ P-Val – Target P-Val

Acceptable: μ P-Val – Target P-Val <= 0.04

What about discriminating power? Some items were always the best.

Constraint #3:

Minimize item exposure

Way too exacting.

Constraint #4:

Match Blueprint for Item Cognitive Level

Easily satisfied (except in small domains) since there are only 2 Levels

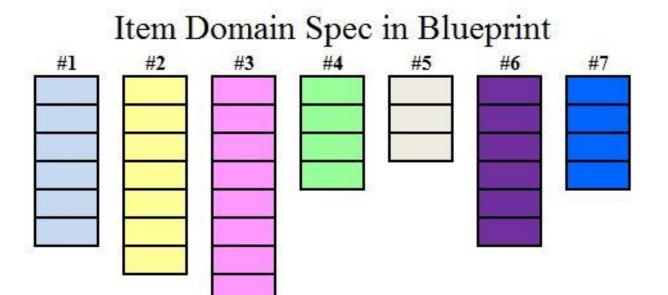
Constraint #5:

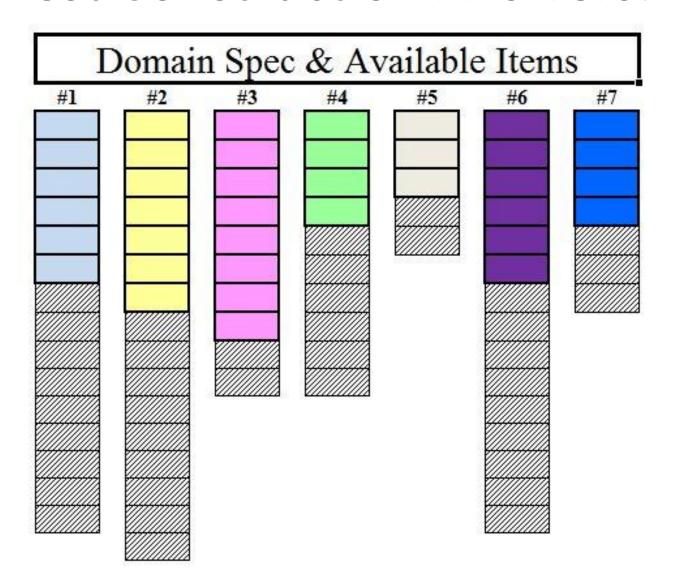
Create forms of equivalent expected ltem Latency

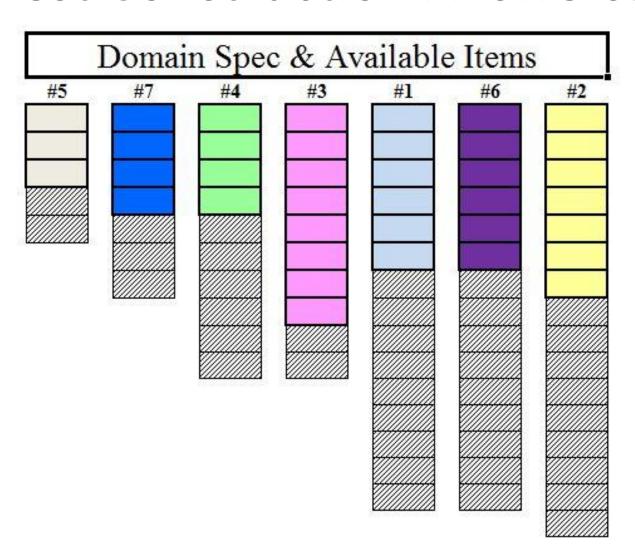
The tail wagging the dog...

Often unsatisfied.

Constraint #1:


Draw Items from Domains as specified in Test Blueprint


Start with small domains, or ones with a small Item: Target N ratio.


Constraint #1:

Draw Items from Domains as specified in Test Blueprint

Randomize item seeding for initial 10 items... from small domains.

Constraint #2:

Minimize: μ P-Val – Target P-Val

Acceptable: μ P-Val – Target P-Val <= 0.04

Pseudo-Information function drawn from Classical Test Theory statistics

pInfo (pseudo-Information)

```
Classical Test Theory statistics:

P-Val<sub>i</sub> = Probability Correct Response,

for Item i

PBis<sub>i</sub> = Point-Biserial, Item i

pInfo<sub>i</sub> = PBis<sub>i</sub> + 1 – (ABS [ Cutpoint – P-Val<sub>i</sub> ] )
```

Constraint #3:

Minimize item exposure

Relax constraint. Only evaluate when item exposure > 5 exposures out of line.

Then take out of pool.

Constraint #4:

Match Blueprint for Item Cognitive Level

Easily satisfied (except in small domains).

Set target as ratio of 2:1 Tasks : Knowledge, with +/- 15% sufficient.

Constraint #5:

Create forms of equivalent expected ltem Latency

Evaluate Σ Latency as Constraint #3.

Construct test form prior to administration.

If form doesn't resolve, try again.

Yield success: attempts $\approx 1:<3$

Form equivalence

Domain count consistent with Blueprint

- Domain count consistent with Blueprint
- μ P-Val Target P-Val < 0.04

- Domain count consistent with Blueprint
- μ P-Val Target P-Val < 0.04
- S Latency Target Response Time < 5.0 min.

- Domain count consistent with Blueprint
- μ P-Val Target P-Val < 0.04
- S Latency Target Response Time < 5.0 min.
- Cognitive Level Target Level = +/- 0.15

- Domain count consistent with Blueprint
- μ P-Val Target P-Val < 0.04
- S Latency Target Response Time < 5.0 min.
- Cognitive Level Target Level = +/- 0.15

In doing Shadow-Testing with Small N Samples

- Seed item selection with randomization
- Seed small domains first
- Use a pseudo-information function to integrate difficulty and discrimination
- Incorporate Σ item time in targets

A Sufficing Solution

... Inspired by Shadow-Testing

... with apologies to Wim van der Linden

Small-Sample Shadow Testing

Wallace Judd, Ph.D.

President,

Authentic Testing Corporation

WJudd@AuthenticTesting.com