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A substantial amount of research has been conducted over the past 40 years on technical aspects of 
computerized adaptive testing (CAT), such as item selection algorithms, item exposure controls, and 
termination criteria. However, there is little literature providing practical guidance on the development of a 
CAT. This paper seeks to collate some of the available research methodologies into a general framework for the 
development of any CAT assessment. 

 
Computerized adaptive testing (CAT) is a sophisticated 
method of delivering examinations, and has nearly 40 years of 
technical research supporting it. An additional body of 
literature investigates the context of CAT, such as 
comparisons to paper-based or computer-administered 
conventional tests (Vispoel, Rocklin, & Wang, 1994) and the 
application of the CAT approach to specific tests (Sands, 
Waters, & McBride, 1997; Gibbons et al., 2008). However, 
except for some coverage within technical books such as 
Flaugher’s (2000) discussion of item banks or discussions of 
practical issues such as Wise and Kingsbury (2000) or 
Parshall, Spray, Kalohn, and Davey (2006), little attention has 
been given to the test development process in the CAT 
context. Moreover, research and recommendations have not 
been consolidated to produce a general model for CAT 
development. The purpose of this paper is to present such a 
model for the development of a CAT assessment program, 
which is general enough to be relevant to all assessment 
programs but specific enough to provide guidance to those 
new to CAT. A particular focus is given to the necessity of 
simulation research to adequately answer questions 
encountered during the development of a CAT. 

The framework (Table 1) is intended to cover the entire 
process of CAT development, from inception to publication 
rather than just psychometric aspects. Therefore, it begins not 
with the decision to implement CAT, but rather when the 
question is raised as to whether CAT might even be an 
appropriate test administration method for a given 
assessment program. Several important questions need to be 
answered before the development of an item bank or delivery 
platform. Only then can the test development process 
proceed with the steps shown in Table 1. 

Table 1: Proposed CAT framework 

Step Stage Primary work 

1 Feasibility, applicability, 
and planning studies 

Monte Carlo simulation; 
business case evaluation 

2 Develop item bank 
content or utilize 
existing bank 

Item writing and review 

3 Pretest and calibrate 
item bank 

Pretesting; item analysis 

4 Determine 
specifications for final 
CAT 

Post-hoc or hybrid 
simulations 

5 Publish live CAT Publishing and 
distribution; software 
development 

 

This paper proceeds to discuss some of the issues 
relevant to each stage. This discussion, however, is by no 
means comprehensive. To the extent that each assessment 
program’s situation is different and unique, it raises its own 
issues. Moreover, extensive attention has been given to 
individual aspects in other sources, such as the technical 
discussion of item exposure in Georgiadou, Triantafillou, and 
Economides (2007).  Therefore, an assessment program 
should utilize this framework as simply that, rather than as a 
comprehensive recipe, to identify issues relevant to the 
situation at hand and the type of research, business, or 
psychometric work necessary to present guidance for each 
decision.  
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This is important not only from a practical viewpoint, 
but because this is the foundation for validity. A CAT 
developed without adequate research and documentation in 
each of these stages runs the danger of being inefficient at the 
least and legally indefensible at the worst. For example, 
arbitrarily setting specifications for a live CAT (termination 
criterion, maximum items, etc.) without empirical evidence 
for the choices could result in examinee scores that are simply 
not as accurate as claimed, providing some subtraction from 
the validity of their interpretations. 

Background 
While the details regarding CAT as a delivery algorithm are 
discussed at length in numerous sources (e.g. Lord, 1980; 
Wainer, 2000, van der Linden and Glass, 2010), some 
background is necessary to provide a frame of reference for 
discussions.  

From an architectural perspective, a CAT is composed 
of five components (Weiss & Kingsbury, 1984; Thompson, 
2007). The first component is a calibrated item bank, and is 
therefore developed as test content (e.g., mathematics items 
for a mathematics exam). The remaining four components are 
psychometric rather than content, and refer to algorithms in 
the CAT system. 

