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Abstract

The goal of this study was to assess the feasibility of an approach to adaptive testing based on

item models. A simulation study was designed to explore the affects of item modeling on score

precision and bias, and two experimental tests were administered — an experimental, on-the-fly,

adaptive quantitative-reasoning test as well as a linear test. Results of the simulation study

showed that under different levels of isomorphicity, there was no bias, but precision of

measurement was eroded, especially in the middle range of the true-score scale. However, the

comparison of adaptive test scores with operational Graduate Record Examinations (GRE) test

scores matched the test-retest correlation observed under operational conditions. Analyses of

item functioning on linear forms suggested a high level of isomorphicity across items within

models. The current study provides a promising first step toward significant cost and theoretical

improvement in test creation methodology for educational assessment.

Keywords: Adaptive testing, CAT, item response theory, expected response function, automated

item generation, quantitative reasoning
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Introduction

After the introduction of computer-based testing in the early 1990s, it became obvious

that continuous testing presented different challenges than paper-and-pencil testing. In particular,

the cost of content production increased significantly. The preference of certain items by the item

selection algorithm, coupled with the relative unpredictability of item statistics and the time

consuming nature of the pretesting process needed to compensate for that unpredictability,

conspired to increase costs in order to maintain acceptable security. A generative approach to

creating test content can potentially alleviate some of these problems. In this report we present

the results of an investigation into the feasibility of measuring quantitative reasoning in a

generative and adaptive mode.

Generative testing (e.g., Bejar, 1993) is a construct-driven approach to assessment that

may have, in addition to its measurement benefits, many significant practical advantages. In this

report, we have adopted the term item modeling to refer this approach. An item model (Bejar,

1996) can be thought of as a procedure for instantiating isomorphic items — items that contain

comparable content and are exchangeable psychometrically. We view item modeling as

construct-driven because it entails an understanding of the goals of the assessment and the

application of pertinent psychological research. That is, item models set the expectation for the

behavior of the instances produced by a given model, and those expectations can be verified

upon administration of the isomorphs, thus providing an opportunity to refine our understanding

of the construct and supporting psychological principles. In addition to their role as a validity-

enabling approach, item models may have practical advantages. In particular, manual item

production is a labor-intensive process that treats each item as an isolated entity to be

individually reviewed and formatted, regardless of how similar it may be to other items. An item

modeling approach automates many of the details of producing instances once the item model

has been formulated.

In this report, we explore the feasibility of item modeling in conjunction with adaptive

testing. That is, the "item pool" consists of a combination of item models and items. In this

approach, instances of a model are presented at delivery time — that is, they are generated on-

the-fly from an item model. Otherwise, the same adaptive engine that is used operationally is

employed.

The goal of the present study was to compare Graduate Record Examinations (GRE®)
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General Test scores obtained operationally with scores obtained by way of a generative adaptive

examination. However, it is important to state at the outset that we see item modeling only as a

partial solution to the challenges presented by continuous, computer-based admissions testing.

For example, a specific challenge is controlling the exposure of items (e.g., Stocking & Lewis,

2000). Item models, like items, could be over-exposed unless the appropriate precautions are

taken. Therefore, a complete solution to the challenges of continuous adaptive testing would

require, among other things, a test specification that satisfies difficulty, content, and exposure

constraints in a manner that is consistent with the construct we wish to measure.

Item Modeling

Generative assessment is concerned with the systematic creation of items based on

principles. It is appealing to create the items by automated means, but the mode of generation is

not critical. Item models could also be instantiated manually by test developers using the models

as a prescription for authoring. This approach was used successfully in the development of a

computer-based licensing examination for architects (Kenney, 1997; Bejar & Braun, 1999; Bejar,

2002). Generative assessment has its roots in computer-assisted instruction (e.g., Uttal, Rogers,

Hieronymous, & Pasich, 1969) and in criterion-referenced testing (Hively, 1974). Hively's work

emphasized automated generation. In Hively’s approach, a domain is defined “in terms of

operationally stated rules called item form rules, which allow for an explicit description of the

complete set of items that could be written” (Macready, 1983, p.149). This early research

recognized the need to control both homogeneity and difficulty. At the time, however,

accountings of difficulty were rare because the cognitive theories needed to psychometrically

model items were not yet available.

During the same period, Uttal et al. (1969) used the term generative instruction to

describe an alternative to the machine learning efforts of the 1960s, which were based on

Skinnerian principles. Skinner (1954, 1958, and 1961) viewed learning as a matter of reinforcing

the bond between stimulus and response. By contrast, generative instruction aimed to diagnose

the source of difficulties in learning. This cognitive perspective underlying generative instruction

was elaborated by Brown and Burton (1978), among others, into a branch of cognitive science

known as intelligent tutoring, which relies on a detailed, dynamically updated description — or

student model — as the basis for presenting instruction (e.g., Clancey, 1986; van Lehn, 1988;

Martin & van Lehn, 1995; Mislevy, 1995). Student modeling is now an integral part of the
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evidence-centered design assessment framework (e.g., Mislevy, Steinberg, &, Almond, 2002).

As such, there is a strong conceptual linkage between item models, assessment, and instruction

(e.g., Bejar, 1993).

The cognitive perspective that first started in an instructional context now prevails in

psychometric modeling as well. For example, item-difficulty modeling is now a common method

for gathering evidence related to what Embretson (1983) has called construct representation, a

key aspect of test validity concerned with understanding the cognitive mechanisms related to the

item solution and item features that call on these mechanisms. The utility and feasibility of this

perspective can be judged by the variety of domains in which it has been successfully applied.

These domains include ability and achievement testing, as well as the measurement of complex

skills, such as troubleshooting, clinical diagnoses, and pedagogical skills. A growing number of

projects demonstrate the feasibility of the generative approach (e.g., Bejar; 1990, 1993; Bejar &

Braun, 1997; Bejar & Yocom, 1991; Embretson, 1999; Hornke & Habon, 1986; Irvine, Dunn, &

Anderson, 1990; Meisner, Luecht, & Reckase, 1993; Wolfe & Larson, 1990). A recent

conference held at Educational Testing Service (ETS®; Irvine & Kyllonen, 2002) gave further

examples of the feasibility of the approach in different domains. The pioneering work of Bejar

(1986), Hornke & Habon (1986), and Irvine et al. (1990) are especially noteworthy because they

provided a conceptual and experimental basis for much subsequent work.

