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Exposure control procedures in computerized adaptive testing (CAT) systems 

protect item pools from being compromised, however, this impacts measurement 

precision. Previous research indicates that exposure control procedures perform 

differently for dichotomously scored versus polytomously scored CAT systems. For 

dichotomously scored CATs, conditional selection procedures are often the optimal 

choice, while randomization procedures perform best for polytomously scored CATs. 

CAT systems modeled with testlet response theory have not been examined to 

determine optimal exposure control procedures. 

This dissertation examined various exposure control procedures in testlet-

based CAT systems using the three-parameter logistic testlet response theory model 

and the partial credit model. The exposure control procedures were the randomesque 
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procedure, the modified within .10 logits procedure, two levels of the progressive 

restricted procedure, and two levels of the Sympson-Hetter procedure. Each of these 

was compared to a baseline no exposure control procedure, maximum information. 

The testlets were reading passages with six to ten multiple-choice items. 

The CAT systems consisted of maximum information testlet selection 

contingent on an exposure control procedure and content balancing for passage type 

and the number of items per passage; expected a posteriori ability estimation; and a 

fixed length stopping rule of seven testlets totaling fifty multiple-choice items. 

Measurement precision and exposure rates were examined to evaluate the 

effectiveness of the exposure control procedures for each measurement model. 

The exposure control procedures yielded similar results for measurement 

precision within the models. The exposure rates distinguished which exposure control 

procedures were most effective. The Sympson-Hetter conditions, which are 

conditional procedures, maintained the pre-specified maximum exposure rate, but 

performed very poorly in terms of pool utilization. The randomization procedures, 

randomesque and modified within .10 logits, yielded low maximum exposure rates, 

but used only about 70% of the testlet pool. Surprisingly, the progressive restricted 

procedure, which is a combination of both a conditional and randomization 

procedure, yielded the best results in its ability to maintain and control the maximum 

exposure rate and it used the entire testlet pool. The progressive restricted conditions 

were the optimal procedures for both the partial credit CAT systems and the three-

parameter logistic testlet response theory CAT systems. 
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CHAPTER ONE: INTRODUCTION 

While examinees experience seamless tests on computers, they are unaware 

that their items are being selected and administered by a computer algorithm based on 

a measurement model, item content balancing, and an exposure control procedure that 

take into account the examinees� previous responses to items. The procedures that 

take place �behind the scenes� are required to meet the needs and goals of examinees, 

testing companies, and test developers. 

For examinees, performance on a computerized adaptive test (CAT) 

represents admission to a favored college or university, scholarship or grant funding, 

or possibly employment or a job promotion. CATs offer examinees flexible testing 

schedules and the opportunity to obtain their scores immediately following 

administration of the test. For testing companies, a CAT represents the ability to 

provide continuous testing such that examinees may take tests on-demand. The 

testing company�s focus is on providing accurate ability estimates and maintaining 

test reliability and validity. For test developers, CATs represent the ability to 

administer the most appropriate items to examinees, thereby reducing examinees� 

anxiety and frustration in dealing with longer tests. Administering tests on computers 

also enables test developers to incorporate new item formats.  

Compared to traditional paper-and-pencil tests, CAT systems provide test 

developers with new challenges and in some cases new twists on old challenges. New 

challenges include accurately modeling item formats in the context of CATs where 

examinees� performances are based on different items, compared to other examinees, 



 2

for the same test. Computers allow for the development and administration of new 

item formats, such as incorporating graphics or sound. For CAT systems, test security 

provides a new twist to an old challenge. The frequency of CAT administrations 

makes CATs more susceptible to cheating by examinees. Extensive research with 

simulated and live CATs is needed to provide solutions to these challenges. 

As test developers transform well established, reliable paper-and-pencil tests 

to CAT formats, various benefits are gained, including enhanced measurement 

precision, better test security, and shorter test lengths due to administration of more 

informative items (Wainer, 2000). In order to take advantage of these benefits, the 

psychometric properties of the test are based on item response theory (IRT), rather 

than traditional true score theory (Crocker & Algina, 1986). IRT enables two 

examinees, one with high ability and one with low ability, to encounter different 

subsets of items that are matched to the respective examinees� ability and reports the 

examinees� performance on the same scale (Embretson & Reise, 2000). Through IRT, 

CAT tailors a test for each individual examinee by taking into account the examinee�s 

responses to previous items and selecting additional items that will most accurately 

discern and measure the examinee�s ability.  

Multiple-choice items are the most frequently used item format in CATs to 

date. This is due to the relative ease of developing and scoring multiple-choice items 

compared to other item formats (Haladyna, 1997). In addition, multiple-choice items 

tend to meet the assumptions of IRT, such as local independence and unidimensional 

latent trait (Hambleton & Swaminathan, 1985). However, a set of multiple-choice 
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items centered on a single stimulus, often referred to as a testlet, violates the 

assumption of local independence. This occurs because an examinee�s response to 

one item within the testlet is impacted by an examinee�s response to another item 

within the same testlet (Wainer & Kiely, 1987). The practice of using one stimulus 

for a group of items creates local dependence among the items.  

Various ways have been proposed to handle testlet data within a CAT 

system. One commonly used approach is to ignore the dependency problem and use 

one of the unidimensional dichotomous IRT models. The problem with this approach 

is that the ability levels will be incorrectly estimated due to the inflation of item 

information (Wainer & Lewis, 1990). Another approach is to use a measurement 

model that takes the dependency into account. Polytomous IRT models handle the 

dependency problem by defining the testlet rather than the item within the testlet as 

the unit of measurement. This creates a polytomous item with a score ranging from 0 

to the total number of items associated with the stimulus and eliminates the 

dependency problem (Wainer & Lewis, 1990).  

Alternatively, one of the measurement models based on testlet response 

theory (TRT; Wainer, Bradlow, & Du, 2000) can be employed. In TRT, the item 

associated with a given testlet remains the unit of measurement. With TRT the most 

frequently used dichotomous IRT models, one-parameter, two-parameter, and three-

parameter logistic models, have been modified to include a random effect parameter 

to account for the shared variance among items within a testlet, called the testlet 

effect parameter (Wainer, Bradlow, & Du, 2000). The b-, a-, and c-parameters of the 
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TRT models retain the same interpretations and meanings as with the dichotomous 

IRT models. By incorporating local dependence of items within a testlet into the 

model, the issue is no longer being ignored or sidestepped.  

The precision of measurement of a CAT system is dependent not only on the 

measurement model on which it is based, but also the method of item exposure 

control that is selected. Exposure controls must balance the need for test security with 

precision of measurement. In unconstrained CATs, the most informative items are 

overexposed and threaten test security. Optimal utilization of the item pool for test 

security, however, means less informative items are given and the accuracy of the 

ability estimates is decreased. A number of exposure control procedures have been 

proposed to accommodate these two conflicting goals. 

Previous research indicates that exposure control procedures seem to perform 

differently for dichotomously scored CAT systems versus polytomously scored CAT 

systems. For dichotomously scored CATs, conditional selection procedures appear to 

be the optimal choice (Chang, 1998), while randomization procedures perform best 

for polytomously scored CATs (Davis, 2002). Testlet scored CAT systems modeled 

with testlet response theory have not been examined to determine optimal exposure 

control procedures.  

This dissertation investigates various exposure control procedures in CAT 

systems based on the three-parameter logistic testlet response theory (TRT) model 

and the partial credit (PC) model. The exposure control procedures are the 

randomesque procedure (Kingsbury & Zara, 1989), two levels of the progressive 
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restricted procedure (Revuelta & Ponsoda, 1998), two levels of the Sympson-Hetter 

procedure (Sympson & Hetter, 1985), the modified within .10 logits procedure (Davis 

& Dodd, 2001), and a maximum information procedure. Through realistic CAT 

simulations that include content balancing, this dissertation examines the viability of 

these exposure control procedures for testlet-based CATs. 
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CHAPTER TWO: LITERATURE REVIEW 

This literature review provides background information pertaining to the 

current study. First, assumptions and characteristics of item response theory are 

explored. This leads to a discussion of common item response theory models for 

scoring dichotomous and polytomous items. Testlet response theory is then presented 

as a viable method for modeling items that are locally dependent. Next is a 

description of the dichotomous testlet response theory models. The next section 

discusses the components of a computerized adaptive testing (CAT) system. This 

includes a description and examination of current research for common exposure 

control procedures for both dichotomous and polytomous item response theory 

models. The final section is the statement of problem.  

Item Response Theory 

Item response theory (IRT) depicts the relationship between examinees and 

items through mathematical models (Wainer & Mislevy, 2000). IRT models the 

probability of a given response to an item conditional on ability (trait) level. Two 

common classes of IRT models are determined by the way item responses are scored. 

Items with only two response options (correct or incorrect) are modeled with the 

dichotomous IRT models. Multiple-choice items and true-false items are examples of 

items that can be scored dichotomously. Items with more than two response options 

can be modeled with polytomous IRT models. Examples of polytomously scored 

items are items that allow for partial credit scoring, such as a math problem or an 

essay item where partially correct solutions receive more points than incorrect 
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answers but fewer points than correct answers. Thus the response categories are 

ordered from low to high to represent varying amounts of the ability measured. 

Assumptions 

There are three main assumptions for unidimensional item response theory 

(IRT) models. One assumption for IRT models is that a mathematical function can be 

derived to model the probability of a given response to an item conditional on ability 

level (Hambleton & Swaminathan, 1985). The mathematical function contains item 

parameters (characteristics) that model the probability of a given response for each 

ability level. 

The second assumption of unidimensional IRT models is a single ability 

underlies the difference in person responses to items (Embretson & Reise, 2000). For 

example, a math exam modeled with unidimensional IRT assumes that the ability, 

math, �accounts for the statistical dependence among the items� (Crocker & Algina, 

1986). A test is unidimensional if the distribution of test scores, conditioned on 

ability, is identical (Hambleton & Swaminathan, 1985). There are models that assume 

more than one ability underlies examinees� responses to items. With 

multidimensional item response theory (MIRT) models, examinees� responses to 

items are explained by a weighted combination of the underlying abilities (Embretson 

& Reise, 2000; Reckase, 1997). Only unidimensional models are examined in this 

dissertation, therefore the MIRT models will not be discussed further.  

The third assumption is that the items within the test have local independence 

such that the probability of responding to an item is statistically independent of the 
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probability of responding to any other item while conditioned on ability (Hambleton 

& Swaminathan, 1985). For example, the content provided in one item should not 

aide an examinee in answering any other items. Stated differently, local independence 

is present when the probability of an examinee�s response pattern equals the product 

of each item�s probability given the examinee�s response (Hambleton & 

Swaminathan, 1985). The presence of local independence specifies that together, the 

IRT model and the parameters, fully explain the relationship between items 

(Embretson & Reise, 2000). Through local independence, item parameter invariance 

allows examinees� ability to be estimated from any subset of items and yields 

examinees� performance levels on the same ability scale. This is critical to the 

adaptive nature of computerized adaptive tests, whereby examinees may be given 

different items from a group of items that were calibrated together and the examinee�s 

estimated abilities will be on the same scale (Embretson & Reise, 2000). 

Measurement Models for Item Response Theory 

The following sections discuss the most commonly used dichotomous and 

polytomous item response theory (IRT) models. The dichotomous IRT models 

selected for presentation are the three-parameter logistic model, the two-parameter 

logistic model and the one-parameter logistic model. The polytomous IRT models 

include the graded response model, the partial credit model, and the generalized 

partial credit model. 
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Dichotomous Item Response Theory Models 

Often the most commonly employed IRT models in practical applications are 

the dichotomous models due to current trends toward multiple-choice item test 

formats. Multiple-choice items are relatively easy to develop and score compared to 

other item formats (Haladyna, 1997). For example, the Armed Services Vocational 

Aptitude Battery (ASVAB) CAT was developed for the Department of Defense using 

the three-parameter logistic IRT model due to its �superior accuracy in modeling 

response probabilities of multiple choice test questions� (Segall & Moreno, 1999).  

The dichotomous IRT models can be characterized based on the number of 

item parameters included in the model, which is reflected in the names of the models. 

The three common item parameters are difficulty (b), discrimination (a), and the 

psuedo-guessing parameter (c). The three-parameter logistic IRT model is the most 

general of the dichotomous IRT models. The two-parameter logistic IRT model is a 

mathematical simplification of the three-parameter model and the one-parameter 

logistic IRT model is a mathematical simplification of the two-parameter IRT model. 

The following sections describe the three-parameter, two-parameter, and one-

parameter logistic IRT models. 

The three-parameter logistic IRT model has three item parameters: the 

difficulty parameter, b, the discrimination parameter, a, and the psuedo-guessing 

parameter, c, (Birnbaum, 1968). For the three-parameter logistic IRT model, the 

probability of success (x = 1) for person j with an ability level, θ, on item i is denoted 
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where ib  is the difficulty parameter for item i and ia  is the discrimination parameter 

for item i. The two-parameter logistic IRT model assumes that guessing does not 

exist. 

The one-parameter logistic IRT model, also known as the Rasch model, 

estimates a person�s ability based on the person�s responses to items that have been 

calibrated for one item parameter (Rasch, 1960; Wright, 1968). It is the most 

parsimonious of the IRT models. The difficulty parameter, b, is the item parameter 

included in the model. For the one-parameter logistic IRT model, the probability of 

success (x = 1) for person j with an ability level, θ, on item i is denoted  
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where ib  is the difficulty parameter for item i. The one-parameter logistic IRT model 

assumes that the items in the test discriminate equally well and that guessing is 

nonexistent.  