1. Calibrated item bank 
2. Starting point 
3. Item selection algorithm 
4. Scoring algorithm 
5. Termination criterion. 

A CAT operates by taking the first two components as a 
given, then cycling through 3, 4, and 5 until the termination 
criterion is satisfied (Figure 1). For example, an examinee sits 
at a computer to take a test. The computer is preloaded with 
the item bank (which includes psychometric data on each 
item), and a specific starting point will have been determined 
for the examinee. An item is selected for this starting point, 
the first item in the test. After the item is answered, it will be 
scored and an estimate of examinee ability (θ) obtained. The 
termination criterion will then be evaluated; if it is not yet 
satisfied, another item will be selected (component 3), which 
the examinee will answer, then the examinee’s score (θ) is 
updated (component 4), and the termination criterion 
evaluated once more (component 5). 

Because the delivery of a CAT is a collaboration between 
these algorithms, it is just as important to establish 
appropriate specifications for the algorithms as it is to develop 
an appropriate item bank. This process of research to 
determine specifications is not widely understood, and is 
typically left purely to the professional opinion of the 
psychometrician in charge of the testing program. This paper 
not only provides a model for this process that 
psychometricians can follow, but also elucidate some of the 
issues for non-psychometricians who are nevertheless 

stakeholders in the process and responsible for some of the 
work required in the process. 

 
Figure 1: Example flowchart of CAT algorithm 

Most CATs are constructed on the foundation of item 
response theory (IRT). IRT is a powerful psychometric 
paradigm with many advantages for test development, item 
analysis, and scoring of examinees. With regard to CAT, the 
most important advantage is that it places items and 
examinees on the same scale, facilitating the direct matching 
of examinees to items that are most appropriate for them. 
While CATs can still be designed with classical test theory 
(Frick, 1992; Rudner, 2002; Rudner & Guo, in press), this 
advantage means that the vast majority of CATS are based on 
IRT. Therefore, a level of familiarity with IRT is necessary to 
understand CAT. The uninitiated reader is referred to 
Embretson and Reise (2000) or de Ayala (2009). While an 
effort is made to provide as broad and general a framework as 
possible, the perspective of this paper is primarily limited to 
CATs based on IRT because of its advantages and prevalence 
in the field. The framework would need to be adapted 
somewhat for CATs based on classical test theory, or tests 
that are not fully adaptive, such as fixed programmed 
branching or multistage testing, but the principles remain 
applicable. 

Step 1: Feasibility, applicability, and planning 
studies  

The first stage in CAT development is to determine whether 
the CAT approach is even feasible for a testing program. 
Because the CAT algorithm is so conceptually appealing and 
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offers certain well-known advantages, non-psychometrician 
stakeholders might become enamored of the idea and wish to 
proceed without knowing anything about CAT. An executive 
or professor might hear that CAT typically uses only half as 
many items as a conventional test (Weiss & Kingsbury, 1984) 
or even less, and simply make a decision that the testing 
program will move to CAT. This can be quite dangerous, not 
only from a psychometric point of view, but also from a 
business perspective. Transforming an assessment program 
from fixed-form tests to CAT is not a decision to be made 
lightly. 

Therefore, the practical and business considerations 
should be researched first. Does the organization have the 
psychometric expertise, or is it able to afford it if an external 
consultant is used? Does the organization have the capacity to 
develop extensive item banks? Is an affordable CAT delivery 
engine available for use, or does the organization have the 
resources to develop its own? Will converting the test to CAT 
likely bring the expected reduction in test length? Does the 
reduction in test length translate to enough saved examinee 
seat time – which can be costly – to translate into actual 
monetary savings? Or even if CAT costs more and does not 
substantially decrease seat time, is that fact sufficiently offset 
by the increase in precision and security to make it worthwhile 
for the organization? 