A specific approach to generative modeling is based on item modeling, a term used by

LaDuca, Staples, Templeton, and Holzman (1986). The term task model has also been proposed

in the context of evidence-centered assessment design (Mislevy et al., 2002). Task model

subsumes item model in several respects. First, task models are applicable to large tasks,

including complex simulations. As a result, task models include explicit and detailed connections

to other aspects of assessment design, such as scoring. Item models, which have been most

frequently used with multiple-choice items, have simpler working connections with other test

components. For example, as part of adaptive testing, an item model supplies items that are

calibrated through item response theory (Lord, 1980). Based on those calibrations, an estimate of

ability is obtained and the next item is chosen, in part, based on that estimate. The task models

employed under evidence-centered assessment design could also be calibrated in this way, but in

addition, through a much broader range of psychometric characterization. Thus, our use of item

model is consistent with both the original meaning in LaDuca et al. (1986) as well as task
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modeling in evidence-centered design. However, we do emphasize one aspect in the present

work that is new — namely, the totally automated generation of instances of an item model as

part of an adaptive testing procedure.

Automated item generation raises the question of the calibration of item models and their

instances. The estimation approach would seem to depend in turn on our understanding of

difficulty. At least two approaches to modeling difficulty within a generative approach seem

feasible: strong theory versus weak theory (Bennett, in preparation). Strong theory relies on the

psychological principles underlying domain performance to finely control difficulty, either

among the models that compose a test or among the variants that a model produces. In the former

case, each model is written to generate items that are isomorphic. Psychological principles are

used to create variation in difficulty between, rather than within, models and to predict the

response parameters for each model (e.g., Embretson’s [1993, 1999] work with matrix

completion tasks). In the latter case, principles are employed to create a single model that

generates calibrated items that widely vary in difficulty. For example, Bejar (1990) relied on the

psychology of mental rotation to generate instances and to estimate item parameters. Strong

theory works well in narrow domains where cognitive analysis is feasible and where well

developed theory is more likely to exist.

In broader domains, strong theory may not be available. In these domains, weak theory

may be applicable. Weak theory begins with a set of calibrated test items that cover the domain

of interest in terms of difficulty and content. Each item serves as the basis for an item model. The

models themselves are written using best-practice guidelines, as opposed to psychological

principles, so that each model generates isomorphs. In this study we use weak theory to calibrate

an item model and impute the parameters to all instances of the model. Therefore, the emphasis

is on producing items that are well described by a single set of parameters.

Independent of whether we are operating under weak or strong theory, the specifics of

parameter estimation need to be considered. In particular, it is important to distinguish the case

in which a model needs to be calibrated from scratch, versus the case in which previously

calibrated items can be thought of as instances of a model. In the first case, one might treat the

randomly assigned instances of a model as if they were the same “item.” Then, a standard

parameter-estimation program could be used to fit the responses for different instances to a

single item-characteristic curve (ICC). The fit of the resulting estimated ICC would depend, in
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part, on the level of isomorphism — that is, the degree of variation among item parameters of the

different instances that were treated as if they were a single item.

A major shortcoming of this approach is that the variability that may exist among

instances of a model is not captured explicitly. Therefore, a more satisfying approach is to

formulate a statistical model whereby variability among instances is captured along with “base”

parameter estimates that characterize the class of items from a given item model. Janssen,

Tuerlinckx, Meulders, and De Boeck (2000) and Wright (2001) have proposed such models.

Other Bayesian approaches that can be oriented to generation can be found in Bradlow, Wainer,

and Wang (1999) and Fox and Glas (1998). One program, Scoright (Wang, Bradlow, & Wainer,

2000), already exists for the three-parameter and graded-response case. Applications to

educational surveys (e.g., Hombo & Dresher, 2001) are also under investigation.

In the second case — in which calibrated items can be thought of as instances of a model

— we need to distinguish whether one or more calibrated items are available. In either case, the

goal is to estimate parameters for the model from the available data. As we shall see below, in

this study we use the expected response function method for the case in which we use the

parameter estimates of a single item as the basis for estimating the parameters for the item

model. The case in which multiple existing item parameter estimates are available remains to be

explored.

Report Overview

As noted earlier, the goal of this investigation was to assess the feasibility of an approach

to adaptive testing based on item models. The investigation involved three components:

1. Operational GRE General Test scores were compared with those from an
experimental adaptive test that included both item models and traditional items.

2. A simulation study based on the same item pool was conducted to theoretically assess
the impact of lack of isomorphism among item model instances.

3. Specific item models that were administered in a linear test following the
administration of the adaptive test were analyzed to empirically assess the level of
isomorphicity yielded by the item models.

In the next section, we describe the procedures for each of these components. Analyses

and findings are presented next, followed by discussion and conclusion.
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Procedures

Section Overview

In this section, we first describe the adaptive testing procedure that was used to collect

data from subjects who previously took the GRE. The purpose of the adaptive testing was to

assess the psychometric feasibility of on-the-fly testing. In other words, we sought to determine

whether test scores based on items generated on-the-fly are equivalent to test scores based on

items created by conventional methods, and whether these test scores can be considered

equivalent to operational test scores.

Next, to corroborate our adaptive data collection procedures, we describe our simulation

study, which we completed to help us understand the behavior of the scores under idealized

conditions. Third, we relate the system we used for data collection — including some of the

details of the Web-based delivery system we used to collect the data. Fourth, we detail the linear

tests that we administered after the adaptive tests to further study the functioning of the item

models. We conclude the section with a discussion of our recruitment procedures.

Adaptive Test Procedures

Modeling the Item Pool

A significant investment has been made to make continuous testing a reality after many

years of research (see Wang et al., 2000, for a summary of research related to adaptive testing).

With this in mind, our goal was to build upon that research foundation by utilizing the existing

psychometric infrastructure as much as possible. Specifically, our implementation of on-the-fly

adaptive testing relied on the GRE adaptive-testing model.

A key component of an adaptive test is the construction of one or more item pools. Our

starting point in developing an on-the-fly adaptive exam was selecting an existing pool of items.

In theory, the choice of the next item in an adaptive test is driven by the goal of maximizing the

precision of measurement. When there are no other considerations at play, the process of

choosing a next, maximally-informative item is simple. In practice, however, many practical

considerations have to be factored into this decision. In particular, limits need to be imposed on

which items are presented so that the set of items a student receives provides an adequate

sampling of the content domain and that no one item is presented so frequently that its security is

compromised.

Pools are constructed according to a complex procedure that aims to satisfy these many
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constraints (e.g., Mills & Steffen, 2000). In the current study, we used a specific item pool

known as CAT Pool 2, which is one of the pools released with PowerPrep®, a test preparation

program distributed by ETS for the GRE General Test. A subset of 147 items from this 408-item

pool was converted to item models. That is, each of the items in the subset was taken to be an

instance of an item model that was created from that original item. The intent of item modeling is

to be able to generate the specific instance that motivated the model, as well as many more

psychometrically-equivalent instances. Those items with the highest predicted exposure were

chosen to be converted to item models to ensure that any given student would be responding to

instances from as many item models as possible. (Predicted exposure rate is calculated for a

given pool through simulations, as part of the process of configuring new pools. For this pool the

predicted exposure and observed exposure rates were found to be very similar). Table 1 displays

counts of the models and items that comprise the study pool.