The item parameters can be defined in relation to the item characteristic curve 

(ICC) for the dichotomous IRT models. The ICC is a monotonically increasing curve 

such that as ability increases the probability of obtaining a correct response to an item 

also increases. The form of the ICC is dependent on the measurement model. The 

ICC provides a graphical representation of the probability of a correct response to an 

item conditional on the ability level of the examinee (Embretson & Reise, 2000). 

Figure 1 shows an example of an ICC plot for the three-parameter logistic model 

(Birnbaum, 1968) with ability on the abscissa and the probability of a correct 

response on the ordinate. For the ICC in Figure 1, the difficulty parameter, b, equals 

0.50. The discrimination parameter, a, equals 1.5. And the psuedo-guessing 

parameter, c, equals 0.15. 
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FIGURE 1: Item Characteristic Curve for the Three-Parameter Logistic Model 

 

The difficulty parameter identifies the relative easiness of an item and places 

it on the same scale as ability (θ), typically ranging from -4 to +4. In terms of the 

ICC, the difficulty parameter is the point on the ability scale that reflects the 

maximum for the slope of the ICC (Hambleton & Swaminathan, 1985). For the three-

parameter logistic IRT model, the maximum of the slope is where p = (1 + c)/2. For 

the two-parameter and one-parameter logistic IRT models, the maximum of the slope 

is at p = 0.50, since c equals zero.  

The discrimination parameter indicates how well an item distinguishes low 

ability examinees from high ability examinees. The discrimination parameter ranges 

from zero to infinity, but in practical terms, the discrimination value ranges from zero 

to about four. The slope of the ICC in Figure 1 is related to the discrimination 
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parameter such that at b the slope equals 0.425*a(1 - c). Therefore, the steeper the 

slope and the higher the discrimination parameter, the better the item is at 

distinguishing between changes in ability level around the difficulty parameter 

(Hambleton & Swaminathan, 1985).  

The psuedo-guessing parameter may be included for items in which 

examinees may obtain a correct response due to chance rather than skill. This 

parameter is on the same scale as the probability. In Figure 1, the guessing parameter 

is the location of the lower asymptote. When guessing is not included in the model, 

the lower asymptote is at zero on the probability scale (Hambleton & Swaminathan, 

1985).  

An item information function specifies the precision of measurement that an 

item provides for each ability level (Embretson & Reise, 2000). Since items do not 

measure all ability levels with equal precision, information is not consistent across the 

ability scale. For dichotomous IRT models, the item information function, )(θiI , is 

denoted  

))(1)((
)()(

2'

θθ
θθ

ii

i

PP
PIi −

=  ,     (4) 

where )(θiP is the probability of a correct response to item i conditioned on ability, θ, 

and )(' θiP is the first derivative with respect to ability, θ, (Embretson & Reise, 2000). 
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Test information, )(θTI , is the sum of the item informations. This additive 

property is due to local independence among items. Test information, )(θTI , is 

denoted 

∑
=

=
I
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1
)()( θθ  .      (5) 

Information can be used in CAT systems to select an item for administration and 

provide measurement precision through the standard error associated with a given 

ability, θ.  

Measurement precision for a test can be evaluated through the standard error 

associated with a given ability, θ , which is the square root of the reciprocal of the test 

information: 

)(
1)(

θ
θ

TI
SE =  .      (6) 

The standard error associated with a given ability, θ , is not necessarily constant 

across the ability continuum. Often the standard error will be higher at the extremes 

of the ability continuum, indicating the lack of information provided by the IRT 

model and its parameters (Embretson & Reise, 2000).  

Polytomous Item Response Theory Models 

Polytomous item response theory (IRT) models allow examinees to obtain 

credit for knowing part of an answer, if not all of an answer. These models 

distinguishes between examinees with no knowledge and examinees with varying 

degrees of knowledge. For example, an essay is typically scored using a rubric that 
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awards more points for better responses. Similarly, several multiple-choice items 

referring to a single stimulus might be scored polytomously to assess the number of 

items answered correctly for that stimulus. The following sections describe three of 

the most commonly used polytomous IRT models: the graded response model, the 

partial credit model and the generalized partial credit model.  

Thissen and Steinberg (1986) organized polytomous models into three 

categories: the difference models, the divide-by-total models, and the left-side added 

models. The polytomous models discussed in this dissertation come from two of these 

categories. The graded response model is characterized as a difference model because 

the probability of an examinee receiving a category score is determined by calculating 

the difference between two successive category probabilities (Thissen & Steinberg, 

1986). The partial credit model and the generalized partial credit model are described 

as divide-by-total models (Thissen & Steinberg, 1986). The divide-by-total models 

are calculated by dividing the probability of attaining a specific category score by the 

sum of all allowable probabilities of attaining a category score for that item (Thissen 

& Steinberg, 1986; Dodd, De Ayala, & Koch, 1995). 

Graded Response Model 

Samejima�s (1969) graded response (GR) model is appropriate for items 

whose responses are ordered to indicate an examinee�s level of knowledge. The item 

response, x, ranges from 0 to mi (the total number of response options) such that 

lower values reflect less knowledge of the correct response to the item and higher 

values reflect more knowledge of the correct response to the item. Samejima (1969) 
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developed a two-stage process to determine the probability of responding in a 

particular category. The first stage consists of determining the probability that an 

examinee with an ability level, θ, will obtain a category score of x or higher on item i. 

This is denoted 

)](exp[1
)](exp[)(
ixi

ixi
ix ba

baP
−+

−=∗

θ
θθ  ,     (7) 

where ia  represents the discrimination parameter for item i and ixb  represents the 

category boundary for item i between category score x and category score x - 1. The 

category boundaries for item i are located on the ability scale that reflects the point of 

inflection of the category characteristic curves ( )(θ∗
ixP ). Figure 2 shows the category 

characteristic curves for an example item with four ordered responses, x = 0, 1, 2, or 

3, and three category boundaries, bi1 to bi3. The category boundaries, ixb , must be 

sequential on the ability scale from low to high. The category boundary, ixb , is 

defined as the ability level, θ, that corresponds to )(θ∗
ixP  = 0.5 
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FIGURE 2: Graded Response Model Category Characteristic Curves 

 

The second stage determines the probability of responding in a specific 

category by subtracting adjacent category characteristic curves. The probability of a 

specific category score, )(θixP , is denoted 

)()()( 1, θθθ ∗
+

∗ −= xiixix PPP  .     (8) 

For the extreme categories where x = 0 or x = m, the probability of responding in 

category x or higher is )(0 θ∗
iP = 1.0 and )(, θ∗

miP = 0.0, respectively. The graded 

response model simplifies to the two-parameter logistic IRT model when there are 

only two response categories (0,1). Figure 3 shows the operating characteristic 

curves, which illustrate the probability of obtaining a specific category score, x, for 

the same item in Figure 2 that has four response categories and three category 

boundaries. 
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FIGURE 3: Graded Response Model Operating Characteristic Curves 

 

Partial Credit Model 

Like the graded response model, Masters� (1982) partial credit (PC) model is 

appropriate when responses to an item can be scored into more than two categories to 

represent varying degrees of the ability measured by the item. Thus for each item i, a 

person�s item score will be categorized in one of mi + 1 category scores, ranging from 

0 to mi. For the PC model, the probability that a person with an ability level, θ, will 

obtain a score of x on item i is denoted  
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where bik represents the step difficulty or threshold of transitioning from one category 

of mi to the next category. For notational purposes, ∑
=

−
0

0
)(

k
ikbθ = 0. The PC model 

step difficulties do not have to be in sequential order, as do the category boundaries 

for the GR model. Earlier step values may be more difficult than later step values. 

The PC model is an extension of the Rasch model to polytomously scored items and 

assumes that items within a given test do not differ in their discrimination level and 

guessing is not a factor (Masters, 1982).  

Figure 4 presents operating characteristic curves for a partial credit item with 

four response options and three step difficulties. The step difficulties correspond to 

the ability level where the operating characteristic curves of adjacent categories 

intersect. 
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FIGURE 4: Partial Credit Model Operating Characteristic Curves 
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Generalized Partial Credit Model 

Muraki (1992) developed the generalized partial credit (GPC) model by 

extending the PC model to allow items to vary in their level of discrimination. For the 

GPC model, the probability that a person with an ability level, θ, will obtain a score 

of x on item i is denoted  

∑ ∑
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where ai represents item discrimination and bik represents the step difficulty or 

threshold of transitioning from one category of mi to the next category. Similarly to 

the GR model, the GPC model has one discrimination parameter per item and 

simplifies to the two-parameter logistic IRT model when there are only two response 

categories (0,1; Muraki, 1992). 

Information Functions 

Samejima (1969) developed a general formula for calculating information for 

polytomous models. Not only can information be determined for an item and a test, 

information can also be calculated for the response categories. The category 

information, )(θixI , for item i is denoted 

)(
)(

)(
)]([)(

''2'

θ
θ

θ
θθ

ix

ix

ix

ix
ix P

P
P
PI −=  ,     (11) 
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where )(θixP is the probability of responding in a given category, x, for item i 

conditioned on ability, θ, )(' θixP is the first derivative with respect to ability, θ, and 

)('' θixP  is the second derivative with respect to ability, θ, (Koch & Dodd, 1989).  

The item information, Ii(θ), for item i is denoted 

∑
=

=
i

i

m

x
ixixi PII

0
)()()( θθθ  ,     (12) 

By substituting Equation 11 for Iix(θ) in Equation 12 and simplifying, the item 

information, Ii(θ), for item i can be written 
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Samejima (1969) demonstrated that in Equation 13 the second term equals zero and 

can be removed from the equation. 

Test information, )(θTI , is denoted 

∑
=

=
I

i
iITI

1
)()( θθ  .      (14) 

Measurement precision for a test can be evaluated through the standard error 

associated with a given ability, θ , which is the square root of the reciprocal of the test 

information: 

)(
1)(

θ
θ

TI
SE =  .      (15) 

The standard error associated with a given ability, θ , is not necessarily constant 

across the ability continuum. 
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Testlet Response Theory 

Testlets are defined as a group of items that relate to a single stimulus, such as 

a reading passage or graphic (Wainer & Kiely, 1987). Since the items have a stimulus 

in common, they are no longer independent of each other. This violates the 

assumption of local independence for dichotomous item response theory models. 

Several methods are available to determine if local item dependence (LID) is present 

among items in a test. The following presents two forms of measuring LID: the Q3 

statistic and the G2 statistic. 

Yen (1984) applied the Q3 statistic as a measure of LID. The Q3 statistic is the 

correlation between performance on two items, after accounting for an examinees� 

overall performance on a test. Based on the jth examinee�s responses to i items, an 

ability estimate, jθ� , is calculated and used to determine an examinee�s expected 

performance on the ith item, ijE . Based on the examinee�s observed and expected 

performance on each item, a deviation, ijd , value is calculated: 
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k
ikjiij
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PkXEE θθ ∑
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−=≡   , and   (16) 

ijijij Exd −=      .   (17) 

The deviations are correlated across examinees to obtain a measure of LID for items i 

and i′ , 

),(3 iiii ddrQ ′′ =     .   (18) 

When local independence is present, the expected value for Q3 is approximately  
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�1/(n-1).  

Chen and Thissen (1997) employed the G2 statistic to measure LID. This 

statistic has a 2χ  distribution with one degree of freedom. The G2 statistic is 

calculated as: 
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When compared to the Q3 statistic, the G2 statistic did not perform as well in 

identifying LID (Chen & Thissen, 1997).  

The dichotomous item response theory models cannot account for the 

common variance created by locally dependent items. Previous studies have shown 

that modeling data that have local dependence with dichotomous IRT models yields 

an overestimate of the precision of measurement (Sireci, Wainer, & Thissen, 1991; 

Yen 1993). The overestimation is because the probability of two or more dependent 

events occurring is less than the probability of two or more independent events 

occurring (Devore, 1995). During computerized adaptive testing, overestimation of 

the precision of measurement may lead to early termination of the test (Fennessy, 

1995). 

The polytomous item response theory models consider the testlet as the unit 

of measurement. The testlet (a polytomous item) is scored from zero to the total 

number of items associated with the common stimulus. By changing the unit of 

measurement from the item to the testlet, polytomous models account for the 
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dependencies across the items in the testlet. This has been shown to be an effective 

method (Wainer, 1995).  

Yet, there are a couple of reasons why it is advantageous to maintain the item 

as the unit of measurement. One reason pertains to CAT implementations. The nature 

of CATs is to allow items to be selected adaptively. With polytomously scored 

testlets, there cannot be an interchange of items within the testlet. If the item is the 

unit of measurement, then items can be selected adaptively within the testlet. By 

varying the items, this would increase the number of times the stimulus could be used 

across examinees. The second reason relates to the information gained from the 

examinee�s responses. The polytomous models provide a number correct score for 

each testlet, but do not include information about the pattern of responses. Knowing 

exactly which items the examinee answered correctly and incorrectly could prove 

beneficial, especially if the items varied by cognitive type or content (Wainer, 

Bradlow, & Du, 2000). 

Alternatively, one of the measurement models based on testlet response 

theory (TRT; Wainer, Bradlow, & Du, 2000) can be employed. In TRT, the item 

associated with a given testlet remains the unit of measurement. With TRT the most 

frequently used dichotomous IRT models have been modified to include a random 

effect parameter to account for the shared variance among items within a testlet, 

called the testlet effect parameter. The b-, a-, and c-parameters of the TRT models 

retain the same interpretations and meanings as with the dichotomous IRT models. 
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By incorporating local dependence of items within a testlet into the model, the issue 

is no longer being ignored or sidestepped. 