Fortunately, many such questions can be answered not 
simply by conjecture, but by psychometric research. Monte 
Carlo simulation studies (van der Linden & Glas, 2010) can 
allow a researcher to estimate not only the test length and 
score precision that CAT would produce, but also to evaluate 
issues such as item exposure and the size of item bank 
necessary to produce the desired precision of examinee 
scores. These studies operate by simulating CATs under 
varying conditions for a large number of imaginary examinees. 
The results can then be compared to make decisions. For 
example, CATs could be simulated for a bank of 300 items 
and a bank of 500 items, and results compared to determine 
which presents a better goal for the organization. What makes 
this approach so important at this stage is that Monte Carlo 
studies can be done before a single item is written or before 
any real data is available. 

Monte Carlo simulations are based on the fact that IRT 
provides an estimate of the exact probability of a correct 
response to an item for a given value of θ. This allows 
researchers to easily generate a response to an item, given its 
item parameters and a value of θ. For example, supposed that 
an average examinee (θ = 0.0) is calculated to have a 0.75 
probability of a correct response to an item. A random 
number is generated from a uniform distribution with a range 
of 0 to 1. If the value is 0.75 or less, the generated response is 
“correct.” If the value is greater than 0.75, then the generated 
response is “incorrect.” Given item parameters for a bank and 
a sample of examinee θ values, an entire dataset of 
correct/incorrect responses can be easily generated. The item 

and examinee parameters can be real or randomly generated 
themselves, depending on the availability of data at a given 
stage of the CAT development process. If randomly 
generated, basing the generation on expected parameters 
makes the simulation more defensible. If similar tests in 
published research have been found to have an average 
discrimination parameter of 0.7, then it obviously makes sense 
to generate an item bank that reflects this fact. 

This dataset can then be used to simulate CATs. 
Simulated CATs operate the same as live CATs, with the 
exception that the item response is not provided by a live 
examinee, but rather looked up in the table of generated 
responses or generated in real time. If the CAT selects a 
certain item to be administered, the simulation program 
simply provides the response from the data set. 

Because Monte Carlo CAT simulations can only be done 
with specialized software, the first step is to obtain the 
necessary software. Two pieces of software are necessary: one 
to generate a data set based on specifications you provide, and 
one to simulate how CAT would perform. WINGEN (Han, 
2007) and PARDSIM (Yoes, 1997) can simulate data sets 
based on item response theory (IRT; Embretson & Reise, 
2000) under a wide range of specifications. CAT tests can 
then be simulated using FireStar (Choi, 2009) or CATSim 
(Weiss & Guyer, 2010). CATSim advantageously combines 
the two pieces, and can simulate its own Monte Carlo data 
sets, utilize real data sets, or perform a hybrid of the two, in 
concert with CAT simulation. Alternatively, if a testing 
program has substantial psychometric expertise, simulation 
software can be developed in-house, but the cost in hours will 
most likely exceed the cost of obtaining existing software. 

There are several important dependent variables to 
consider in Monte Carlo simulations. The two most important 
are average test length and the precision of the test, quantified 
as the standard error of measurement. With conventional 
tests, the test length is fixed but the precision is variable; 
examinees in the center of the distribution typically have less 
error with regards to measuring their latent ability because 
items of medium difficulty are the most common. With 
adaptive tests, test length is typically variable, but the CAT is 
designed to provide equivalent precision for all examinees if 
the item bank is properly designed, one reason that effective 
simulations are essential. 

The next step in this stage is to make business case 
evaluations based on the results of the Monte Carlo studies. 
For example, suppose that a testing program currently utilizes 
four conventional fixed-form tests of 100 items, with 20 items 
of overlap for equating. This translates to a bank of 340 items. 
It might have been initially thought that moving to CAT 
would require a bank of 1,000 items at the very least, but 
Monte Carlo simulations showed that a bank of 500 items is 
adequate. Considering that the bank currently stands at 340 
items, the additional item development costs would be much 
smaller than originally expected. Furthermore, the simulations 
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showed that the bank of 500 items could produce tests that 
were as precise as the current tests, but with an average of 55 
items. Would the cost of developing 160 new items, 
performing the necessary CAT research, and moving to a 
CAT testing engine be offset by the time savings of 45 items 
per examinee and the additional security by using more than 
four forms? Those are the types of questions that are the crux 
of this step, but should also take into consideration 
non-business advantages, such as being able to measure all 
examinees with equal precision or an ameliorated examinee 
experience due to seeing only appropriate items. 