Table 1

Description of Item Pool by Item Type and Number of Item Models

Type

Quantitative
comparison

Problem solving Data
interpretation

Total

Models 100 47 0 147

Items 48 65 148 261

Pool 148 112 148 408

Some items were excluded from modeling for several reasons. First, we did not model

any data-interpretation sets. One reason why data-interpretation sets were not modeled is because

significant effort would have been required to make the items appear credible. Also, we did not

model any quantitative-comparison or problem-solving items that had an extremely low

exposure rate. Specifically, if the probability of a student receiving an item was less than 0.02,

we did not model it because it would not be likely to be presented. Finally, we did not model

items that did not have enough surface features to vary or that would produce only a few

instances. We did model discrete items with figures to illustrate the feasibility of producing items

on-the-fly with dynamically-generated graphical material.
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Item models were reviewed by experienced test-development staff, who generated

instances to evaluate the equivalence of the items. They evaluated models in terms of the surface

variability of the instances and their subjectively estimated difficulty. Models that did not strike a

balance of some diversity in surface variability and little spread in difficulty were excluded.

Figure 1 shows a quantitative-comparison item taken from the original PowerPrep pool,

while Figure 2 shows the item model that was derived from it. In Figure 2, the components of the

item model are identified in bold font. The section labeled “stem” identifies variables S1.1 and

S1.2, which represent string variables corresponding to “centimeter” and “kilometer,”

respectively; I1 refers to an integer variable. Columns A and B display additional variables. All

variables are further defined in the section labeled “variables,” which lists the range of values the

variables can take on. The variables I4 and I5 do not appear in the problem, but rather are needed

to specify constraints on I3. Figure 3 shows sample instances of the item model depicted in

Figure 2.

Figure 1. Sample textual quantitative-comparison item.

The relationship cannot be determined from
the information given.

The quantity in Column A is greater.
The quantity in Column B is greater.
The two quantities are equal.

On a map drawn to scale, 1 centimeter represents 30
kilometers.

Column A Column B

The distance on the map
between two cities that
are actually 2,000
kilometers apart

60 centimeters
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Quantitative-Comparison Model

Stem

On a map drawn to scale, 1 S1.1 represents I1 S1.2.

Column A Column A value

The distance on the map
between two cities that are
actually I2,000 S1.2 apart

Column B Column B value

I3 S1.3

Variables

S1.1 Range: “inch” or “centimeter”
S1.2 Range: “miles” or “kilometers”
S1.3 Range: “inches” or “centimeters”
I1: Value range: 30-90 by 30
I2: Value range: 2-4
I3
I4
I5

Constraints

I4 = I2 * 1000/I1
I5 = I4/10
I3 = I5 * 10

Key

A

Figure 2. Quantitative-comparison item model for item depicted in Figure 1.

Notes:
1 String variable S1.1  varies according to whether the map scale is in inches or centimeters.
2 I1 is a numeric variable constrained to take on integer values between 30 and 90.
3 S1.2 is a string variable for the units of distance — either miles or kilometers.
4 I2 is a numeric variable constrained to take on integer values 2 or 4.
5 I3 is an integer variable that is calculated to be slightly less than the value of column A.
6 S1.3 is the plural of S1.1.
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Figure 3. Sample isomorphs derived from model depicted in Figure 2.

Models With Dynamic Figures

For purposes of this investigation, it was important to demonstrate the feasibility of item

models that were figural in nature. To accomplish this, the figures in these item models were

generated automatically with different instances of the model. Nine item models were chosen to

represent a cross section of the types of graphical items that are found in the quantitative section

of the GRE General Test. The graphics included tables, number lines, geometric figures, and pie

charts. Tables were included because in the current test-creation system, items with tables are

produced using labor-intensive artwork. The nine item models included three with tables, two

with number lines, three with geometric figures, and one with a pie chart. For example, the

Figure 4 shows a base item containing a triangle with two sides labeled.

1. On a map drawn to scale, 1 centimeter represents 30 kilometers. 
 
     The distance on the map between two              130 centimeters  
     cities that are actually 4,000                     
     kilometers apart                                  
 
2. On a map drawn to scale, 1 inch represents 60 miles. 
 
     The distance on the map between two                30 inches  
     cities that are actually 2,000 miles               
     apart                                             
 
3. On a map drawn to scale, 1 inch represents 30 miles. 
 
     The distance on the map between two                60 inches  
     cities that are actually 2,000 miles               
     apart                                             
 
4. On a map drawn to scale, 1 centimeter represents 90 kilometers. 
 
     The distance on the map between two                40 centimeters  
     cities that are actually 4,000                     
     kilometers apart                                  
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Figure 4. Sample quantitative-comparison item with figure.

In the model for this item, the sides of the triangle had varying lengths. A triangle with

sides containing the correct ratio of lengths was drawn on-the-fly as part of the process of

generating item instances. Figure 5 shows the item model for this item. It should be noted that

within the approach we are taking to representing item models and their instantiations, there is

little difference between textual and figural items. In particular, as Figure 5 shows, the geometric

attributes of the figure are represented as set of variables. Moreover, constraints can operate on

those variables. Thus, the rendering of the figure is very much like the rendering of text.

The relationship cannot be determined
 from the information given.

The quantity in Column A is greater.
The quantity in Column B is greater.
The two quantities are equal.

8

x

The area of the triangular region is 24.

Column A Column B

x 3
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Quantitative-Comparison Model

Stem

The area of the triangular region is I3.

Column A Column A value

S1

Column B Column B value

I6

Variables

I2 Range from 5 - 10 by 1: Length of vertical leg of the triangle
I6 Range from 5 - 10 by 1: ½ of the length of horizontal leg of the

triangle
S1 String x, y, w, v, z: Label shown on graph

Constraints

I1 = 2 * I6 : Length of the horizontal leg of triangle
I3 = I2 * I6: Area of triangle

Key

A

Figure 5. Item model for figural quantitative-comparison item depicted in Figure 4.

Calibration of Item Models: The Expected Response Function

For a generative approach to increase the efficiency of test production, it must allow all

instances of an item model to be treated as a single item. In addition to modeling the “content

parameters” so that many instances are derived from a single model, we need to model the

instances psychometrically as well. That is, item models need to be calibrated just as items are.