Measurement Models for Testlet Response Theory 

The testlet response theory models (Wang, Bradlow, & Wainer, 2002) are 

dichotomous models with as many as three item parameters, difficulty (b), 

discrimination (a), and psuedo-guessing (c) parameters; and two person-specific 

parameters, ability (θ) and the testlet effect ( )(ijdγ ). The item parameters are 

interpreted the same for the TRT models as they are for the corresponding 

dichotomous IRT models. The additional parameter that is person-specific is the 

testlet effect parameter which accounts for violations of the local independence 

assumption for dichotomously scored items modeled with IRT. The testlet effect 

parameter models the local dependency by including the same random effect for each 

item within a testlet. This common parameter across items accounts for the 

communality created by the items� association with the same stimulus. Independent 

items, those not associated with a common stimulus, included in the TRT models will 

have a testlet effect equal to zero, thereby defaulting to the dichotomous IRT model 

counterpart. 

The testlet effect parameter can also be used to measure local item 

dependence (LID). When items are calibrated for the TRT model, the parameter 

estimate retrieved is the estimated variance of the testlet effect. The variance of the 

testlet effect is a measure of LID. Testlets that contain independent items will have 
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variance estimates of zero. The testlets that contain dependent items will have 

nonzero variance estimates. The testlet effect parameter used in the TRT model is a 

random variable selected from a normal distribution with mean zero and standard 

deviation equal to the square root of the variance of the testlet effect for a given 

testlet. 

Dichotomous Testlet Response Theory Models 

Starting with the most general model, the three-parameter logistic TRT 

model, the following sections demonstrate the inclusion of the testlet effect parameter 

into the dichotomous item response theory models to create the testlet response theory 

models. 

Wainer, Bradlow, and Du (2000) introduced the three-parameter logistic 

testlet response theory model (3PL-TRT). For the 3PL-TRT model, the probability of 

success (x = 1) on item i for person j with an ability level, θ, on testlet d(i) is denoted 













−−+

−−
−+==

))(exp(1

))(exp(
)1()|1(

)(

)(

ijdiji

ijdiji
iijiij ba

ba
ccxP

γθ

γθ
θ ,  (20) 

where the testlet effect parameter )(ijdγ  models the extra dependency for person j 

responding to item i that is nested in testlet d(i), ib  is the difficulty parameter for item 

i, ia  is the discrimination parameter for item i, and ic  is the psuedo-guessing 

parameter for item i. 

The performance of the 3PL-TRT model was compared through four 

simulation conditions: the 3PL-IRT model using marginal maximum likelihood 
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estimation, the 3PL-IRT model using Markov Chain Monte Carlo estimation, the 

3PL-TRT model with the same testlet effect parameter for each testlet using Markov 

Chain Monte Carlo estimation, and the 3PL-TRT model allowing the testlet effect 

parameter to vary across testlets using Markov Chain Monte Carlo estimation. The 

models were fit to three data sets: a no testlet effect, an equal testlet effect, and an 

unequal testlet effect data set. The data sets were based on tests with 30 independent 

items and 4 testlets with 10 items each (40 dependent items). The simulations yielded 

similar ability correlations across the models for the no testlet effect data set. Yet, for 

the other two conditions with testlet effects in the data sets, the 3PL-TRT model with 

equal effects and the 3PL-TRT model with varying effects reported higher 

correlations between the true and estimated parameters: ability, discrimination, 

difficulty, and psuedo-guessing. Similar results were reported for the models at each 

level of the conditions in terms of mean absolute error and relative efficiency. 

Overall, when data exhibited local dependency, the TRT models performed better 

than the IRT model. 

Bradlow, Wainer, and Wang (1999) modified the two-parameter logistic item 

response theory model (Birnbaum, 1968) to account for violations of local 

independence as a result of multiple items referring to a similar stimulus. For the two-

parameter logistic testlet response theory model (2PL-TRT), the probability of 

success (x = 1) on item i for person j with an ability level, θ, on testlet d(i) is denoted 
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where the testlet effect parameter )(ijdγ  models the extra dependency for person j 

responding to item i that is nested in testlet d(i), ib  is the difficulty parameter for item 

i, and ia  is the discrimination parameter for item i. 

Bradlow et al. (1999) examined a 2PL-IRT model analyzed with BILOG 

(Mislevy & Bock, 1983) and a Data Augmented Gibbs Sampler (DAGS; Tanner & 

Wong, 1987) with a 2PL-TRT model analyzed with DAGS. The 2PL-TRT model 

yielded lower mean absolute errors and higher correlation coefficients for ability, 

discrimination, and difficulty compared to the 2PL-IRT models when the data sets 

contained testlets with local dependencies. 

For the one-parameter logistic testlet response theory model (1PL-TRT), the 

probability of success (x = 1) on item i for person j with an ability level, θ, on testlet 

d(i) is denoted 
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where the testlet effect parameter )(ijdγ  models the extra dependency for person j 

responding to item i that is nested in testlet d(i) and ib  is the difficulty parameter for 

item i. 

The item information, Ii(θ), for the more general model, the three-parameter 

logistic testlet response theory model, conditional on theta for a single item response 

is denoted 
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(Wainer, Bradlow, & Du, 2000).  

Testlet information, )(θTI , is the sum of the item informations within a 

testlet:  
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Test information, )(θTI , is the sum of the testlet informations: 
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Information can be used in CAT systems to select an item for administration and 

provide measurement precision through the standard error associated with a given 

ability, θ. Measurement precision for a test can be evaluated through the standard 

error associated with a given ability, θ , which is the square root of the reciprocal of 

the test information: 
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The standard error associated with a given ability, θ , is not necessarily constant 

across the ability continuum. 

Computerized Adaptive Testing Systems 

The goals of a computerized adaptive test (CAT) are to accurately assess 

examinees with items tailored to each examinee�s ability; to evaluate examinees 



 30

equivalently on content specifications; and to maintain test security through 

controlling the exposure of items to examinees (Davey & Parshall, 1995). With 

traditional paper-and-pencil tests, examinees encounter items of varying difficulty 

levels. The benefit of item response theory (IRT) and testlet response theory (TRT) 

models is the administration of fewer items targeted to the examinee�s ability. CATs 

reduce examinees� frustration and/or test anxiety caused by the administration of 

items that are too easy or too difficult. Wainer (2000) described the concept of a 

CAT, as �the basic notion of an adaptive test is to mimic automatically what a wise 

examiner would do.� By administering items that match the examinee�s ability level, 

the result is often a more precise measurement of ability and a shorter test (McBride 

& Martin, 1983; Urry, 1977).  

The psychometric properties of IRT and TRT enable accurate estimation of 

examinee�s proficiency, but may not meet content specifications of the test. 

Therefore, constraints are often used to ensure examinees are assessed fairly and 

equally over the material covered in the test. These constraints often lead to a 

reduction in the precision of measurement for estimating examinees� proficiencies 

because less optimal items are administered.  

Additionally, the item pool must be protected to ensure administration of fair 

and valid tests. Administration of the most optimal items, especially early in the CAT 

algorithm, often leads to the same items being repeatedly administered across 

examinees. This overexposure of items may compromise the item pool. To ensure the 

security of the item pool, constraints restrict the selection and administration of items 
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to examinees. When developing a CAT system, these competing goals lead to a 

balancing act in which the testing companies must decide the priority of precision, 

content, and security (Davey & Parshall, 1995; Davey & Nering, 2002). 

There are four main components of a CAT system: the item pool, the item 

selection procedure, the ability estimation, and the stopping rule (Dodd, De Ayala, & 

Koch, 1995; Reckase, 1989). Due to practical considerations mentioned previously, 

two additional components are also included, content balancing and exposure control. 

The following sections describe the six components of a CAT system. 

Item Pool 

The item pool or item bank consists of all the items that may be administered 

during the test and the items� parameters (characteristics). The item parameters 

included in the pool are dependent upon the IRT/TRT model selected to model the 

data and to measure the examinees� ability levels. An item pool will have many more 

items than a single paper-and-pencil test administration. Ideally, there will be enough 

items to generate multiple test forms for a range of examinee abilities (Davey & 

Nering, 2002). Similar to the items on paper-and-pencil tests, CAT items within the 

pool must meet sensitivity and psychometric standards. For sensitivity standards, 

items must not function differently based on examinee characteristics other than the 

ability measured by the test, such as gender or ethnicity.  

Psychometrically, items are evaluated based on their item parameters and 

item information across the ability scale. The desired distribution of items across the 

ability scale varies based on the purpose of the test. For achievement tests, the item 
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pool generally contains a range of items from very easy to very difficult. Ideally the 

distribution of difficulty would be uniform, unlike item difficulty distributions for 

paper-and-pencil tests, which tend to be normally distributed with most of the items 

grouped around the mean of the distribution. For criterion-referenced tests, most of 

the items in the item pool have difficulty values that provide the most information 

around the cut point. In this circumstance, the goal is to discriminate between 

examinees above the cut point and those below the cut point. Flaugher (2000) noted 

�the better the quality of the item pool, the better the job the adaptive algorithm can 

do.� 

Item Selection Procedure 

For CATs, the item selection procedure is the process of selecting an item 

from the item pool to be administered to the examinee. The item selection procedure 

may be used to select each item individually or a group of items together, depending 

on the test format. An examinee�s current estimated ability plays a key role in 

determining which item will be selected next. Once an item has been selected and 

administered, it is tagged so the item selection procedure does not administer it to that 

examinee again. The two most frequently used item selection procedures are 

maximum information selection and Bayesian selection procedures.  

Maximum Information Selection 

One of the more common item selection procedures is maximum information 

selection (Birnbaum, 1968; Lord, 1977). An item is selected if it provides the most 

information based on the examinee�s current estimate of ability. The process involves 
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using the examinee�s estimated ability based on their responses to the previously 

administered items to determine the amount of information that would be provided by 

each of the items remaining in the item pool. The item that provides the most 

information is then selected for administration. Usually, this process is repeated after 

the administration of each item. The initial item for administration is often selected 

with an assumed examinee ability level at the mean of the distribution. 

Bayesian Selection 

Bayesian selection (Owens, 1969) evaluates each item in the item pool to 

determine the expected variance of the posterior distribution. The item that minimizes 

the expected variance is selected for administration. A new prior distribution is 

calculated by including the recently administered item in the likelihood. This prior 

distribution is evaluated for each remaining item in the item pool to determine which 

item minimizes the expected variance of the new distribution. This procedure is 

computationally easier than maximum information. A disadvantage of the Bayesian 

selection is the order in which items are administers impacts the estimation of ability, 

θ�  (Thissen & Mislevy, 2000). 

Ability Estimation 

Examinees� performance on a test is scored based on their responses to items, 

the items� characteristics, and the IRT/TRT model used to fit the data. When 

estimating ability, θ� , the item parameters are assumed to be known values. The 

estimation of an examinee�s ability is performed at two stages during a CAT 
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administration. After an examinee responds to an item, an interim estimate of ability 

is calculated and used by the item selection procedure to select the next item for 

administration. Usually interim ability estimation is calculated after each item 

administration, although for testlets scored polytomously or by TRT, all the items 

within the testlet can be administered before the interim ability estimation is 

calculated. The second stage for ability estimation is at the end of the CAT 

administration. After all the items have been administered, a final estimate of ability 

is determined based on the examinee�s responses to all the items. The estimation 

procedure for estimating the interim abilities does not have to be the same as the 

estimation procedure for the final ability (Chang, Ansley, & Lin, 2000; Parshall, 

Hogarty, & Kromrey, 1999). The next two sections describe two common procedures 

for estimating ability, maximum likelihood estimation and expected a posteriori 

estimation. 

Maximum Likelihood Estimation 

The most commonly used estimation procedure is maximum likelihood 

estimation (MLE; Lord 1980). Based on an examinee�s responses to items, MLE 

finds the ability value, θ, that maximizes the likelihood of an item response pattern, 

(x1, x2, �, xi). The likelihood of the ability value, θ, given an item response pattern, 

(x1, x2, �, xi), is denoted  

∏
=

=
I

i
iI ix

PxxxL
1

21 )(),...,,( θθ ,     (27) 



 35

where )(θiP  represents the probability of a given response to item i and item i is the 

number of items administered during a CAT.  

Due to the diminutive nature of multiplying numbers between zero and one 

(Embretson & Reise, 2000), the natural log of the likelihood function, ln L(θ), is used 

in further calculations. By taking the log of the likelihood function, the log of the 

probability of an item response is summed across items. The same ability value, θ, 

maximizes both the likelihood function, L(θ), and the log of the likelihood function, 

ln L(θ). To determine the ability value, θ, which maximizes the log of the likelihood, 

the first derivative with respect to θ is set equal to zero and solved for the unknown θ. 

The maximum likelihood estimate of θ is obtained because the first derivative with 

respect to θ is the slope of the log of the likelihood function, ln L(θ). A slope equal to 

zero represents the highest point of the distribution. Solving the log likelihood 

function for its first derivative with respect to θ is denoted 
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(Embretson & Reise, 2000). 

The Newton-Raphson procedure is applied due to the inability to solve 

Equation 24 directly. This is an iterative procedure in which the ratio of the first 

derivative to the second derivative is subtracted from the previous θ�  resulting in a 

new θ� . This procedure is repeated using the new θ�  and calculating a new ratio of the 



 36

derivatives until the ratio reaches a pre-specified small value, such as 0.001 

(Embretson & Reise, 2000). 