Step 2: Develop item bank content 
Once the final decision has been made to convert to CAT, the 
next step is to establish an item bank. Again, this should be 
done based on empirical evidence when possible. The 
simulation studies in the previous step should be utilized and 
probably expanded to provide guidelines for the bank; as 
noted by Veldkamp and van der Linden (2010), simulations 
are useful for this step and not necessarily limited to use after 
pilot testing as described in Flaugher (2000). Not only is the 
number of items in the bank important, but also the 
distributions of item parameters and practical considerations 
such as content distribution and anticipated item exposure 
issues. Simulations should be completed with various 
situations, such as a bank with a wide range of difficulty 
compared to a narrow range, or skewed difficulty, or a bank 
with more highly discriminating items compared to less 
discriminating items. Veldkamp and van der Linden also 
discuss optimal bank research; the Reckase (2003) approach 
can provide valuable information.  

An important consideration in designing the studies is 
that the test information function (TIF; Embretson & Reise, 
2000) should match the purposes of the test. If the test is used 
for classifying examinees based on a single cutscore (e.g., 
pass/fail), the test requires more information near that 
cutscore than it does on the extremes of the ability range. 
Precise scores are not needed for examinees on the extreme, 
so items of extreme difficulty are not necessary. Conversely, if 
precise scores are needed for all examinees, including those of 
very high or low ability, then items appropriate for those 
examinees are needed. Substantial numbers of very easy or 
very difficult items are required. 

Fortunately, in many cases a completely new item bank is 
not necessary. The existing item bank can be utilized. In fact, 
it is often quite useful to do so for continuity purposes. By 
linking and mixing newly developed items with an existing 
bank, this ensures that the underlying IRT scale remains 
constant during the transition to CAT. Of course, doing so 
also greatly reduces the number of items that need to be 
developed. 

Regardless of whether the bank will consist of all new 
items or a mix of old and new, it is important to consider the 
statistical requirements of items in a testing program. If a 

testing program has high standards and typically eliminates a 
substantial percentage of items during the development 
process, this must also be taken into account during this stage. 

Step 3: Pretesting, calibrating, and linking 
Once items are developed, they must be pretested. This is 
absolutely essential for CAT because items are matched to 
examinees based on IRT item parameters, and the parameters 
are estimated via statistical analysis of actual examinee 
responses to items. The sample size required for pretesting 
varies by the IRT model employed (Embretson & Reise, 
2000). For example, Yoes (1995) suggests that 500 to 1,000 
examinees are needed per item for the three-parameter IRT 
model. Topics in this step are described in more detail in 
Flaugher (2000). 

There are two approaches to pretesting, referencing the 
previous issue of whether the CAT item bank will be 
completely new or a mix of old and new, and whether the 
existing tests must remain operational during the item 
development and pretesting phase. If the CAT bank will be 
completely new, the items can simply be administered in large 
numbers; in developing a bank of 400 new items, each 
examinee might have the time to see 100 new items. If there is 
a mix of old and new, and the current tests must remain 
operational, the new items might be “seeded” into the 
currently operational tests.  Let us continue with the previous 
example, where 160 new items were needed in addition to 340 
existing items. To account for the fact that some items will not 
turn out as good as hoped for, suppose we are pretesting 200 
items. If examinees are already taking a 100-item fixed-form 
test, taking all 200 new items would triple the test length, 
which would take up too much time. Since 200 items are 
needed, and there are four forms, it makes sense to give only 
50 new items to each examinee. The 50 items can be selected 
randomly, or in predefined blocks using various plans 
(Verschoor, 2010). The key, regardless, is to plan the 
arrangement of pretest items such that enough examinees see 
each item to provide the minimum number of responses 
needed.  