Because item models are meant to produce isomorphic instances, our approach is to calibrate an

item model and then impute the model calibration to all instances of the model. For the present

Notes:
1 I3 is a numeric variable constrained to take on integer values between 25 and 100 and is the

area of the triangle.
2 S1 is a string variable that is the label of the horizontal leg of the triangle.
3 I6 is a numeric variable constrained to take on integer values between 5 and 10 and equals ½

of the length of the horizontal leg of the triangle.
4 I2 is an integer value that equals the length of the vertical leg of the triangle.
5 I1 is an integer that equals the length of the horizontal leg of the triangle.



13

study, however, it was not feasible to estimate model parameters from scratch. Instead, we

modified existing parameter estimates for the items giving rise to each model, but under

assumptions of different levels of lack of isomorphicism. The procedure we used for this purpose

was the expected response function.

Expected response function. The expected response function (ERF) is derived from the

work of Charles Lewis, as implemented by Mislevy, Wingersky, and Sheehan (1994). ERF is a

procedure for attenuating parameter estimates as a function of the uncertainty in them. That is,

item parameters are used in estimating ability as if they were known, without any provision for

the uncertainty associated with the estimates. Such a practice overstates the precision of ability

estimates. The ERF methodology enables us to attenuate parameter estimates as a function of

that uncertainty. The methodology is directly applicable1 in the present context in which, in

addition to the usual uncertainty, instances from a given item model will vary somewhat in their

psychometric characteristics.

Suppose that a given item is calibrated using the three parameter logistic (3PL) model.

And let β  = (a, b, c), the vector of the item parameters corresponding to discrimination,

difficulty, and guessing, respectively. Then, two key elements of the ERF approach are the

probability response function and the uncertainty distribution concerning the parameters. The

probability response function, P (r | θ, β), indicates the probability of the observed response, r,

conditional on the item parameters (the 3PL) and the subject’s ability, θ. The uncertainty

distribution about β is P (β  | Σ), where Σ is the variance-covariance matrix among item parameter

estimates. Using both probabilities, the joint density of r and β  is:

( ) ( ) ( )P ,ß ? P ?,ß P ßr r= Σ (1)

Finally, the marginal distribution of r can be computed to remove the dependence on the

unknown β:

( ) ( ) ( )P ? P ?,ß  P ß S  dßr r= ∫ (2)

The expression (2) is the ERF. In practice P (r | ?) is not evaluated according to the definition

(2), but approximated by the closest 3PL curve.

The applicability of the approach for estimating the parameters for an item model is
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illustrated in Figure 6. The figure shows several ICCs that vary in difficulty, with each ICC

corresponding to an instance from the same hypothetical item model. Computing the ERF is a

matter of averaging the ICC over all instances of the item model. That is, averaging the response

probabilities at selected values of ?. The resulting vector of averaged probabilities is then fitted

to the closest 3PL curve. To the extent that there is lack of isomorphicity, the ERF will tend to

have a shallower slope than item model instances. A shallower slope translates into a loss in

precision of measurement. Conversely, to the extent that isomorphicism holds, the ICCs will

coincide with the slope of the ERF, and there will not be any loss in precision.

Figure 6. Graph of expected response function (dashed curve) against three item
characteristic curves at three levels of difficulty.

As noted above, the computation of ERF requires estimates of both β and Σ for each item

model. Using these estimates, the computational procedure performs multiple draws from a

multivariate normal distribution with S as its covariance matrix and ß as the mean vector. (To

this end, the a and c parameters are transformed to approximate normality.) Such estimates could

be obtained by administering instances of an item model to equivalent examinee samples and

computing the variance-covariance matrix from the resulting estimates. Because we couldn’t

collect the data to derive these estimates empirically for β, we instead used the existing

parameter estimates for the 147 items that gave rise to the 147 item models. For S, we located
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repeated calibrations of the same items from GRE program files from a “linking set” used to

scale pretest items.2 The logic of this choice is that the resulting variability is what would be

expected under complete isomorphicity — that is, when the item is the same from time to time.

Because such sets are used multiple times, they are recalibrated each time and put on a common

scale. For each of these linking items, we computed the variance-covariance matrix among the

item parameter estimates of each item. After examining the matrices, we selected one matrix at

each of three levels of variability in b, which we labeled best (S1), medium (S2), and worst-case

(S3) scenarios. The matrices, without transforming a and c to normality, were selected for

purposes of computing the ERF. The diagonal of these matrices shows the variability of these

parameters and are as follows:

1∑ =

006.
011.023.
001.002.003.

c
b
a

cba

2∑ = 

014.
054.237.
012.051.012.

c
b
a

cba

3∑ = 

020.
081.339.
016.067.015.

c
b
a

cba

For each of the 147 item models, we next computed three ERFs, one for each scenario.

For any given scenario (e.g., worst case), the same covariance matrix was used for all 147

estimates. In a more operational situation, we would associate a different matrix to each item

model. However, for any given model, ß was set to the values of a, b, and c associated with the

item that gave rise to the model in the first place.

Figures 7 through 9 show the relationship between the original parameter estimates and

the attenuated estimates — that is, the estimates computed by the ERF procedure, assuming the

worst-case scenario. In Figure 7, we see that, as expected, the a estimates are attenuated greatly,

indicating that some information will be lost as a result of lack of isomorphicity. An opposite
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effect is seen with the c estimates in Figure 9: Here, the originally very low c estimates are

estimated higher after attenuation. Finally, the b estimates change very slightly as a result of the

application of the ERF procedure.

Figure 7. Plot of original and attenuated a parameter estimates based on the worst-case-
scenario matrix.
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Figure 8. Plot of original and attenuated b parameter estimates based on the worst-case-
scenario matrix.
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Figure 9. Plot of original and attenuated c parameter estimates based on the worst-case-
scenario matrix.

Simulation Study

To assess the impact of different levels of isomorphicity on score precision, we

conducted a simulation study. The program that is used operationally at ETS in the preparation

of item pools was modified for this purpose.3 The modification needed was to simulate the

process of randomly assigning an instance of item models to a simulee. This was done in a

manner consistent with the code in the ERF program. The procedure, as originally programmed,

yielded draws with unrealistically high c estimates, so it was therefore modified to pull these

down.4 The modified code was used by the simulation program to draw a single instance for a

given item model. The input to the simulation was, thus, the same as it was for the ERF program:

a mean vector ß corresponding to the original parameters and a S matrix describing the

covariation among a, b, and c under each of the three scenarios. Conceptually, the simulation is

described in Figure 10.
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For each replicate at a value of theta:
If required item is from an item model, then:
      Choose the next item [satisfying relevant constraints and current value of theta].