Due to computation problems with the likelihood function when item 

responses are either all correct or all incorrect, variable step-size estimation is 

employed until there is one correct and one incorrect response for dichotomous 

models or two different response categories for polytomous models. Variable step-

size estimation assigns an examinee�s interim ability estimate to be half the distance 

between the current ability estimate and a maximum or minimum item difficulty 

value depending on whether all the responses are in the upper or lower half of the 

response scale (Koch & Dodd, 1989). In addition, Bock and Mislevy (1982) noted 

that MLE can yield extreme outliers when examinee�s responses are in an abnormal 

pattern.  

Expected a Posteriori Estimation 

Expected a posteriori (EAP) estimation is easier to calculate than MLE 

estimation and does not require an iterative process (Bock & Mislevy, 1982). 

Bayesian in nature, EAP estimation represents the mean of the posterior distribution. 

For the ith item in an adaptive test, the EAP estimate of ability, iθ� , based on the item 

response string (x1, x2, �, xi), is approximated by 
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where q represents the number of quadrature points, kZ  represents one of the 

quadrature points, ( )ki ZL  is the likelihood of kZ  given the item response string (x1, 

x2, �, xi), and ( )kZW  represents the quadrature weight for that point (Bock & 

Mislevy, 1982). The weights at the various quadrature points represent a discrete 

prior distribution. Multiplying the prior distribution by the likelihood function and 

summing across the quadrature points produces a posterior distribution in which the 

mean represents the estimated ability, iθ� .  

Unlike MLE, EAP estimation provides an ability estimate even if the 

examinee responses are all in the same category (Bock & Mislevy, 1982; Embretson 

& Reise, 2000). In addition, EAP estimation is not impacted by the order in which 

items are administered like Owen�s (1969) Bayes procedure for estimation or by 

abnormal response patterns (Bock & Mislevy, 1982). Bock and Mislevy (1982) 

reported that EAP yields smaller mean square errors than MLE when the population 

ability distribution matches that of the prior distribution. Glas, Wainer, and Bradlow 

(2000) applied EAP estimation of the testlet response theory model. The results 

indicated a loss in measurement precision if the testlet effect parameter was not 

included in the EAP estimation of data containing local dependencies. EAP does have 

some shortcomings including the tendency for Bayesian estimates to regress toward 

the mean of the prior distribution (Kim & Nicewander, 1993; Weiss, 1982). 

Additionally, an inappropriate prior distribution reduces the accuracy of the EAP 

estimation (Mislevy & Stocking, 1989; Seong, 1990).  
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Stopping Rule 

Due to the adaptive nature of CATs and the properties of IRT/TRT, 

termination of the test may be based on the number of items administered (fixed 

length), the precision of measurement (variable length), or a combination of both. 

There are advantages and disadvantages to both procedures that are discussed in the 

following sections.  

Fixed Length 

A fixed length stopping rule administers a pre-specified number of items. 

Once these items are administered the examination is terminated and the examinee�s 

proficiency is estimated. The advantages to a fixed length test include that it is easier 

to determine whether to administer another item or complete the test by a simple 

count of the number of items previously administered. In addition, fixed length tests 

are easier for examinee�s to understand. If two examinees take the same CAT and 

receive different scores, the examinee that took fewer items may not feel he/she was 

properly assessed. A disadvantage of fixed length tests is the inability to obtain the 

same level of measurement precision for the range of examinees� abilities. Often the 

examinees at the extremes of the ability distribution are given ability estimations 

based on a less precise adaptive test than examinees in the middle of the ability 

distribution (Thissen & Mislevy, 2000). 

Variable Length 

A variable length stopping rule terminates a test once a pre-specified level of 

measurement precision has been reached. Measurement precision is usually assessed 
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based on the standard error associated with a given ability. After each item is 

completed, the standard error associated with a given ability is calculated to 

determine if the examinee should be administered another item or if the exam is 

finished. Most often this leads to CATs with different item lengths, which as 

mentioned previously, can be difficult to explain to examinees. The advantage of 

implementing variable length stopping rules is that all examinees� ability estimates 

have the same measure of precision (Thissen & Mislevy, 2000). 

Content Balancing 

Often tests are required to meet content specifications in order to ensure 

examinees are assessed over the same material across tests. During CAT 

administrations, the item selection procedure may administer items that provide the 

most information at the examinee�s interim ability estimate, but not fulfill content 

specifications. For example, a math test designed to assess examinees over addition, 

subtraction, multiplication, and division may result in a CAT containing only 

subtraction and multiplication items. For an examinee with little knowledge in 

addition and division, this would overestimate their final ability estimate. On the 

other hand, an examinee proficient in addition and division may receive an 

underestimated final ability estimate. Content balancing is a nonpsychometric issue 

that does not involve the IRT/TRT measurement model selected for the test. In order 

to provide a fair assessment across content areas, it might be necessary to include a 

content balancing procedure within the CAT system. The following sections discuss 
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the Kingsbury and Zara (1989) content balancing procedure and the weighted 

deviations model (Stocking & Swanson, 1993).  

Kingsbury and Zara Procedure 

The Kingsbury and Zara (1989) procedure allows test administrators to 

determine a priori what proportions of the test will assess the various content areas. 

Once the target proportions are determined, the procedure compares the target 

proportions for content balancing to the actual proportions during the administration 

of items. The content area with the largest discrepancy between the target proportion 

and actual proportion during administration of the items will be the next content area 

from which an item is selected. The items in the selected content area are evaluated 

psychometrically through an item selection procedure to determine which item is 

selected for administration. The content balancing procedure is repeated after each 

item is administered to determine the next content area. For the initial item 

administered, the content of the item may be randomly selected from all the contents, 

may be selected from the content with the largest proportion of items, or may be pre-

specified to start with a particular content. 

Morrison, Subhiyah, and Nungester (1995) employed the Kingsbury and Zara 

(1989) procedure to examine item exposure rates for content-balanced and 

unconstrained CATs. Their findings indicate that content balancing, while enabling 

tests to meet content specifications, did not significantly inflate the number of items 

administered for a test in a variable length CAT. 
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Weighted Deviations Model 

Stocking and Swanson (1993) proposed the weighted deviations model as a 

method for balancing content specifications in CATs. The Stocking and Swanson 

(1993) procedure differs from the Kingsbury and Zara (1989) procedure in that it 

combines the nonpsychometric issue of content balancing with the psychometric 

evaluation of the items by weighting each of the desired properties. Each constraint is 

assigned an upper and lower bound (which may be equal). For each item in the pool, 

deviations from the upper and lower bounds are calculated for each constraint and 

multiplied by the weight of importance assigned to the constraint. The weighted 

deviations are summed across the constraints (nonpsychometric and psychometric) 

and the item with the smallest weighted sum of deviations is selected for 

administration (Stocking & Swanson, 1993; Stocking & Lewis, 1998). This procedure 

is particularly useful when the number of content constraints is large. 

Exposure Control 

Parshall, Davey, and Nering (1998) noted �the goal of good exposure control 

is use as much of the item pool as possible, without overly using any part of it.� 

Exposure control refers to constraining the administration of more popular items that 

would otherwise become compromised due to repeated administrations. If examinees 

have prior knowledge of an item due to frequent administrations, the psychometric 

properties of the item will not accurately estimate the examinees� abilities and the 

item will no longer be valid. Administering a test through CAT does not in itself 

cause the overexposure of items. The issue arises with the increased frequency with 
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which CATs may be administered. The necessity of exposure control is most relevant 

to high stakes continuous testing. High stakes tests generally are those that affect 

examinees� admissions or candidacy opportunities and are offered to a large 

examinee population. An example of a high stakes tests, as distinguished from a low 

stakes tests, is the Graduate Record Examination that impacts students� chances of 

admissions to graduate schools. Continuous testing refers to administering tests on an 

ongoing basis, rather than periodic tests whereby the test is offered two to three times 

a year (Stocking & Swanson, 1998).  

Way (1998) classified exposure control procedures into two categories: 

randomization and conditional selection procedures. Rather than selecting a single 

item at the maximum information level, randomization procedures select several 

items near the optimal level of maximum information from which one item is then 

randomly selected for administration. Although relatively easy to implement, 

randomization procedures do not allow specification of a maximum exposure rate. 

Conversely, conditional selection procedures have preset exposure control parameters 

that meet a pre-selected maximum exposure rate. Obtaining the exposure control 

parameter can be an arduous process that may need to be repeated if the ability 

distribution of the examinee population changes. In addition to the randomization and 

conditional selection procedures, Chang and Ying (1996) developed stratification 

procedures in which items with low discrimination are administered first followed by 

items with high discrimination, as more accurate estimations of examinees� ability 

levels are determined.  
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Several methods are usually employed to evaluate the various exposure 

control procedures: precision of measurement, exposure rate, pool utilization, and test 

overlap. Precision of measurement refers to how well the CAT system with exposure 

controls estimates examinees� abilities in comparison to the examinees� known 

abilities. This is evaluated through the Pearson product-moment correlation, bias, 

standardized difference between means (SDM), root mean squared error (RMSE), 

standardized root mean squared difference (SRMSD), and average absolute difference 

(AAD). 

The exposure rate is the proportion of the number of times an item is 

administered to the total number of CATs administered. The pool utilization 

represents the percentage of items not administered during any of the CAT 

administrations. Ideally, all the items in the pool will be used; therefore this number 

should be very low. Test overlap, or item/testlet overlap, refers to the number of items 

that two examinees have in common. High levels of test overlap indicate that many 

examinees are seeing the same items. This is also calculated based on the similarity 

between the examinees� abilities. Previous research has defined item overlap for 

examinees with �similar� abilities as two examinees having ability values within two 

logits and �different� abilities are examinees with discrepancy in ability values larger 

than two logits (Pastor, Chiang, Dodd, & Yockey, 1999; Davis, Pastor, Dodd, Chiang, 

& Fitzpatrick, 2000; Pastor, Dodd, & Chang, 2001). 

Chang and Zhang (2002) expanded the definition of test overlap by 

comparing the number of items that several examinees may have in common, rather 
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than comparing the number of items that a pair of examinees have in common. This 

stems from the likelihood that an examinee would obtain information about a test 

from several examinees rather than just one examinee. Chang and Zhang (2002) 

proved that for a fixed length CAT with random item selection, the number of items 

that overlap for any random sample of α examinees follows the hypergeometric 

distribution family for α ≥ 1. This provides, for α examinees, the lower bound for 

item overlaps, which may be used as a benchmark in comparing the overlap rates 

from CAT systems with exposure control procedures (Chang & Zhang, 2002).  

The following sections discuss randomization, conditional, and stratification 

exposure control procedures separately for the dichotomous IRT models and the 

polytomous IRT models. Current research on the application of exposure control 

procedures in CAT systems will also be reported for the dichotomous and polytomous 

IRT models. To date, there is no research evaluating exposure control procedures in 

CAT systems based on the testlet response theory model. 

Exposure Control Procedures for Dichotomous Models 

The most common exposure control procedures used in CAT systems based 

on dichotomous IRT models are discussed in this section. The randomization 

procedures include the 5-4-3-2-1 procedure, randomesque procedure, within .10 logits 

procedure, and the progressive procedure. The conditional selection procedures 

consist of the Sympson-Hetter procedure, the conditional Sympson-Hetter procedure, 

Davey-Parshall procedure, Stocking and Lewis multinomial procedure, restricted 
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maximum information procedure, and the progressive restricted procedure. The 

stratification procedures include the a-Stratified procedure and the enhanced stratified 

procedure. 

Randomization Procedures 

Rather than selecting the most appropriate item for administration, 

randomization exposure control procedures select a group of the most appropriate 

items from which one is randomly selected for administration. Although these 

procedures do not allow for specification of a maximum exposure rate, randomization 

procedures are easy to administer in CAT systems. In the following sections, four 

randomization procedures are described, along with a discussion on current research 

for each procedure. 

5-4-3-2-1 Procedure. An initial randomization procedure, the 5-4-3-2-1 

procedure, was proposed by McBride and Martin (1983). This procedure selects the 

first item for administration randomly from the five most informative items. The 

second item is randomly selected from the four most informative items. This process 

is continued such that the third and fourth items are randomly selected from the three 

and two most informative items, respectively, until the fifth item. From this point, the 

remaining items administered are selected based on maximum information. The 

initial selection of five items is arbitrary. A smaller or larger number of items can be 

selected initially (Stocking, 1992). 

The 5-4-3-2-1 procedure focuses on the initial items selected for 

administration since these tend to be the items most likely to be overexposed because 
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examinees usually begin with a common ability for the item selection procedure 

(Stocking & Lewis, 2000). The advantage to this procedure is the simplicity of its 

implementation. The disadvantages to this procedure include an overexposure of the 

most popular items due to returning items selected in the groups, but not 

administered, to the item pool and the inability to constrain the exposure of items to a 

specific maximum exposure rate (Parshall, Davey, & Nering, 1998; Stocking & 

Lewis, 2000). 

Randomesque Procedure. Kingsbury and Zara�s (1989) randomesque 

procedure is similar to the 5-4-3-2-1 procedure by randomly selecting an item from a 

group of optimal items for administration. The randomesque procedure differs in that 

it repeatedly selects the same number of the most informative items (e.g. 2, 3, 4,�, 

10) from which one is randomly selected for administration throughout testing and 

does not switch to maximum information selection at anytime. Kingsbury and Zara 

(1989) proposed that continuing the randomization technique throughout testing will 

decrease the overlap in items seen by examinees of similar abilities.  

Revuelta and Ponsoda (1998) applied the randomesque procedure, choosing a 

group of five items from which one was randomly selected for administration. They 

used a real item pool and evaluated it based on precision and exposure control. 