After pretesting is completed, the item parameters must 
be estimated with IRT calibration software. An important 
component of this is linking, which ensures that parameters 
from all the items are calibrated on a common scale. There are 
several approaches for this, but one important distinction 
needs to be made, between methods that put the new items on 
an existing scale (e.g., Stocking & Lord, 1980) or methods that 
establish a new metric (Lee & Weiss, 2010). Obviously, if the 
item bank is to be completely new, there is rarely a need to link 
it to an existing scale. Similarly, if the bank is being designed to 
incorporate items from an existing test and it is necessary to 
maintain the scale, then a method that establishes a new 
metric is inappropriate. For guidance on linking, refer to 
Kolen and Brennan (2004). 
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This calibration phase involves additional statistical 
analysis. Most commonly, item statistics such as difficulty and 
discrimination are reviewed to determine if items need to be 
eliminated or revised and pretested again. Even if the testing 
program is officially based on IRT, classical statistics can still 
be quite useful for this purpose.  An additional statistic at the 
item level is the analysis of model fit, namely how well the data 
supports the IRT model that has been assumed for the 
calibration. Items that have substantial issues, such as 
speededness or susceptibility to guessing, will typically have 
poor fit, which implies that IRT parameters for those items 
are not stable enough to be used in CAT.  

Lastly, an analysis of dimensionality is necessary at this 
stage. IRT assumes that the test is unidimensional (unless 
multidimensional IRT models are employed), so the items in 
the pretesting of the bank should be factor analyzed to ensure 
this. The appropriate procedure is factor analysis using 
tetrachoric correlations (for items scored correct/incorrect), 
which can be done with the software program MicroFACT 
(Waller, 1997), or full-information factor analysis using 
TESTFACT 4 (Bock et al., 2003). Bejar (1980; 1988) has 
suggested an alternative method of evaluating dimensionality 
within the IRT framework. 

Step 4: Determine specifications for the final 
CAT 

At this point, an item bank has been developed and calibrated 
with IRT. However, this is only the first of five components 
of a CAT described previously. Before the CAT can be 
published and distributed, the remaining four components 
must be defined. As with the planning of the item bank, this 
should not be done based on arbitrary decisions, but on 
simulation studies (Flaugher, 2000). However, there is one 
important difference in this stage: we now have an actual item 
bank developed and data from real examinees responding to 
those items. Real data is obviously preferable to randomly 
generated data if the purpose is to approximate how the CAT 
will perform with real examinees in the future. Therefore, this 
data can be utilized in new simulation studies, called post-hoc 
simulation or real-data simulation.  

With post-hoc simulation, like Monte Carlo simulation, a 
CAT is simulated for each examinee based on responses to 
each item in the bank. The difference is that Monte Carlo 
simulation generates the response of each examinee to each 
item, while post-hoc simulation utilizes the real data. For 
example, if the CAT simulation for the first examinee 
determines that Item 19 from the bank should be the first 
item administered, Monte Carlo simulation would generate a 
response to that item based on the item parameters, the 
person parameter (θ), and the assumed IRT model. On the 
other hand, with post-hoc simulation there would be no need 
to generate the response; the simulation algorithm would 
simply look up the actual response of the first examinee to 
Item 19. 

This type of simulation has a substantial drawback with 
pretest designs where examinees saw a small percentage of the 
items in the bank. In the example above, each examinee would 
see only 150 items from the developed bank of 540 (with the 
intention that 500 would be retained): 100 items from an 
existing form and 50 new items. If a post-hoc simulation were 
to be conducted on this data set, a response would not be 
available for 390 items for each examinee. To address this 
issue, a third type of simulation, hybrid simulation, was 
developed (Weiss & Nydick, 2009; Weiss & Guyer, 2010). 
Real data is used where available, but missing responses are 
generated using Monte Carlo methods based on each 
examinee’s θ as estimated from the items he/she has 
answered. This allows CATs to be simulated more effectively 
with a real item bank and real examinees. 