Draw a set of “true” a, b, and c parameters from a distribution with mean
cba ,,  [set to the PowerPrep parameter estimates ] and a common

covariance matrix.
Compute probability of correct response for current theta and the

a, b, c  drawn in the previous step.
If above probability > draw from a rectangular [0,1] distribution, response is

correct; incorrect otherwise.
Update estimated ability using attenuated item parameter estimates.

Else [required item is a regular item]:
      Using PowerPrep a, b, c for this item:

Compute probability of correct response for current theta.
If above probability > draw from a rectangular [0,1] distribution, response is

correct; incorrect otherwise.
Update estimated ability estimate using PowerPrep item parameter estimates.

Repeat until 28 items are administered.

Figure 10. Description of simulation procedure with item models and items.

It is important to note that, in the case of item models, the probability of a correct

response is computed based on the “true” item parameters, but ability is updated with the

attenuated parameter estimates. In contrast, for items, the probability of a correct response is

computed based on the PowerPrep item parameters rather than from a set of parameters drawn

from a distribution. This difference in procedure means that whether a given examinee gets an

item correct or not will depend on “true” item parameters regardless of whether the item is a

static item or an instance from a model.

We conducted four simulations. The “no isomorph” condition can be thought of as the

case in which each item model produces instances that are isomorphic — that is, with identical

item parameters. Alternatively, we can think of this condition as a case in which there is a single

item and we know its true parameters. In either case, the parameters used to compute the

response probability and updating theta are the same and, therefore, rather ideal.

For the other three simulations, the procedure creates a discrepancy between the

parameters used to compute the response probability and the parameter estimates used to update

ability. The magnitude of the discrepancy is determined by the covariance matrix used.

Specifically, the higher the variability of the b estimates, the shallower the slope of the ERF will
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be, and therefore, the greater the discrepancy between the ERF and the “true” ICC will be. The

greater this discrepancy is, the less information is contributed by the modeled item to theta.

Results of the Simulation Study

For our purposes, the most relevant outcome of the simulation is an assessment of bias

and standard error at different levels of ability for each of the four conditions. For historical

reasons, ability is expressed on a true-score metric ranging from 0 to 60, and we do so here as

well. Figure 11 shows the standard error for the four conditions. The solid curve plots the

conditional standard error of measurement at different true abilities. This standard error is simply

the standard deviation of the difference between estimated and true ability over replicates. As

noted earlier, the curve for the no-isomorph condition might be viewed as unrealistically high

because it assumes the item parameters are known rather than estimated. Nevertheless, the best-

case scenario closely matches this curve. For the medium- and worst-case scenarios, a loss in

precision of measurement is observed. It is not the case, as one might have expected, that the

medium-case scenario is between the worst-case and best-case scenarios. Instead, the medium-

and worst-case scenarios cluster closely. Therefore, these results are suggestive rather than

indicative of the loss of precision we might expect.

Figure 12 shows the results for bias. As can be seen, no bias is observed under any

condition. Thus, as has been observed elsewhere (Bejar, 1996; Embretson, 1999), the impact of

lack of isomorphicism is primarily in measurement precision, although the losses at some levels

of ability appear to be minimal. This outcome is fortunate, as a loss of precision can be

compensated, but bias would be more difficult to correct.
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Figure 11. Standard error for the four testing conditions.

Figure 12. Estimated versus true ability in four testing conditions.
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Systems Design: From Item Generation to Test Delivery

In this section, we describe the software system we used for data collection. The system

is especially important because it is designed to deliver items generated from models as the test

is given, or on-the-fly. The key technological contribution of the system was the use of

extensible markup language (XML) as a means of representing items and models.

The system we used consists of a test delivery system, an item generation system, and a

database of items and item models. The system is Web-based — meaning that the student

interacts with the system through an Internet browser that resides on a local computer that in turn

interacts with a server by way of the Internet. However, very little computation occurs at the

local level. The remote server contains the test delivery and item generation systems, as well as

the database of items and models.

The test delivery system manages the interaction with the examinee, decides which item

to administer next, and calls the item generation system to instantiate an item model or to

retrieve an item from the database. The test delivery system sends a fully formatted item to the

browser for display. The browser, in turn, returns response information. The test delivery system

scores and records the response and updates the ability estimate. At that point, a new item or

item model is selected from the database following an adaptive item-selection algorithm, and the

process is repeated until all 28 items have been administered.

Database of Items and Item Models

As noted, the item models, as well as the generated items, are represented in XML.5 This

representation specifies the content of the models and items (e.g., stems, choices, constraints),

but not how the content should be formatted. Formatting for screen display is done by the test

delivery system. Mathematical expressions in the models are represented in mathematics mark-

up language (MathML), while graphics are represented by scalable vector graphics (SVG).

Because both MathML and SVG are based on XML, the item generation system is able to treat

mathematical symbols and graphics as it does text when substituting bound variables. Item

models were authored in the mathematics Test Creation Assistant (TCA; Singley & Bennett,

2001), which was extended to export the models into our XML format.6
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Test Delivery System

The test delivery system we used for this study is a modification of a system that was

developed at ETS. To this existing system, we added generation capabilities as well as the

capability to deliver adaptive tests. We used the same “adaptive engine” used operationally by

ETS. The other elements of the delivery system are a plug-in “scoring engine,” an examinee-

performance-record database, and a user-interface that very closely mimics the standard,

computer-based GRE General Test.

The same code libraries that are used to implement the estimation of ability by maximum

likelihood estimation and automatic item selection (AIS) systems in the operational GRE exam

were added to the test delivery system. One slight modification was made to these libraries to

support using estimated item parameters for items generated from models. Items are assigned

unique identifiers called accession numbers. These accession numbers are returned by the AIS

system to tell the test delivery system which item to deliver next. Also, they are used by the

ability estimation system to retrieve item parameters when determining the current ability

estimate. We assigned the same accession numbers to item models that were assigned to the

items on which the models were based. This made it possible for the AIS system to function

transparently with either items or item models. A further modification was to allow the delivery

system to substitute estimated item parameters for an accession number that represented an item

model.

In addition to reusing existing systems, it was desirable to reuse items (that were not

being replaced by item models in the pool) with as little recoding as possible. A program was

written to convert the existing rich-text-format items to XML. This process was only semi-

automated and required some manual work. Also, many of the original static items used

graphics, including mathematical equations. These graphics were reused untouched, and font

faces and sizes were selected to be as close as possible to those used in these graphics.

Item Generation

As explained earlier, the item generation system produces instances from an item model.