Precision was assessed through bias (overall difference between known ability and 

the estimated ability). The randomesque procedure had high levels of precision for a 

fixed-length condition (bias = 0.08) and a variable length condition (bias = 0.14). 

Exposure control was assessed through coefficient of variation, percentage of items 
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never administered, and minimum and maximum values for the exposure rate. The 

coefficient of variation was high indicating that some items had high exposure rates 

and some items were rarely administered. This was also reflected in the percentage of 

items never administered (19.5%). The minimum exposure rate was zero and the 

maximum exposure rate was 0.70, indicating that some items were seen by almost 

70% of the examinees. Although, the randomesque procedure provided good 

measurement precision, it performed poorly in protecting the item pool.  

Within .10 Logits Procedure. Lunz and Stahl (1998) developed the within .10 

logits procedure to examine the number and pattern of items that overlapped across 

examinees with similar abilities. The within .10 logits procedure switches the focus of 

item selection from information to item difficulty because the Rasch (1962) model 

was used and therefore the information and item difficulty yield the same item 

selection. This procedure randomly selects an item from all items within .10 logits of 

the desired difficulty level. Therefore all items within the specified range are 

available for selection rather than an arbitrary number of items. If there are no items 

available within this range, the item with the closest difficulty level is administered. 

This procedure is continued throughout testing.  

Lunz and Stahl (1998) observed a decrease in common items when examinee 

abilities were different and a decrease in the mean percent of common items across 

examinees the larger the item pool. Bergstrom and Lunz (1999) applied this 

procedure to a certification exam with an item bank of 900 items. The maximum 

exposure rate did not exceed 30% of the item pool. Typically, items that reported 



 48

maximum exposure rates close to 30% were around the cut point for the certification 

exam.  

Progressive Procedure. Revuelta and Ponsoda (1998) developed the 

progressive procedure, which includes both a randomization component and 

maximum information selection. At first the randomization component influences 

item selection more than the maximum information selection. As the test progresses, 

the roles are reversed resulting in maximum information selection impacting item 

selection more than the randomization component. For the progressive procedure, the 

number of items previously administered to a person is denoted h and the total 

number of items to be administered is denoted m. The influence of the randomization 

component and maximum information is controlled by the serial position, s, of the 

item. The item�s serial position is defined as s = h/m. When selecting an item for 

administration, the remaining items� information (Ii) is calculated based on the 

person�s current estimated ability level. The highest information value, denoted H, is 

used to create a uniform distribution ranging from 0 to H from which a random 

number (Ri) is assigned to each item. Then a weight is calculated for each item, 

denoted wi = (1 � s)Ri + sIi, and the item with the greatest weight, wi, is selected for 

administration.  

In the same study as the randomesque procedure mentioned earlier, Revuelta 

and Ponsoda (1998) examined the progressive procedure with real item data and 

additionally, under simulated conditions that varied in terms of test length, item pool 

size, and discrimination parameter distributions. The results indicated high levels of 



 49

precision as measured by bias for both the real data and all the simulated conditions. 

For exposure control, the progressive procedure reported zero or close to zero for the 

percentage of items never administered. This indicates that unlike the randomesque 

procedure, most, if not all, of the items were administered during the CATs. Yet, the 

maximum exposure rates for the items were still high, ranging from .45 to .65.  

Conditional Procedures 

The conditional procedures allow a maximum exposure rate of the items in 

the item pool to be selected. Most of these procedures require extensive simulations 

to determine the exposure control parameters for the items in the item pool. The 

simulations can be computationally complex and time consuming. In the following 

sections, six conditional procedures are described, along with a discussion on current 

research for each procedure. 

Sympson-Hetter Procedure. The most commonly used conditional selection 

procedure is the Sympson-Hetter procedure (Sympson & Hetter, 1985). The 

Sympson-Hetter procedure assigns an exposure control parameter, Ki, value ranging 

from zero to one for each item based on the frequency of item administrations during 

an iterative CAT simulation program. Items with high administration frequencies will 

have smaller exposure control parameters to limit their administration in a live CAT 

test. This ensures a maximum item exposure rate, r.  

The procedure for setting the exposure control parameter, Ki, for each item is 

described as follows. For the first CAT simulation, the exposure control parameter, 

Ki, is initially set to one for each item. As an item is selected for administration, the 
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item�s exposure control parameter, Ki, is compared to a random number, x, that is 

selected from a uniform distribution. If x ≤ Ki, then the item is administered. Whether 

or not the item is administered, the item will not be selected for the simulee again. 

Once a CAT has been completed for all simulees, two probability values are 

computed: the probability of selecting an item, P(S), and the probability of 

administering an item, P(A). 

NE
NSSP =)(   ,       (30) 

NE
NAAP =)(   ,       (31) 

where NS represents the number of times an item is selected, NA represents the 

number of times an item is administered, and NE represents the total number of 

examinees. Next, new Ki values are computed for each item. If P(S) > r, then the new 

Ki = r/P(S). If P(S) ≤ r, then the new Ki = 1.0. The new Ki values are examined to 

ensure there are enough items to administer a complete test. Therefore n items must 

have Ki values equal to one. If not, the items with Ki values closest to one are 

assigned Ki values equal to one until n items have Ki values equal to one (Sympson & 

Hetter, 1985). 

The CAT simulations are repeated until the maximum item exposure rate, r, 

converges. Convergence is when the maximum value of P(A) for any item nears a 

limit slightly above r and fluctuates around this value. Therefore, to obtain a 

maximum exposure rate of 0.20, a value of r should be selected that is slightly lower, 
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such as 0.19. The final exposure control parameters, Ki, are used for the real CAT 

administrations (Sympson & Hetter, 1985).  

Hetter and Sympson (1997) applied the Sympson-Hetter procedure to 

simulation data based on the Computerized Adaptive Testing � Armed Services 

Vocational Aptitude Battery (CAT-ASVAB). The results indicate that the exposure of 

items stayed below the pre-specified maximum exposure rate of 0.33. In addition, 

measurement precision was not significantly affected by the exposure control 

parameters.  

The dependency of the Sympson-Hetter procedure on an expected examinee 

ability distribution limits the use of the exposure control parameters. Using exposure 

control parameters with an inappropriate examinee ability distribution will lead to 

items with overly relaxed or overly restricted exposure parameters. Therefore, 

changes in the actual examine ability distribution requires recalibrating exposure 

control parameters for the Sympson-Hetter based on this new expected distribution 

(Parshall, Davey, & Nering, 1998). In addition, the Sympson-Hetter exposure control 

parameters are global in nature, in that an item has one exposure control parameter no 

matter the examinee�s ability level. This may inaccurately control items for ability 

levels at the tails of the ability distribution (Parshall, Davey, & Nering, 1998). 

An extension of the Sympson-Hetter procedure was proposed by Stocking 

(1992) to reflect a realistic adaptive testing paradigm. In live CAT administrations, 

practical issues need to be considered, such as items that need to be administered 

together, as a block, because they have a common stimulus, require the same set of 
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directions, or refer to the same knowledge content area. Stocking (1992) extended the 

Sympson-Hetter to account for items requiring block administrations and to control 

the exposure of stimuli (e.g. reading passages) during a CAT administration. In 

comparison to a randomization procedure, 8-7-6-�-1, the extension of the Sympson-

Hetter, had smaller item exposures. This modified Sympson-Hetter procedure is 

dependent on both the ability distribution used to create the exposure control 

parameters and the item pool due to creation of blocks and exposure rates for stimuli. 

A change in the examinee ability distribution or item pool requires recalibrating the 

exposure control parameters (Stocking, 1992).  

Conditional Sympson-Hetter Procedure. Stocking and Lewis (1995) 

developed the conditional Sympson-Hetter procedure in which the exposure control 

parameters are estimated based on ability level. This removes the requirement of and 

issues pertaining to assuming an expected examinee ability distribution (Parshall, 

Davey, & Nering, 1998; Stocking, 1992; Stocking & Lewis, 1995). During the 

simulation stage of setting the exposure control parameters, an n x m matrix is created 

in which n rows reflect the number of items in the pool and m columns reflect a pre-

specified number of discrete ability points along the ability distribution. The 

simulation procedure described in the previous section is then employed to obtain the 

n x m matrix of exposure control parameters conditioned on ability. Therefore, each 

item has m exposure control parameters, one at each of the discrete ability points.  

Parshall, Davey, and Nering (1998) compared the Sympson-Hetter and the 

conditional Sympson-Hetter. The conditional Sympson-Hetter used more of the item 
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pool than the Sympson-Hetter, although some of the items were overexposed more 

for the conditional Sympson-Hetter than the Sympson-Hetter. Descriptive statistics on 

test length indicated the Sympson-Hetter yielded average test lengths of 30 items 

across the ability distribution, while the conditional Sympson-Hetter yielded longer 

tests at the tails of the ability distribution and shorter tests in the middle of the 

distribution.  

Davey-Parshall Procedure. Davey and Parshall (1995) proposed the Davey-

Parshall procedure as an alternative conditional procedure that would condition on 

items rather than on ability. This procedure focuses on minimizing test overlap across 

examinees. Similarly to the Sympson-Hetter procedure, the Davey-Parshall procedure 

requires setting exposure control parameters through simulations prior to live CAT 

administrations. The exposure control parameters are created in an n x n matrix, 

where n represents the number of items in the item pool. Conditional parameters in 

the off diagonal matrix control the frequency with which items appear together based 

on pairwise comparisons during simulations thereby controlling test overlap. The 

diagonal of the matrix has exposure control parameters that perform similarly to the 

Sympson-Hetter parameters.  

Parshall, Davey, and Nering (1998) also compared the Davey-Parshall 

procedure to the Sympson-Hetter and conditional Sympson-Hetter procedures. 

Although, the Davey-Parshall and Sympson-Hetter procedures performed similarly in 

terms of pool usage, test length, and item overlap, the Davey-Parshall procedure 

consistently performed better. The Davey-Parshall procedure used more items in the 
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item pool than the Sympson-Hetter procedure, but fewer items than the conditional 

Sympson-Hetter procedure. The conditional Sympson-Hetter procedure repeatedly 

performed better than the other two procedures. 

Parshall, Hogarty, and Kromrey (1999) examined a combination of all three 

procedures, the Sympson-Hetter, conditional Sympson-Hetter, and the Davey-

Parshall, into a single procedure called the Tri-Conditional procedure. While 

examining the Tri-Conditional and Sympson-Hetter procedures, the Tri-Conditional 

showed better measurement precision and pool usage. The authors noted that the Tri-

Conditional model is computationally more complex than the Sympson-Hetter, which 

may limit its use in practical applications (Parshall, Hogarty, & Kromrey, 1999).  

Stocking and Lewis Multinomial Procedure. Stocking (1992) noted that the 

exposure control parameters had difficulty converging for the Sympson-Hetter 

procedure due to artificially setting some of the Ki values equal to one in order to 

have enough items to administer the test. Due to convergence problems when setting 

the exposure control parameters for the Sympson-Hetter procedure, Stocking and 

Lewis developed a multinomial procedure (Stocking & Lewis, 1995). Initially the 

exposure control parameters are set using the Sympson-Hetter procedure. Secondly, 

rather than selecting items based on optimal item selection, this procedure employs a 

multinomial model for item selection. Multinomial probabilities are calculated to 

determine the probability of selection based on all previous items not being selected 

(Stocking & Lewis, 1995).  
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Restricted Maximum Information Procedure. Revuelta and Ponsoda (1998) 

proposed the restricted maximum information procedure as a way of specifying a 

maximum exposure rate, without requiring the prior simulations needed to set the Ki 

values for the Sympson-Hetter procedure. For the restricted maximum information 

procedure, a pre-specified maximum exposure rate, k, limits the number of times an 

item, i, can be administered across all tests. For all tests already administered, t, the 

exposure rate of item, i, is equal to the number of times the item has been 

administered, ai, divided by the current number of administered tests (ai/t). All items 

with a current exposure rate below the maximum exposure rate, k, are included in the 

item pool from which an item is selected based on maximum information. If an item�s 

current exposure rate (ai/t) is larger than the maximum exposure rate, k, then the item 

will be removed from the item pool and not considered for selection. Once more tests 

have been administered the item�s exposure rate (ai/t) will reduce thereby allowing it 

to be reinstated in the item pool once it falls below the maximum exposure rate, k.  

In the same study discussed previously, Revuelta and Ponsoda (1998) 

examined the restricted maximum information procedure with a maximum exposure 

rate restricted to 0.40 along with the progressive and randomesque procedures. In 

terms of precision, the restricted maximum information procedure required 

administration of three more items compared to the progressive and randomesque 

procedures in order to obtain the same level of precision. The restricted maximum 

information procedure successfully maintained a maximum item exposure rate of 

0.40, but 15% of the item pool was never administered. Due to the progressive 
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procedure�s administration of all of the items and the restricted maximum information 

procedure�s ability to control the maximum item exposure rate, Revuelta and Ponsoda 

(1998) decided to combine these procedures. 

Progressive Restricted Procedure. Revuelta and Ponsoda (1998) combined 

the restricted maximum information procedure and the progressive procedure to 

create the progressive restricted procedure. Before administration of a CAT, the 

available items are determined by the restricted procedure, such that no item will 

exceed the maximum exposure rate, k. Once the item pool is determined for a CAT, 

the progressive procedure is used to select an item for administration.  

The progressive restricted procedure was examined with two maximum 

exposure rates k = .40 and k = .15. Overall the combination of the restricted 

maximum information procedure and the progressive procedure resulted in most if 

not all items in the item pool being administered and maintained a maximum 

exposure rate equal to k (Revuelta & Ponsoda, 1998).  