Post-hoc or hybrid simulations are essential to compare 
and evaluate different methods and specifications for the four 
algorithmic components of CAT with a real item bank. There 
are often important questions to be answered within each 
component, such as comparing item exposure methods or 
applying content constraints in the item selection algorithm; 
software such as CATSim (Weiss & Guyer, 2010) is designed 
to provide options to specifically answer such questions. A 
CAT that is published without adequate research in the form 
of these simulation studies is substantially less defensible. For 
example, the item bank might be inadequate to meet the 
demands of the item selection, content balancing or 
termination criterion algorithms; without simulation studies, 
this might not be realized until after the tests are in the field. 

Item bank 

The item bank does not necessarily have to be used as is. 
While a bank of 500 items has been developed, perhaps the 
items are higher quality than expected, and a bank of 400 
might suffice, allowing the other 100 items to be rotated into 
position at a later date. Simulations could easily compare 
CATs with all 500 items to CATs with only 400 items from 
the bank. 

Starting point 

There are several options available as the starting θ estimate 
assigned to each examinee before an item is administered. The 
most straightforward is simply to assign a fixed value 
corresponding to an average score. With IRT, this is usually 
0.0 because the scale is centered on examinees. 

Starting each examinee with the same initial θ estimate 
has a distinct disadvantage. Because the CAT algorithm 
selects the best item for an examinee based on the θ estimate, 
if every examinee has the same estimate, than every examinee 
will receive the same first item. If this is deemed to be a test 
security or item exposure issue, some randomization can be 
implemented. For example, the estimate can be a value 
randomly selected in the range -0.5 to +0.5, or a randomesque 
item selection method applied, either of which would likely 
enable several possible starting items. 
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Nevertheless, the goal of CAT is to adapt the test to each 
examinee as much as possible. Both of the previously 
mentioned starting points assume that nothing is known 
about the examinee. However, in many cases there is 
information available on examinees. The most obvious is 
scores on previous tests. If CATs are being administered to 
children in schools as part of a formative assessment program, 
they are often used several times per year. In such a situation, 
the score from the first administration makes an ideal starting 
point for later administrations, because student ability will 
likely be in a similar range, though will hopefully increase to 
some degree. 

Another option is to use external information to estimate 
examinee ability. For example, Castro, Suarez, and Chirinos 
(2010) examined external factors like motivation and 
socioeconomic status. In educational contexts, other 
assessments or scholastic information can be useful. For 
example, with a test for professional licensure or certification 
that is taken after the educational process, performance 
indicators from the process, such as grade-point average, 
could be used as a starting point if research shows that there is 
a correlation. While not a perfect prediction for every 
examinee, this would provide an increase in efficiency, on 
average, that could translate to substantial time and item 
exposure savings in the long term. For the minority of 
examinees where there is an inaccurate prediction, the 
adaptive nature of the CAT will account for it. 

Item selection algorithm 

The item selection algorithm is important because it refers not 
only to the specific calculations to determine the most 
appropriate item, but also to the impact of practical 
constraints. Item selection is typically based on the concept of 
item information, which seeks to quantify the notion that some 
items are more appropriate than others for a certain situation. 
For example, it makes little sense to administer a very easy 
item to an examinee that is quite bright; they are virtually 
guaranteed to get it correct. The converse is true for an 
examinee of low ability. 

An important consideration in item selection is whether 
the purpose of the test is to obtain accurate point estimates of 
θ or to make broad decisions. If the purpose of the test is to 
estimate θ with a certain level of precision, then it is 
appropriate to deliver items that provide the most 
information at the θ estimate of the examinee. However, if the 
purpose of the test is to classify examinees based on a 
cutscore, using a likelihood ratio approach (Reckase, 1983), it 
is often more efficient to design the item selection algorithm 
to evaluate information at the cutscore (Eggen, 1999; Eggen 
& Straetmans, 2000; Thompson, 2009). 