Also, as shown earlier, item models include variables used within the model, constraints that

specify limits of values for some of those variables, and a template for the item into which bound

variables are substituted. Variables can be divided into two groups: independent variables, the
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values of which are generated at random, and dependent variables, the values of which are

derived, by way of constraints, from the values of other variables. Models may specify limits on

the permissible values that may be assigned to an independent variable, such as stating that a

particular value must be an integer and a multiple of 2 between 0 and 20.

The system we used first generates values for a given model’s independent variables.

These values are produced by a random number generator, which is seeded with an initial value

that is optionally given as a parameter to the model instantiation process. The process guarantees

that item instances are reproducible from a given seed value. This is important because if there

are problems with a particular item instance, it can be investigated later. This reproducibility

method allows the test delivery system to store only the seed value rather than the entire item.

The next step is to derive values for dependent variables. This is accomplished by solving

the constraints in the model. An iterative process is used: first, solving constraints that only

depend on independent variables, then solving constraints that depend on already bound

variables, and so on. The constraints allowed are equalities (a = b + c) and simple inequalities

(a ? b + c). In order to simplify the process, all equality constraints are solved first, and then the

inequalities are checked to see if they are satisfied. If any are not satisfied, the whole process is

attempted again, including independent variable generation.

The final step is instantiating the item template — that is, going from the XML

representation to the HTML representation, which is the representation that a browser can

understand. First, variables with assigned values are substituted into the item template. This

substitution is recursive, so one pass of substitutions can create further targets for substitution on

the next pass. Next, the item instance is formatted. For example, the distractors are sorted to meet

presentation requirements (usually least to greatest for numeric choices). Figure 13 shows the

complete system.
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Figure13. Components of the test delivery system.

Linear Test Procedures

Linear Test Forms

In addition to our adaptive, on-the-fly version of the quantitative section of the GRE

General Test, subjects were administered a 30-item, computer-delivered, linear test consisting

entirely of item models as part of the study. The purpose of administering these forms was to

assess the level of isomorphicity yielded by item models. Three linear test forms were generated,

each comprised of different instances of the same item-models, all identically sequenced. The

first 20 items were created from 20 different models, the first 12 of which were quantitative-

comparison items, and the last eight of which were problem-solving items. Within each of these

groupings, the models were sequenced in order of difficulty from easiest to hardest. The final 10

items were instances generated from 10 of the 20 models — five randomly chosen quantitative-

comparison items and five randomly chosen problem-solving items.
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is, Form 1, Form 2, and Form 3) into the subjects’ test identification numbers listed on roster
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assigned to the third test identification number, then the assignment was repeated for each

subsequent grouping of three test identification numbers. When subjects signed in for their test

administration, test forms were therefore already randomized. By assigning forms randomly to

different subjects, we were able to evaluate the equivalence of different instances of an item

model.

Subjects were allowed 45 minutes to complete a linear test. The 20 item models used for

the linear forms were not administered as part of the adaptive test. Although these original base

items were included in the adaptive pool, they had been flagged to ensure that they would not be

administered to an examinee as part of the adaptive test.

Participants and Data

Target population. Two hundred eighty-two subjects were recruited. The target

population was comprised of college seniors and first-year graduate students who had taken the

GRE General Test between January 1998 and January 2001. Students who had used PowerPrep

software for test preparation were initially excluded from participation because the experimental

adaptive and linear tests were created from items in the PowerPrep pool. However, this criterion

was dropped to maximize the sample size. Of the 282 subjects, 78 (28%) indicated they had used

PowerPrep for test preparation.

Recruitment and data collection. We used a variety of methods to recruit participants.

Nineteen percent of recruits responded to flyers, and 19% responded to college newspaper

advertisements. An additional 26% expressed interest in the study after hearing about it from a

friend. The decision to place an advertisement for participants on the GRE Web site

(www.GRE.org) proved to be an effective strategy, as 34% of all recruits responded through this

method.

All advertising directed interested students to an ETS Web site that displayed general

information about the study. Those who visited this Web site were routed to a survey that was

linked to a database. Questions on the survey were designed to qualify participants for the study,

to secure personal information needed to obtain their prior GRE scores, to request permission to

contact them using e-mail, to identify which testing sites they would use, and to obtain contact

information. The database was used to send mass e-mails to students who met the participation

criteria.
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Testing sites and subject payment.7 Data were collected at Michigan State University

(East Lansing), Fordham University (New York City), and CompUSA training centers (in New

York City and Philadelphia). We tested 138 subjects in East Lansing, 42 in New York City, and

63 in Philadelphia. At each location, we employed existing computer laboratories. All test

administrations were supervised by trained proctors and conducted in computer laboratories

reserved solely for this study. Computer laboratories at Michigan State University and Fordham

University each contained 20 computers that were available at pre-arranged testing times and

dates; CompUSA’s training rooms contained 12 computers. In exchange for their participation,

students were paid $50 in the form of an Internet gift certificate, redeemable at more than 700

local and Internet merchants. This method of payment proved to be both economical and

efficient.

Data elimination. Although we tested 282 students, some data were lost due to

unrecoverable computer delivery problems. In some cases, these errors corrupted the scoring

records for both the adaptive and linear tests. Proctors recorded these errors on the subject rosters

at the testing sites. Examinee performance records (EPRs) were then reviewed to ascertain

whether a given subject’s adaptive or linear EPR was usable. Inspection of the roster

documentation revealed that in many cases linear test scores were intact. In all, only six subjects

were eliminated from both test analyses.

Some EPRs were eliminated from the adaptive test analyses because previous operational

GRE scores could not be located in the GRE program database. A total of 39 EPRs were

disqualified from the adaptive test analyses for this reason, and another five EPRs were

disqualified from the linear test analyses.

Demographics. After eliminating subjects due to data problems, data for both the

adaptive and linear tests remained intact for 243 participants, and data for the linear test alone

remained intact for 277 participants. In tabulating the demographic distribution of our sample,

the total number of participants is based on the linear test sample. All other analyses are based on

a sample size of 243 for the adaptive test and 277 for the linear test.

Table 2 describes the sample. Males comprised 48% of the study sample, as compared to

35% in the GRE test-taking population. However, the most notable difference between the

current sample and GRE population occurred in the ethnicity distribution. In the present study,
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Asians were overrepresented by 42 percentage points and Whites were underrepresented by 37

percentage points.