Stratification Procedures 

The discrimination parameter impacts the calculation of information, such 

that higher discrimination parameters yield higher information functions. This 

relationship results in items with high discrimination values being exposed more than 

items with low discrimination values (Chang & Ying 1999). The stratification 

procedures take advantage of the relationship between information and 

discrimination. In the following sections, two stratification procedures are described, 

along with a discussion on current research for each procedure. 
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a-Stratified Procedure. Chang and Ying (1999) developed the a-Stratified 

procedure to include the item discrimination parameters more directly in the exposure 

control procedure. Rather than focusing on maximum information for item selection, 

Chang and Ying (1999) propose that at the beginning of the CAT when little is 

known about the examinee�s ability, lower discriminating items should be 

administered. The a-Stratified procedure stratifies the item pool based on the 

discrimination parameter, a. The item bank is partitioned into K levels based on the 

item discrimination, a, values. The test is also partitioned into K stages with the items 

denoted n1, n2,�, nK. Within the kth stage, the nk item is selected whose difficulty 

level, b, is most similar to the expected ability value, θ� . This procedure is repeated 

for k = 1, 2,�, K. As the CAT is administered, the examinee�s ability estimate will 

come closer to approximating the examinee�s known ability. At this point items with 

higher discriminating values will be administered (Chang & Ying, 1999).  

The a-Stratified procedure has four possible advantages. First, by restricting 

the use of highly discriminating items until the examinee�s ability is well estimated, a 

more efficient method for estimation may result. Secondly, the stratification of the 

item bank may lead to more evenly distributed exposure rates. Thirdly, items with 

low discriminating values will be administered more often. Finally, the simpler 

method does not require extensive computational simulations prior to live testing. 

This allows for items to be added and removed from the item pool more easily (Hau 

& Chang, 1998).  
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Chang and Ying (1999) observed that the a-Stratified procedure had lower 

test overlap and used more of the item pool than the Sympson-Hetter with Fisher 

information or the Sympson-Hetter with Bayesian item selection. In addition, the a-

Stratified procedure administered more items with low discrimination than either of 

the Sympson-Hetter with Fisher information or the Sympson-Hetter with Bayesian 

item selection procedures. Tang, Jiang, and Chang (1998) observed better item pool 

usage and more distributed exposure rates for the a-Stratified procedure than the 

Sympson-Hetter procedure for real item data when examinee ability matches the item 

pool difficulty. When examinee ability does not match item pool difficulty, the a-

Stratified procedure does not select items as well. The authors suggested increasing 

the number of strata when examinee ability and item pool difficulty do not match. In 

addition, Tang, Jiang, and Chang (1998) discussed incorporating maximum 

information selection in the last strata as future research to overcome this 

disadvantage.  

Stocking (1998) observed that stratification based only on the discrimination 

parameter may lead to lower strata with wider ranges of difficulty and higher strata 

with narrower ranges of difficulty due to the correlation between difficulty and 

discrimination parameters. In response, Chang, Qian, and Ying (2001) modified the 

a-Stratified procedure to have b-blocking. By incorporating b-blocking, the examinee 

ability level will be able to match a difficulty level for each stratum. This procedure 

consists of arranging the items by difficulty level and then dividing the item pool into 

M blocks. Then within each of the M blocks, partition it into K strata based on the 
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discrimination values. The items are then recombined such that there are j = 1, 2,�, 

K strata with each strata containing items with a range of difficulty values. Chang, 

Qian, and Ying (2001) reported that the a-Stratified procedure with b-blocking 

improved the control of item exposure rates and yielded lower mean squared errors in 

comparison to the a-Stratified procedure.  

Enhanced Stratified Procedure. Leung, Chang, and Hau (1999) combined the 

a-Stratified procedure and the Sympson-Hetter procedure to create the enhanced 

stratified exposure control procedure. This procedure involves partitioning the item 

pool into K strata and identifying a maximum exposure rate, r. Simulated CATs are 

run using the a-Stratified method during which each item starts with an exposure 

control parameter equal to one. As the CATs are administered, the exposure control 

parameters are adjusted. Once exposure control parameters have been identified for 

each item, the live CATs consist of selecting the item with the difficulty level closest 

to the examinee�s estimated ability within a stage. The item is administered if its 

exposure control parameter is greater than a random number from a uniform 

distribution; otherwise another item is selected for administration. This procedure 

continues throughout the stage and then moves to the next stage until the test is 

complete.  

In comparison to the a-Stratified and the Sympson-Hetter procedures, the 

enhanced stratified procedure performed well at controlling the exposure of items. All 

the items were used during the CAT administrations, but they were not overly 

exposed. The Sympson-Hetter procedure reported as many as 166 of 400 items that 
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were not administered. Also, the test overlap rates were lowest for the enhanced 

stratified procedure (Leung et al., 1999).  

Exposure Control Procedures for Polytomous Models 

Research evaluating exposure control procedures for polytomous models is 

not as extensive as that with the dichotomous models. The following sections discuss 

the current research in determining the efficacy of exposure control procedures with 

polytomous models in the context of CATs. The polytomous models include the 

graded response model, the partial credit model, and the generalized partial credit 

model. Although some of the CATs vary in terms of content balancing and stopping 

rules, only maximum likelihood estimation has been investigated with exposure 

control procedures in polytomous CATs. The exposure control procedures discussed 

in this section are the randomesque procedure, the modified within .10 logits 

procedure, the Sympson-Hetter procedure, the conditional Sympson-Hetter 

procedure, the a-Stratified procedure, and the enhanced stratified procedure. 

Randomesque Procedure 

Davis (2002) examined the randomesque procedure with three polytomous 

models: graded response model (GR), partial credit model (PC) and the generalized 

partial credit model (GPC). Each model was examined for two item group levels, 

randomesque-3 and randomesque-6, such that an item was randomly selected from 

the three or six most informative items. The randomesque-3 procedure did not 

maintain item security, reporting maximum exposure rates of 0.73 for GR, 0.50 for 

PC, and 0.71 for GPC. In addition, the randomesque-3 did not administer 23% of the 
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items for GR, 20% for PC and 26% for GPC. In terms of item overlap, the 

randomesque-3 reported overall average overlap of 36% for GR, 24% for PC, and 

33% for GPC. For each model, examinees with similar abilities had the highest 

percent of items overlapping.  

The randomesque-6 procedure performed better than the randomesque-3 

procedure across the three models. The maximum exposure rate for the three models 

was 0.49 for GR, 0.40 for PC, and 0.48 for GPC. The randomesque-6 also used more 

of the item pool resulting in the percentage of items not administered equaling 11% 

for GR, 8% for PC, and 13% for GPC. Item overlap rates for the randomesque-6 were 

lower than the randomesque-3 procedure, but on average 20-25% of the items were 

similar across examinees. 

Modified Within .10 Logits Procedure 

Since polytomous items do not have a single difficulty level, the selection 

procedure for the within .10 logits procedure (Lunz & Stahl, 1998) was modified to 

select a number of informative items based on ability level. Davis and Dodd (2001) 

developed the modified within .10 logits procedure to select a range of informative 

items around the examinee�s current ability level. Items with the most information are 

selected at the ability level minus 0.10 logits, at the ability level and at the ability 

level plus 0.10 logits, and then an item is randomly selected from those items for 

administration. Davis (2002) looked specifically at selecting a total of three and six 

items for the graded response model, partial credit model, and generalized partial 

credit model. For the three-item group, the modified within .10 logits-3 selected the 
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most informative item at each of the ability levels. For the six-item group, the 

modified within .10 logits-6 selected the two most informative items at each of the 

ability levels. A single item was then randomly chosen from the three/six selected 

items for administration. 

The modified within .10 logits-3 procedure did not maintain item security, 

reporting maximum exposure rates of 0.74 for GR, 0.54 for PC, and 0.71 for GPC 

(Davis, 2002). In addition, the modified within .10 logits-3 did not administer 22% of 

the items for GR, 20% for PC and 26% for GPC. In terms of item overlap, the 

modified within .10 logits-3 reported overall average overlap of 36% for GR, 25% for 

PC, and 33% for GPC. For each model, examinees with similar abilities had the 

highest percent of items overlapping. The modified within .10 logits-3 performed 

similarly to the randomesque-3 procedure. 

The modified within .10 logits-6 performed better than the modified within 

.10 logits-3 procedure (Davis, 2002). The maximum exposure rate for the three 

models was 0.50 for GR, 0.40 for PC, and 0.48 for GPC. The modified within .10 

logits-6 also used more of the item pool resulting in the percentage of items not 

administered equaling 11% for GR, 8% for PC, and 14% for GPC. Item overlap rates 

for the modified within .10 logits-6 were lower than the modified within .10 logits-3, 

but on average 20-26% of the items were similar across examinees. The modified 

within .10 logits-6 performed similarly to the randomesque-6 procedure. 
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Sympson-Hetter Procedure 

Pastor, Chiang, Dodd, and Yockey (1999) investigated the extent to which the 

Sympson-Hetter procedure, with maximum exposure rate equal to 0.30, controlled 

item exposure for CAT systems based on the partial credit model that varied in terms 

of item pool size (60, 120) and stopping rule (variable, fixed). The Sympson-Hetter 

procedure showed negligible differences in measurement precision compared to a 

non-exposure control condition. The Sympson-Hetter also administered more items 

and reduced the amount of item overlap across examinees (Pastor et al., 1999). 

Davis, Pastor, Dodd, Chiang, and Fitzpatrick (2000) enhanced the complexity 

of the partial credit model CAT system in the Pastor et al. (1999) study to include 

rotated content balancing and examined the performance of the Sympson-Hetter 

procedure. The Sympson-Hetter procedure administered more of the item pool for 

both content and non-content CATs compared to a no exposure control CAT. It also 

maintained the item exposure rates around or below the maximum allowed exposure 

rate. 

In the Davis (2002) study mentioned previously, the author also investigated 

the Sympson-Hetter procedure with GR, PC, and GPC models. The target maximum 

exposure rate was equal to 0.39 and the maximum exposure rates for the models 

equaled 0.42 for GR, 0.43 for PC, and 0.42 for GPC. The Sympson-Hetter was able to 

control the maximum exposure rates, unlike the randomesque and modified within 

.10 logits procedures. Yet, the Sympson-Hetter procedure had a much higher 

percentage of items never administered compared to the randomization models. For 
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item overlap, almost a third of the items were similar across examinees. If the 

examinees had similar abilities, then even more items were alike.  

Pastor, Dodd, and Chang (2002) compared several exposure control 

procedures for the generalized partial credit model. For the Sympson-Hetter 

procedure with a target exposure rate set equal to 0.30, the maximum exposure rate 

was 0.34 and 28% of the item pool was never administered. Compared to the other 

procedures, which will be discussed in the following sections, the Sympson-Hetter 

procedure did not perform well in controlling item exposure (Pastor et al., 2002).  

Conditional Sympson-Hetter Procedure 

Davis (2002) also investigated the conditional Sympson-Hetter procedure. 

The conditional Sympson-Hetter procedure showed marked improvement compared 

to the Sympson-Hetter procedure. The maximum exposure rate was 0.40 for GR and 

PC, and 0.41 for GPC. The percent of pool not administered for the three models was 

15% for GR and PC, and 14% for GPC. The percent of item overlap was 26% for GR, 

22% for PC, and 24% for GPC. In the Pastor et al. (2002) study, the conditional 

Sympson-Hetter procedure constrained the maximum exposure rate to 0.32 and 

administered most of the item pool. The percent of pool not administered equaled 3%.  

a-Stratified Procedure 

Davis (2002) investigated the utility of the a-Stratified procedure for 

controlling item exposure in CATs for the graded response model and the generalized 

partial credit model. The partial credit model was not included because it assumes the 

discrimination parameters are equal and thus are not modeled in the probability 
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function. The item pool was partitioned into five strata with 32 items in the first two 

strata and 31 items in the remaining three strata. The author noted a negative 

relationship between discrimination parameter and the number of categories for the 

polytomous items. Therefore the pool was stratified according to content area and 

number of categories, and then the pool was stratified by discrimination.  

The Davis (2002) study results indicated poor exposure control for the a-

Stratified procedure. The maximum exposure rate for GR was 0.90 and for GPC was 

0.74. Over half of the items were never administered for both models. In addition, 40-

46% of the items overlapped across examinees. Pastor et al. (2002) reported better 

pool utilization for the a-Stratified procedure with GPC ranging from 13-28% of the 

items never administered, but the maximum exposure rate was 1.00. Davis (2002) 

noted these results might be due to the prior stratification by content area. 

Enhanced Stratified Procedure 

Davis (2002) also investigated the utility of the enhanced stratified procedure 

for controlling item exposure in CATs for the graded response model and the 

generalized partial credit model. The enhanced stratified procedure used more of the 

item pool compared to the a-Stratified procedure. The enhanced stratified procedure 

reported much lower maximum exposure rates of 0.42 for both measurement models. 

This reflects the integration of the Sympson-Hetter procedure in the model. The 

percent of item overlap across examinees mirrored that of the Sympson-Hetter 

procedure. Pastor et al. (2002) also observed an increase in exposure control for the 

enhanced stratified procedure compared to the a-Stratified procedure. The maximum 
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exposure rate was 0.34 - 0.35 and the percent of pool not administered reduced to 2% 

and 13% depending on pool size.  