There are a number of methods of calculating the IRT 
information criterion used to select items, and a substantial 
amount of CAT research consists of simulation studies 
designed to compare different methods of item selection (e.g., 

Eggen, 1999; Weissman, 2004). The 2010 International 
Association for Computerized Adaptive Testing conference 
included two sessions devoted directly to research on item 
selection algorithms. Yet in practice, these differences are 
often insignificant; for this reason, it has been argued that 
other avenues of making the test more efficient should be 
evaluated (Thompson, 2009; van der Linden, 2010).  

For the same reason, it is often more important to 
evaluate the impact of practical constraints in the item 
selection process. The two most common types of constraints 
are item exposure constraints and item characteristic 
constraints. Item exposure constraints are subalgorithms 
incorporated into the item selection algorithm to combat the 
fact that CAT always tries to select the best items, which tend 
to be the items with the highest discrimination parameter. 
Therefore, items with higher discrimination parameters are 
administered far more often than items with moderate or low 
discrimination. To address this, some type of randomization 
is typically implemented. See Economides, Georgidou, and 
Triantfillou (2007) for a review of these methods. 

Many testing programs also require that tests be 
constrained by certain non-psychometric characteristics. A 
typical example of this is content constraints, such as a math 
test requiring a certain percentage of items covering algebra, 
geometry, and probability. Another example is cognitive level, 
including Bloom’s (1956) taxonomy, which might require that 
no more than a certain percentage of the test be simple recall 
questions. 

Both of these types of constraints reduce the efficiency 
of the adaptive algorithm because they impede the natural 
selection process of choosing the most discriminating items. 
However, they can be quite important from a broader 
perspective. Therefore, post-hoc or hybrid simulations should 
take them into account when determining CAT specifications, 
and provide detailed guidance regarding their use. Not only 
are the simulations useful for evaluating the application of 
item exposure constraints, but also for comparing the 
efficiency of different methods of controlling item exposure. 

Scoring algorithm (θ estimation)  

Most CATs utilize IRT for scoring, in addition to item 
selection. Although Rudner (2002) showed that CATs 
designed with classical test theory can be quite efficient in the 
classification of examinees, CATs for point estimation of 
examinee ability require the precision that IRT can provide. 
Simulation studies can be used to compare the efficiency of 
CATs designed with different scoring algorithms. This not 
only includes classical vs. IRT, but also a comparison of IRT 
methods, such as maximum likelihood and Bayesian methods. 
The latter comparison produces little difference in observed 
results, but does have some important implications. 
Maximum likelihood estimation is less biased (Lord, 1986), 
but has the drawback that it requires mixed response patterns 
(at least one correct and one incorrect response), which is 
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never the case after the first item is administered. A 
subalgorithm must then be applied when there is a nonmixed 
response vector; simulations can also aid in that specification. 

Termination criterion 

While CATs can be designed to be fixed length (e.g., all 
examinees receive 100 items, but the items are adaptively 
selected from the bank), they enable the possibility of 
variable-length tests. Such a test not only adapts the items to the 
examinee, but also adapts to the number of items needed. 
There are different methods to implement this. Some evaluate 
the examinee θ estimate, some the standard error of 
measurement, and some take into account the item bank. 

An example of a termination criterion based on the θ 
estimate is to terminate the test when the θ estimate no longer 
changes more than a small amount after each item. This is 
because CAT is an iterative process, so the estimate typically 
varies widely as a test begins, but eventually “zeros in” on 
examinee ability. The same is true for the standard error of 
measurement; it is relatively large at the beginning, and will 
decrease as the test proceeds. 

Another approach is to base the termination criterion on 
the item bank rather than an examinee parameter. One 
example of this is the minimum information criterion; if there are 
no items left in the bank that provide at least some minimal 
level of information, as defined by the item selection 
algorithm, then the test can be stopped because there are no 
more items left that are worth administering. 

However, the most common termination criterion is the 
minimum standard error criterion. This approach designs the test 
to stop when an examinee has reached a certain standard 
error, or equivalently, a certain level of precision. For instance, 
the test might stop when the standard error becomes 0.25 or 
less. This would mean that a 95% confidence interval with ±2 
standard errors on each side would be approximately one θ 
unit wide. This termination criterion has the advantage of 
producing equiprecise scores for all examinees, assuming that 
the item bank is properly developed. 