Table 2

Demographic Characteristics of Subjects Versus GRE Test-Taking Population

Attribute

Adaptive test
n = 243

Linear test
n = 277

GRE
operational test*

(annually)

Gender
Male 49% 48% 35%
Female 51% 52% 65%

Ethnicity
Native American or Alaskan Native 1% 1% 1%
Black or African American 4% 4% 9%
Mexican, Mexican American, or
Chicano

1% 1% 2%

Asian, Asian American, or Pacific
Islander

47% 47% 5%

Puerto Rican 0% 0% 1%
Other Hispanic or Latin American 0% 0% 2%
White (non-Hispanic) 40% 40% 77%
Other 7% 7% 3%

Citizenship Status
U.S. citizen 50% 50% 75%
Non-U.S. citizen 50% 50% 25%

* Source: Educational Testing Service. (2000). Graduate Record Examinations: Sex, race, ethnicity, and performance
on the GRE®  General Test 2000-2001  (I.N. 989404). Princeton, NJ: Author.

Analysis and Results

Adaptive Test

Our main interest in the simulation study was the comparability of experimental and

operational GRE quantitative scores. Comparability is in part a matter of scale: We first sought

to determine whether the scores are on a comparable metric. Second, comparability is concerned

with the relationship, or ordering, between operational and experimental scores. Thus, we sought

to determine how well correlated the operational and experimental scores were.

Table 3 shows the mean scores and standard deviations for study participants on both the

operational and adaptive tests as well as for the overall GRE test-taking population. Comparing

the mean operational score of our sample, 718, to the mean of 565 for the GRE test-taking
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population,8 we see that our sample appears to be much more able in quantitative reasoning than

the GRE population as a whole. Our subjects are also much more homogeneous. The

operational-score standard deviation for our sample is 88, whereas it is 143 for the GRE test-

taking population. Table 3 also indicates that participants’ adaptive, on-the-fly GRE scores are

lower than their GRE operational scores, and that the variability of the experimental scores is

somewhat higher. We expand on this difference in the Further Analysis of Adaptive Scores

section, below.

Table 3

Operational and Experimental GRE Scores for Study Participants

Mean SD

Operational GRE score of sample 718 88

On-the-fly adaptive score of sample 693 101

Operational GRE score for test-taking population 565 143

Note. N = 243

Figure 14 shows the central finding in the study — the relationship between operational

and experimental scores. The diagonal line drawn on the figure represents equivalence. If data

points were evenly and tightly clustered around this line, it would mean that adaptive scores and

operational GRE scores were equivalent. But as the figure shows, and as we know from Table 3,

experimental scores were lower. However, the second aspect of comparability — relationship —

shows a more promising result: The correlation between the two sets of scores was .87. This

correlation turns out to be as high as the GRE quantitative section’s test-retest correlation (R.

Durso, personal communication, January 18, 2000).

Recall that the 28-item experimental adaptive test was composed of both items and item

models. Figure 15 shows the number of item models that were administered to subjects. As the

figure indicates, no subject’s test consisted of fewer than 14 models, and some subjects received

as many as 21 models. Thus, an adaptive GRE quantitative section of between 50% and 75%

item models was able to order examinees equivalently to the operational test.
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Figure 14. Plot of operational GRE scores by experimental GRE scores.
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Figure 15. Number of item models administered to subjects in experimental adaptive test.

Further Analysis of Adaptive Scores

Although the high correlation with operational GRE scores is reassuring, the difference in

score scale warrants additional investigation. At one level, the drop is not surprising. First, these

were high scoring students; regression to the mean would explain some of the drop. Second,

lower motivation in the study context could explain part of the drop as well.

To fully explore the latter idea, one might hypothesize that perseverance on the more

difficult items would be lessened under experimental conditions, or that students would not try

hard enough in general. Given our sample size, the adaptive nature of the test, and the absence of

response-time data for the original PowerPrep pool, our analytic options were very limited.

Nevertheless, we examined the responses of students for whom there had been a large change in

scores. Differences between operational GRE and experimental scores — from a drop of 150

points to a gain of 90 points — were examined. Although such score changes also occur in an
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on these differences. For those scores with changes in excess of 50 points (71 subjects), we

examined:

• occurrences of computer abnormalities during the testing session

• total number of completed items

• number of models administered to the student

• number of items completed in less than 10 seconds

• overall completion time for the adaptive test

We could not detect any patterns from this examination. We also examined the possibility

that the drop was the result of using attenuated parameters in estimating ability. To that effect, we

recomputed experimental scores with the original PowerPrep parameter estimates. However, the

recomputed scores did not change either the correlation with the operational GRE score or the mean

score.

In summary, the correlation between the operational and experimental scores is as high as the

test-retest correlation. The drop in experimental score with respect to the operational score has no

obvious or artifactual basis. We believe it is a regression effect — possibly combined with a subtle

motivation effect that we have not been able to pinpoint, but that nevertheless could be present.

Linear Test

Our interest in conducting this analysis was to assess the equivalence of different

instances of the same models and their relationship to the difficulty estimates for the items from

which they originated. The fact that each of the three linear tests we administered was comprised

of different instantiations of the same item models, and that these item models had not been

administered as part of the adaptive test, facilitated this investigation.

The estimated difficulties for the three instances of each item model were computed by

obtaining the logit of the proportion correct for each instance. Table 4 shows the correlation

among the three sets of model instances and with the operational difficulty estimates from

PowerPrep. Correlations with the operational estimates range from .77 to .87; the correlations

among the difficulties of the model instances range from .80 to .88. Table 5 displays the

corresponding means and standard deviations.
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Table 4

Correlation of PowerPrep Difficulty Estimates With Estimates for Linear Isomorphic Test
Forms

PowerPrep Form 1 Form 2 Form 3

PowerPrep — .87 .82 .77
Form 1 — .81 .88
Form 2 — .80
Form 3 —

Table 5

Means and Standard Deviations of Difficulty Estimates for PowerPrep and Linear Isomorphic
Forms

Mean SD
PowerPrep 0.09 1.15
Form 1 -0.65 0.47
Form 2 -0.52 0.36
Form 3 -0.52 0.37

Figure 16 plots the difficulties associated with each linear test form against the

operational difficulty estimates obtained from PowerPrep. The most salient finding is the

different scales of the experimental versus operational parameters. This difference is not

surprising because our subjects were high scoring compared to the overall GRE test-taking

population. As noted earlier, item model instances were placed on the test in order of difficulty

(easy-to-hard) based on PowerPrep difficulty estimates; the first 12 items involved quantitative

comparisons and the remaining eight were problem solving items. As can be seen from the

graph, item difficulty increases serially up to the twelfth item. It appears that difficulties increase

more rapidly for the operational items, but in reality, difficulties for the item model instances are

on a different metric — that is, difficulties of the item models are logit-based and difficulties of

operational items are 3PL b estimates. The same pattern is observed for the last eight items.

Difficulty estimates obtained for the model instances are closely clustered, as might be expected

if the item models were yielding equivalent instances.
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Figure 16. Comparison of difficulty estimates for PowerPrep and linear forms by position
of item on linear form.