Statement of Problem 

Exposure control procedures protect CAT item pools from being 

compromised by restricting the exposure of some items and administering a larger 

percentage of the items in the item pools. Yet, implementation of an exposure control 

procedure in a CAT system reduces the precision of measurement of the test since the 

most optimal items are not necessarily administered. Test administrators need to 

weigh the benefits and costs of including exposure control procedures in CAT 

systems.  

Previous research conducted by Revuelta and Ponsoda (1998) for 

dichotomously scored CATs indicates that the precision of measurement is not 

significantly impacted when using the randomesque procedure, progressive 

procedure, and the Sympson-Hetter procedure with a maximum exposure rate equal 

to 0.40. The restricted maximum information procedure did appear to decrease the 

precision of measurement when included in a CAT system. In terms of exposure rate, 

the Sympson-Hetter procedure and the restricted maximum information procedure 

provided the lowest maximum exposure rate. Yet, the progressive procedure used 

more of the item pool compared to the other procedures. In combination, the 

progressive restricted procedure obtained high levels of measurement precision and 

controlled the exposure of items (Revuelta & Ponsoda, 1998). 
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Chang (1998) also compared several exposure control procedures in a 

dichotomously scored CAT system, but in addition included the Kingsbury and Zara 

procedure (1989) for content balancing to create a more realistic CAT system. The 5-

4-3-2-1 randomization procedure poorly controlled the exposure of items, but 

produced the least bias results. Although the Sympson-Hetter conditions controlled 

the item exposure rate to the designate level, a Sympson-Hetter procedure with a 

maximum exposure rate of 0.20 did not significantly impact the precision of 

measurement, while a Sympson-Hetter procedure with a maximum exposure rate of 

0.10 did significantly impact the precision of measurement. In comparison to the 

Sympson-Hetter conditions, Chang (1998) noted that the Stocking and Lewis 

unconditional multinomial procedure yielded similar results, but was less efficient in 

determining the exposure control parameters than the Sympson-Hetter procedure. 

Chang (1998) reported the best item exposure control for the Davey-Parshall 

procedure and Stocking and Lewis conditional multinomial procedure, yet each of 

these led to poor precision of measurement. 

Davis (2002) examined exposure control procedures for polytomously scored 

CAT systems with the Kingsbury and Zara content balancing procedure. In 

comparison to the randomesque procedure, modified within .10 logits procedure, 

conditional and unconditional Sympson-Hetter procedures, a-Stratified procedure and 

enhanced stratified procedure, the modified within .10 logits procedure and 

randomesque procedure with group size of six items provided low exposure rates and 
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low item overlap rates. In addition, these procedures administered a large portion of 

the item pool compared to a non-exposure control condition (Davis, 2002).  

Exposure control procedures appear to perform differently for dichotomously 

scored CAT systems versus polytomously scored CAT systems with content 

balancing. In the dichotomous case, conditional selection procedures appear to be the 

optimal choice (Chang, 1998), while randomization procedures perform best for 

polytomous CATs (Davis, 2002). Exposure control procedures have yet to be 

examined with testlet-based CAT systems modeled using testlet response theory.  

This dissertation examined various exposure control procedures in CAT 

systems based on the three-parameter logistic testlet response theory model and the 

partial credit model. Recommended exposure control procedures for dichotomously 

scored CAT systems and polytomously scored CAT systems were combined with the 

Kingsbury and Zara procedure (1989) for content balancing and expected a posteriori 

estimation of ability. The exposure control procedures are the randomesque 

procedure, the modified within .10 logits procedure, two levels of the progressive 

restricted procedure, and two levels of the Sympson-Hetter procedure. Each of these 

are compared to a baseline no exposure control procedure, maximum information. 

Specifically, this dissertation sought to answer the following questions: 

1. To what extent do the exposure control procedures impact the precision of 

measurement for the CAT systems based on either the three-parameter logistic 

testlet response theory model or the partial credit item response theory model? 
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2. To what extent do the exposure control procedures control testlet exposure and 

testlet pool utilization for a CAT system based on either the three-parameter 

logistic testlet response theory model or the partial credit item response theory 

model? 

3. Which is the optimal exposure control procedure for a CAT system based on the 

three-parameter logistic testlet response theory model? 

4. Does the optimal exposure control procedure for a CAT system based on the 

three-parameter logistic testlet response theory model differ from the optimal 

exposure control procedure for a CAT system based on the partial credit item 

response theory model? 
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CHAPTER THREE: METHODOLOGY 

Two measurement models appropriate for testlets were used to evaluate the 

relative merits of seven exposure control conditions in the context of computerized 

adaptive testing systems. The measurement models were the three-parameter logistic 

testlet response theory (TRT) model and the partial credit (PC) model. The exposure 

control procedures investigated were the randomesque procedure (Kingsbury & Zara, 

1989), two levels of the progressive restricted procedure (Revuelta & Ponsoda, 1998), 

two levels of the Sympson-Hetter procedure (Sympson & Hetter, 1985), the modified 

within .10 logits procedure (Davis & Dodd, 2001), and a maximum information 

procedure. The maximum information procedure was used for a no exposure control 

condition in order to provide a baseline from which to compare the six other exposure 

control conditions for each measurement model.  

Each CAT system consisted of maximum information testlet selection 

contingent on an exposure control procedure and content balancing for passage type 

and the number of items per passage; expected a posteriori (EAP) ability estimation 

for the interim and final ability estimations; and a fixed length stopping rule of seven 

passages totaling fifty multiple-choice items. Measurement precision and exposure 

rates were examined to evaluate the effectiveness of the exposure control procedures 

for each measurement model.  

Item Pool 

The data used to obtain item parameters for the item pool consisted of 

examinee responses from 22 forms of the Verbal Reasoning section of the Medical 
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College Admissions Test administered from April 1996 to April 2001. The average 

number of examinees per form was 7,234 examinees with a minimum of 2,510 and a 

maximum of 14,439 examinees. Each form contained eight reading passages and 55 

multiple-choice items. The reading passages differed by content (humanities, social 

science, or natural science) and the number of multiple-choice items associated with 

the reading passages (6, 7, 8, or 10 items).  

Previous research conducted through the Medical College Admissions Test 

(MCAT) Graduate Student Research Program on the reading passages of the MCAT 

indicated the presence of local item dependence on the Verbal Reasoning section and 

to a lesser extent on the Biological Sciences and Physical Sciences sections (Zenisky, 

Hambleton, & Sireci, 2002). Local item dependency was measured using the Q3 

statistic (Yen, 1984). The Verbal Reasoning section yielded positive Q3 statistics for 

reading passage testlets ranging from 0.009 to 0.058 across two forms. 

For the partial credit model, the testlet pool contained 149 reading passages 

(testlets) scored as polytomous items. When the PC model was applied to the testlet 

data, each item within a given testlet was scored correct or incorrect and summed to 

create the polytomous score for the testlet. The PC model testlet pool consisted of 

40% humanities, 36% social science, and 24% natural science reading passages. In 

terms of the number of items per testlet, the PC model testlet pool consisted of 68% 

six-item, 20% seven-item, 7% eight-item, and 5% ten-item reading passages.  

For the testlet response theory model, the testlet pool contained 176 reading 

passages (testlets) with a total of 1,210 dichotomous multiple-choice items. Each item 
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under the TRT model was scored dichotomously: correct (1) or incorrect (0). The 

TRT model testlet pool consisted of 37.5% humanities, 37.5% social science, and 

25% natural science reading passages. In terms of the number of items per passage, 

the TRT model testlet pool consisted of 60% six-item, 18% seven-item, 10% eight-

item, and 12% ten-item reading passages.  

The discrepancy in the number of testlets for the PC and TRT models was due 

to the low category frequencies and convergence problems when estimating the testlet 

parameters for some of the passages under the PC model (Davis & Dodd, 2001). The 

TRT model used all the available testlets rather than mirror those testlets used by the 

PC model, thereby taking full advantage of the properties of the TRT model.  

Parameter Estimation 

The testlet parameters were estimated separately for the PC model and the 

TRT model. Each form was calibrated independently under each measurement model 

due to non-overlapping testlets across forms. The resulting testlet parameter estimates 

were combined to create the testlet pool. This process mirrored the randomly 

equivalent groups design used in the real test administrations. 

The estimated testlet parameters for the PC model were obtained from the 

Davis and Dodd (2001) study. In that research, the same data for the MCAT forms 

described above were calibrated using the PARSCALE software program (Muraki & 

Bock, 1993). PARSCALE applies a two-step marginal maximum likelihood EM 

algorithm to estimate parameters. The two-step process is iterative until the testlet 

parameter estimates stabilize. The first step involves calculating the provisional 
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expected frequency and sample size. The second step estimates the marginal 

maximum likelihood. For each testlet, the number of step difficulty parameters, bik, is 

equal to the number of multiple-choice items associated with the reading passages. 

The research by Davis and Dodd (2001) found that the passages were similar in terms 

of discrimination power and therefore the more general GPC model was not needed. 

They used the most parsimonious model, the PC model, for testlet calibrations. 

For the TRT model, the testlet parameters were estimated with the 

SCORIGHT software program (Wang, Bradlow, & Wainer, 2001). The three-

parameter logistic TRT model with the testlet effect, )(ijdγ , was used, resulting in four 

parameter estimates: difficulty (b), discrimination (a), guessing (c), and the testlet 

effect parameter ( )(ijdγ ). The testlet effect was allowed to vary across testlets for all 

examinees. SCORIGHT employs a Markov Chain Monte Carlo technique with Gibbs 

sampling to draw inferences from the posterior distribution of the parameters to 

estimate the parameters of the model. The MCAT data was calibrated using 8000 

iterations of which the first 7000 iterations were dropped. Every fifth-iteration of the 

remaining 1000 iterations was selected to create the posterior distribution of the 

parameters from which the inferences were drawn.  

Data Generation 

The PC model testlet response data were generated using the IRTGEN SAS 

macro (Whittaker, Fitzpatrick, Williams, & Dodd, in press). Response data were 

generated for ten samples, each with 1,000 simulees. Each simulee was assigned a 
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known theta value by randomly selecting theta from a normal distribution with mean 

zero and standard deviation equal to one. Based on the parameter estimates obtained 

from the calibration of the MCAT data and the simulee�s known theta value, the 

probability of responding in each category for a given testlet was calculated. The 

category probabilities for a given testlet were then summed to create cumulative 

subtotal probabilities for each response category. A random number was selected 

from a uniform distribution that ranges from 0 to 1 and compared to the cumulative 

subtotal probabilities. If the random number was less than the subtotal probability for 

a given category, the simulee�s response was that category score. This process was 

repeated for every testlet and every simulee in each of the ten samples. The resulting 

ten generated response data sets were used for each PC model CAT condition. 

The TRT item response data were generated for the same ten samples as the 

PC model, each with 1,000 simulees. Each simulee was assigned a known theta value 

by randomly selecting theta from a normal distribution with mean zero and standard 

deviation equal to one. The probability of responding to an item was based on the 

simulee�s theta value, the item parameter estimates obtained from SCORIGHT, and a 

generated person-specific testlet effect. The testlet effect parameter was determined 

by selecting a random variable from a normal distribution with mean zero and 

standard deviation equal to the square root of the variance of the testlet effect for a 

given testlet that was obtained from SCORIGHT. The selected random number was 

used as the testlet effect parameter in the probability model for all items in a testlet 

for that simulee. In order to introduce random error, the simulee�s response was 
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compared to a randomly selected number from a uniform distribution that ranges 

from 0 to 1. The simulee received a correct response (1) if the random number was 

less than the simulee�s response and an incorrect response (0) otherwise. This process 

was repeated for every item and every person in each of the ten samples. The same 

ten generated response data sets were used for each CAT condition based on the TRT 

model. 

CAT Simulations 

The CAT simulations were based on modifications made to a SAS program 

created by Chen, Hou, and Dodd (1998) and modified by Davis and Dodd (2001). 

Each CAT consisted of testlet selection based on maximum information contingent 

on content balancing and exposure control procedures. The ability and the person-

specific testlet effects were estimated using expected a posteriori (EAP) estimation 

after each testlet was administered. The stopping rule for test administration was 

seven reading passages resulting in the administration of 50 multiple-choice items. 

Each CAT condition was repeated for the ten data sets. The following outlines the 

steps in the CAT algorithm, after which a more detailed explanation of each step is 

provided. 

1. Content balancing for passage type and number of items per passage. (The initial 

content selection was randomly selected.) 
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2. Information calculated for applicable testlets. (The initial ability estimate, θ� , was 

set to zero representing the mean of the population. Subsequent ability estimates 

were estimated through EAP estimation.) 

3. Exposure control procedure leading to testlet selection and administration. 

a. Maximum information (MI) 

b. Randomesque procedure (RA) 

c. Modified within .10 logits (MW) 

d. Progressive restricted with .20 maximum exposure rate (PR20) 

e. Progressive restricted with .30 maximum exposure rate (PR30) 

f. Sympson-Hetter with .20 maximum exposure rate (SH20) 

g. Sympson-Hetter with .30 maximum exposure rate (SH30) 

4. EAP estimation of interim ability and the testlet effect parameter.  

5. Calculate item information, testlet information, test information, and standard 

error.  

6. Repeat steps 1 through 5, unless number of testlets administered equals the 

stopping rule of seven testlets. 