Like item selection, this algorithm is also subject to 
practical constraints. The typical constraint is a test length 
constraint, in the form of a minimum or maximum. The 
minimum serves to ensure that each examinee receives at least 
a certain number of items; if the test can fail examinees with as 
few as 10 items, then it might be politically advantageous to 
ensure that examinees see at least 20 items before failing, in an 
effort to reduce complaints. The maximum serves to ensure 
that the entire bank is not administered. In a pass/fail CAT, 
examinees whose true θ is equal to the cutscore will never be 
able to be definitively classified even if given the entire bank, 
so the test might be set to terminate at some relatively large 
number like 200 items. 

These options all provide direct control over the 
operation of the CAT and directly affect the number of items 

seen by examinees. In general, a test with more items 
produces more precise scores, and vice-versa. Simulation 
studies are necessary to evaluate the extent of this tradeoff 
and produce test specifications that meet the requirements of 
the testing program. If the minimum standard error criterion 
is employed, it would be useful to run simulations with 
varying levels of error, perhaps 0.25, 0.30, and 0.35, then 
evaluate the greater number of items required for greater 
precision. 

Step 5: Publish live CAT 
Once the specifications for all the necessary components have 
been determined, as well as any additional algorithms, the final 
CAT can be published. If the test development and delivery 
software already exists (for example, the organization has 
purchased a system or access to a system), this step contains 
little difficulty. Most of the options described in the previous 
section are manifested as simple radio buttons or check boxes 
within the CAT system. However, if the organization is 
developing its own platform, this step can be the most 
difficult. Fortunately, if that is case, most of the development 
work can be done concurrently with the previous four steps, 
saving a substantial amount of time. This step also contains 
many of the practical distribution and delivery issues and 
effort that pertains to all testing, not just CAT, such as test 
security.  

Epilogue: maintaining a CAT 
The research involved in CAT development does not cease 
when the test is published. Additional research is needed as 
maintenance for the CAT. Perhaps the most important thing 
to check is whether actual CAT results after publication match 
the results expected based on the simulations. For example, if 
post-hoc simulations predicted that examinees would need 47 
items on average to reach the minimum standard error of 
0.25, did this actually occur during the first month of 
operational CAT? 

Another important issue is maintenance of the item 
bank, sometimes called “refreshing.” Because items can 
become overexposed in large volume testing, overexposed 
items might need to be rotated out and newer items rotated in. 
This is typically done by seeding new items into the bank to be 
pretested, and then converted to scored items after sufficient 
sample size for calibration is obtained. However, some 
research has investigated the application of online calibration, 
where the items are immediately calibrated into the bank 
during the pretesting process. 

The selection of items to be retired is a choice of the test 
sponsors. There are several issues to consider. The most 
obvious is exposure; if half the examinees see a certain item, 
and it is known that items typically find their way to the 
Internet, then the item can likely be considered compromised. 
A more specific method of examining this issue is a parameter 
drift study. If the item is compromised, then many more 
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examinees will answer it correctly than when the item was first 
developed. If post-compromise data is analyzed, the IRT item 
parameters will then be different, indicating that the item 
should be retired. Test security software designed to search 
the Internet for test items at brain dump sites is also useful. 

Summary 
The development of a CAT requires substantial psychometric 
expertise. Because of this, the development of a CAT is often 
left completely to the judgment of the professionals working 
on the CAT. But as CATs become more widespread, the 
psychometric expertise of the personnel working on them 
might not be sufficient to develop a legally defensible CAT 
without some guidance. This paper has provided a broad 
framework for the development of a CAT, applicable to most 
situations. However, although this model is quite general, and 
many issues have been discussed, it is not completely 
comprehensive. Many testing programs will have 
idiosyncratic issues that must not only be identified, but also 
isolated so that they can be investigated as empirically as 
possible. However, the principle that answers to the issues 
should be empirically identified, often through the use of 
simulation research, remains applicable to all programs. 
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