This suggestion of isomorphicism is reinforced by an analysis of response time. Figure 17

shows the mean response time for the 20 model instances in each linear form corresponding to

the data shown in Figure 16. (Unfortunately the mean response time for the operational difficulty

estimates was not available.) Figure 17 suggests that indeed the model instances are equivalent

because they are tightly clustered together within an item model, while across models there is

substantial variability. It is interesting to note that, unlike the case for difficulty, there is no

serially increasing trend within item type for response time. In summary, the analysis of

difficulty and response time both suggest that the item models indeed produced isomorphic

instances.
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Figure 17. Mean response time for items in linear forms by serial position.

Discussion

The results of this study provide initial evidence that an approach to adaptive

measurement of quantitative reasoning based on item models is feasible and could prove more

efficient and economical than current standard procedures. The cost improvement would not

necessarily entail a sacrifice in score precision. The drops in score precision we observed with

simulated data can, in principle, be compensated with a slight lengthening of the test. Moreover,

our highly selective sample, the actual high score correlation with operational GRE scores, and

the consideration that nearly half of the items were from item models suggest that, in reality,

measurement quality is not negatively affected under an adaptive, generative model. Here we

discuss the nature of additional evidence needed to corroborate our main conclusion that an

adaptive, generative model is a technically feasible and cost-effective approach to admissions

testing.
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Item models by themselves are not likely to resolve the challenges facing computer-based

testing. A fundamental problem is the content of the vat, or repository, of all test content for a

given measure. In the ideal case, all elements of the vat, whether they are items or item models,

are exposed in an even fashion. Studies are underway to study the feasibility of reconfiguring the

current item vat to achieve the “equal exposure” ideal. If it is concluded that the current vat can,

for the most part, be reconfigured as item models that would be exposed evenly, existing item

parameter estimates can be used to bootstrap the calibration of those item models. This result

would make a generative, adaptive approach to assessing quantitative reasoning as part of the

GRE General Test more practical.

A related concern is the similarity of instances that are generated from a model. In an

operational program, large numbers of highly similar items pose a clear security risk. If

examinees regularly see items on practice tests and then encounter their isomorphs on the

operational exam, item parameters may change and validity may be compromised. This risk

increases to the extent that items are more similar within than across models and to the extent

that the number of models is small. The former condition will hold, since it is the similarity of

items within models that allows generation with calibration. The latter condition is modifiable:

We can create many models, but we must be careful not to create so many that the costs of model

creation exceed the costs we now incur in writing items individually.

Several studies are underway to address the foregoing concerns. One study considers the

extent to which examinee scores are impacted by the interleaving of surface features and deep

structure of a given item model. Another project explores different structures for the GRE

quantitative reasoning vat, and still another investigates how vat management and item selection

procedures might need to change to accommodate the item modeling approach. A fourth study is

attempting to create methods based on cognitive principles for calibrating items that vary widely

in their mathematics and surface features.

A further major issue relates to model calibration and the effects of variation in parameter

estimates on examinee scores. We described one approach to calibration — ERF — and explored

its impact on scores with very promising results. However, ERF is only one potential approach,

and our exploration of it was restricted to a single item pool. As a means of providing a baseline

for considering the amount of error tolerable in model calibration, Rizavi, Way, Davey, and

Herbert (2002) are examining the variation in item parameter estimates that occurs over repeated
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uses of the same GRE items. Yu, Sclan, and Way (2002) are examining the psychometric basis

for ERF as a model calibration method. Similarly, Johnson (2002) is exploring the use of

hierarchical methods for model calibration. Finally, Williamson and Bejar (2002) are

investigating the use of testlet theory to evaluate the equivalence of automatically generated

multiple-choice items. These methods are promising because unlike ERF, they formally capture

variation in the parameters of instances from a model.

A final issue concerns the tools available for item modeling. We have in the existing

Math Test Creation Assistant a tool capable of generating a wide variety of items from models.

To be used operationally on a large scale, the tool will need to be more closely integrated with

the evolving ETS production system. Consequently, we are a) recasting the Test Creation

Assistant as a set of components that are compatible with the production authoring and delivery

environment, b) replacing the existing constraint solver with a more robust generation engine,

and c) incorporating linguistic capabilities for generating syntactically correct items.

While practical feasibility is an appropriate concern, it may be equally important that,

from a theoretical perspective, item models enhance the validity argument in support of test

scores. By designing a test with item models, we are helping to build validity into the scores. The

design of item models encourages taking advantage of the cognition of the construct under

measurement. Once we have incorporated theoretical knowledge into the item model, its use

represents a test of that knowledge. Specifically, if isomorphicity does not hold, an investigation

of the reasons is bound to serve as refinement of the underlying theoretical basis. If

isomorphicity holds, the underlying theoretical basis is further supported.

Summary and Conclusion

The goal of this study was to assess the feasibility of an approach to adaptive testing

based on item models. The study was motivated by some of the challenges raised by continuous

adaptive testing — most notably the increased need for new items in order to maintain

acceptable security. We first presented results from a simulation study designed to explore the

effects of item modeling on score precision and bias. The results showed that under different

levels of isomorphicity, there was no bias, but precision of measurement was eroded, especially

in the middle range of the true-score scale. We feel that much more extensive simulations need

to be done to better understand the impact of item models.
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We next presented results from a field study in which we administered an experimental,

on-the-fly, adaptive quantitative-reasoning test as well as a linear test form. Because it was not

feasible to calibrate item models as part of this study, we recalibrated existing item parameters

assuming the greatest lack of isomorphicity used in the simulation. That is, we attenuated the

item parameters of 147 item models from their original parameter estimates, assuming a

covariance matrix among item parameters with a high variance for difficulty.

The resulting comparisons with operational GRE scores were extremely reassuring. The

correlation of experimentally obtained scores and operational GRE scores was .87 — as high as

can be expected because it matches the test-retest correlation observed under operational

conditions. This correlation is especially meaningful because our sample was made up of a

highly selective group of subjects and because participants received a large percentage of items

from item models. We did find a reduction in mean performance, which we attributed to a

combination of regression and, possibly, lower student motivation. We also presented analyses

of the functioning of items on linear isomorphic forms — specifically difficulty and response

time. Both analyses suggested a high level of isomorphicity across items within models. This

high level of isomorphicity is likely the reason we obtained a correlation with operational scores

that was indistinguishable from operational test-retest correlations.

As discussed earlier, some of the work that remains to be done to transition to an

operational on-the-fly approach presents significant challenges that do not seem insurmountable.

We conclude that the current GRE-funded study provides a promising first step toward what we

hope will be significant cost and theoretical improvement in test creation methodology for

educational assessment.
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