7. Estimate the final ability and testlet effect parameters with EAP estimation. 

 

For administration of the first reading passage, the type of content and the 

number of items per passage were randomly selected for each examinee. The 

remaining reading passages were selected using the Kingsbury and Zara (1989) 
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procedure, which compares the target proportions for content balancing to the actual 

proportions during test administrations and selects the next testlet from the content 

with the largest discrepancy between the target and actual proportions. Therefore, 

each simulated test consisted of 40% humanities, 36% social science, and 23% 

natural science reading passages. Concurrently, the Kingsbury and Zara (1989) 

procedure controlled the number of items per passage such that each simulated test 

consisted of 42% six-item, 28% seven-item, 14% eight-item and 14% ten-item 

reading passages. For the remaining testlets that met the requirements for the 

Kingsbury and Zara (1989) procedures, the testlet information was calculated using 

the examinee�s current ability estimate.  

For the TRT model, the testlet information, which is the sum of the item 

informations, was used along with the exposure control procedure to determine which 

testlet was selected for administration to the examinee. Since, the testlet effect was 

unknown at this point in the CAT, the testlet effect was set to zero for testlet 

selection. This was equivalent to using the three-parameter logistic IRT model for 

item selection. The initial ability was equal zero (the mean of the population) and the 

interim ability estimates were employed for subsequent calculations of information. 

Expected a posteriori (EAP) estimation was based on a normal prior 

distribution ranging from -4 to +4. Thirty evenly spaced quadrature points were used 

to calculate each of the weights to determine the posterior distribution. EAP was used 

to estimate the examinee�s abilities and the testlet effect parameter. EAP was used for 

both the interim and final estimates. 
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Exposure Control Procedures 

Seven exposure control conditions, based on five exposure control 

procedures, were examined for the partial credit model and the three-parameter 

logistic testlet response theory model. The resulting fourteen conditions were 

repeated ten times, once for each of the ten simulated data sets. The following 

discusses the seven exposure control conditions. 

Maximum Information 

Maximum information (MI) with no exposure control served as the baseline 

condition. The testlet with the most information was selected for administration 

throughout the CAT. 

Randomesque Procedure 

The randomesque procedure (RA) chose six of the most informative testlets 

from which one was randomly selected for administration. This procedure continued 

throughout the CAT. 

Progressive Restricted Procedure 

The progressive restricted procedure combined the restricted and progressive 

procedures. First, the restricted procedure defined a new testlet pool for the next 

examinee, and then the progressive procedure selected a testlet from this newly 

defined testlet pool. This procedure was evaluated at two levels: progressive restricted 

maximum information with a maximum exposure rate restricted to .20 (PR20) and 

progressive restricted maximum information with a maximum exposure rate restricted 

to .30 (PR30). 
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Modified Within .10 Logits Procedure 

The modified within .10 logits (MW) procedure selected six testlets from 

which one testlet was randomly selected for administration. The testlets were selected 

based on testlet information for the examinee�s estimated ability. The two most 

informative testlets were selected at the estimated ability. The two most informative 

testlets were selected at the estimated ability plus .10 logits. And the two most 

informative testlets were selected at the estimated ability minus .10 logits.  

Sympson-Hetter Procedure 

The exposure control parameters were set separately for the two Sympson-

Hetter conditions. For each, a random sample of 10,000 simulees from a normal 

distribution with mean zero and standard deviation equal to one was generated. The 

resulting exposure control parameters were used to examine the Sympson-Hetter 

procedure at two levels: a maximum exposure rate equal to .20 (SH20) and a 

maximum exposure rate equal to .30 (SH30).  

Each CAT test stopped after seven reading passages (testlets) were 

administered. A fixed length stopping rule, rather than a variable length stopping rule, 

was used to make comparisons across the exposure control procedures easier. With 

fixed length tests, exposure control procedures can be compared on measurement 

precision; and testlet overlap is easier to calculate. 

Data Analyses 

Assessment of the CAT systems was based on retrieval of simulees� known 

theta values and the effectiveness of the exposure control procedures. The degree to 
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which the CAT systems recovered the known theta values was evaluated through 

descriptive statistics, the Pearson product-moment correlation, bias, standardized 

difference between means (SDM), root mean squared error (RMSE), standardized 

root mean squared difference (SRMSD), and average absolute difference (AAD). The 

following equations illustrate the computation of bias, RMSE, SDM, SRMSD, and 

AAD: 
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where kθ�  is the estimated ability obtained from the CAT and kθ  is the known ability 

used to generate the response data for examinee k. Each of the descriptive statistics 

was averaged across the results for the ten data sets. 

Evaluation of the exposure control procedures was based on descriptive 

statistics of the testlet exposure rates including frequency, mean, standard deviation, 

and maximum exposure rate. Examinees� audit trails were examined to determine the 

frequency with which a testlet was administered in each CAT condition. The testlet 

exposure rate represented the number of times a testlet was administered to 

examinees divided by the total number of examinees. The percentage of testlets not 

administered during any of the CAT administrations represented pool utilization. In 

addition, each testlet was evaluated for test overlap across all examinees, examinees 

with similar abilities and examinees with different abilities. Examinees� audit trails 

were compared to determine the test overlap. Examinees� with similar abilities were 

defined in two ways: examinees having theta values within two logits and examinees 

having theta values within one logit. Examinees with different abilities were defined 

as examinees with discrepancy in theta values larger than two logits or examinees 

with discrepancy in theta values larger than one logit. Each of the measures used to 

evaluate the exposure control procedures was averaged across the results for the ten 

data sets. 
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CHAPTER FOUR: RESULTS 

The results for the seven exposure control conditions are discussed separately 

for the two measurement models: the partial credit model and the three-parameter 

logistic testlet response theory model. For each model, the exposure control 

conditions are evaluated based on descriptive statistics, exposure rates, and test 

overlap. The results presented in this chapter are averages of the results for the ten 

data samples within each exposure control condition.  

Partial Credit Model 

Six of the seven CAT conditions were successfully completed for all ten data 

samples for the partial credit model. The CAT condition for the progressive restricted 

procedure with the maximum exposure rate restricted to 0.20 (PR20) was not 

successful for eight of the ten PC model data samples. For PR20, the process of 

setting exposure control parameters after each CAT administration, thereby creating a 

unique testlet pool for each examinee, resulted in two of the reading passage content 

areas with ten multiple-choice items having no available testlets to administer. The 

original PC testlet pool contained only one ten-item social science reading passage 

and one ten-item natural science reading passage. When the progressive restricted 

maximum exposure rate was 0.20, these testlets, after being administered, would not 

be available again until after four examinees completed CATs. For example, if the 

first examinee receives item 1, then item 1 has an exposure rate of 0.50 for the second 

examinee, 0.33 for the third examinee, 0.25 for the fourth examinee, and finally 0.20 

for the fifth examinee. If the ten-item social science content area or ten-item natural 
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science content area is randomly selected as the content for the second, third, or 

fourth examinee, than the CAT program will automatically end due to a failure to 

meet the content balancing requirements for the CAT.  

Since content balancing randomly selects the reading passage and number of 

items associated with the reading passages, this was a problem for some of the data 

samples, but not all. When the progressive restricted maximum exposure rate was 

restricted to 0.30, all the CAT conditions for the ten data samples were successfully 

administered. The following sections discuss the descriptive statistics, exposure rates, 

and test overlap for the exposure control conditions using the partial credit model. 

Descriptive Statistics 

The PC model testlet pool consisted of 149 testlets with 6, 7, 8, or 10 

multiple-choice items. The mean, standard deviation, minimum and maximum for the 

step values are listed in Table 1. Due to the varying number of multiple-choice items 

associated with a testlet, the number of step values also varied. The PC model testlet 

pool contained 101 six-item passages, 30 seven-item passages, 10 eight-item 

passages, and 8 ten-item passages. 

The grand mean, standard error of the mean, minimum mean, and maximum 

mean for the estimated thetas across ten replications for each of the exposure control 

conditions are listed in Table 2 for the partial credit model. The grand mean across 

ten replications for the known theta was -0.002 with a minimum mean of -0.053 and a 

maximum mean of 0.023.  
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TABLE 1: Descriptive Statistics of the Parameter Estimates Calibrated Using the 

Partial Credit Model 

Partial Credit Model 
 
Testlet Parameter N Mean Std Dev Minimum Maximum 
 
Step Value 1 149 -2.217 0.574 -3.334 -0.863 
 
Step Value 2 149 -1.440 0.473 -2.737 -0.354 
 
Step Value 3 149 -0.938 0.499 -2.155 0.288 
 
Step Value 4 149 -0.502 0.570 -1.809 1.165 
 
Step Value 5 149 0.036 0.685 -1.604 1.908 
 
Step Value 6 149 0.895 0.861 -1.129 2.739 
 
Step Value 7 48 0.881 0.955 -0.888 3.085 
 
Step Value 8 18 0.798 0.977 -0.603 2.760 
 
Step Value 9 8 0.617 0.474 -0.009 1.103 
 
Step Value 10 8 1.611 0.473 0.770 2.172 
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TABLE 2: Descriptive Statistics of the Estimated Thetas Yielded by the Partial Credit 

Model Across Ten Replications  

Partial Credit Model 

 
 

Estimated Thetasa 

Exposure Control Condition 
Grand 
Mean 

 
Standard  

Error of the 
Mean 

Minimum 
Mean 

Maximum 
Mean 

 
Maximum Information -0.011 0.021 -0.039 0.026 
 
Randomesque -0.010 0.026 -0.048 0.037 
 
Modified Within .10 Logits -0.007 0.025 -0.043 0.035 
 
Progressive Restricted (.20)b -0.017 0.017 -0.028 -0.005 
 
Progressive Restricted (.30) -0.010 0.018 -0.049 0.017 
 
Sympson-Hetter (.20) -0.014 0.021 -0.058 0.019 
 
Sympson-Hetter (.30) -0.015 0.018 -0.046 0.014 
Note: Each replication contained 1,000 observations. 
aKnown Thetas: grand mean = -0.012, standard error of the mean = 0.023, minimum 
mean = -0.053, and maximum mean = 0.027 
bStatistics are based on the two of ten replications that were successfully completed. 
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For the standard deviation of the estimated thetas, Table 3 lists the mean, 

minimum, and maximum across ten replications. The means of the standard deviation 

of the estimated thetas were slightly less than the means of the standard deviation for 

the known thetas. This reflects the tendency for EAP estimation to regress toward the 

mean of the prior distribution (Kim & Nicewander, 1993; Weiss, 1982). The 

estimated thetas and standard deviations for each condition under the partial credit 

model approximated a normal distribution with mean zero and standard deviation 

approximately one. 

The standard error of the ability estimate reflects the precision of 

measurement of the exposure control conditions. The mean, minimum, and maximum 

for the standard errors across ten replications for each of the exposure control 

conditions are listed in Table 4 for the partial credit model. Maximum information 

(MI), the no exposure control condition, yielded the lowest mean of the standard 

errors (0.280). The Sympson-Hetter conditions yielded slightly higher means of the 

standard errors than the MI, with the Sympson-Hetter restricted to maximum 

exposure rate of 0.30 (SH30) reporting better measurement precision then the 

Sympson-Hetter restricted to maximum exposure rate of 0.20 (SH20). The 

progressive restricted procedure with maximum exposure rate of 0.30 (PR30) yielded 

a mean of the standard errors equal to 0.300 and the progressive restricted procedure 

with maximum exposure rate of 0.20 (PR20) yielded a mean of the standard errors 

equal to 0.302. The randomesque (RA) and modified within 0.10 logits (MW)  
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TABLE 3: Descriptive Statistics of the Standard Deviation of the Estimated Thetas 

Yielded by the Partial Credit Model Across Ten Replications 

Partial Credit Model 

 
 

Standard Deviation of Estimated Thetasa 

Exposure Control Condition 
 

Mean Minimum  Maximum  
 
Maximum Information 0.956 0.926 

 
0.989 

 
Randomesque 

 
0.946 

 
0.911 

 
0.972 

 
Modified Within .10 Logits 

 
0.947 

 
0.906 

 
0.970 

 
Progressive Restricted (.20)b 

 
0.939 

 
0.936 

 
0.943 

 
Progressive Restricted (.30) 

 
0.947 

 
0.918 

 
0.982 

 
Sympson-Hetter (.20) 

 
0.945 

 
0.906 

 
0.980 

 
Sympson-Hetter (.30) 

 
0.949 

 
0.919 

 
0.975 

Note: Each replication contained 1,000 observations. 
aStandard Deviation of Known Thetas: mean = 0.992, minimum = 0.954, and 
maximum = 1.022 
bStatistics are based on the two of ten replications that were successfully completed. 
 



 88

TABLE 4: Descriptive Statistics of the Standard Errors Yielded by the Partial Credit 

Model Across Ten Replications 

Partial Credit Model 

 
 

Standard Errors 

Exposure Control Condition 
 

Mean Minimum Maximum 
 
Maximum Information 0.280 0.278 0.282 
 
Randomesque 0.309 0.307 0.311 
 
Modified Within .10 Logits 0.309 0.307 0.311 
 
Progressive Restricted (.20)a 0.302 0.302 0.303 
 
Progressive Restricted (.30) 0.300 0.298 0.302 
 
Sympson-Hetter (.20) 0.290 0.288 0.292 
 
Sympson-Hetter (.30) 0.284 0.282 0.286 
Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
 



 89

procedures yielded the poorest measurement precision with means of the standard 

errors equal to 0.309. In practical terms, the differences between the exposure control 

conditions� means of the standard errors are negligible.  

The correlation coefficients between the known and estimated thetas were 

calculated for the ten data samples within each exposure control condition. The mean, 

minimum, and maximum of the ten correlation coefficients for each exposure control 

condition are listed in Table 5. For the seven exposure control conditions, the 

correlations yielded similar results, ranging from 0.95 to 0.96. The exposure control 

conditions did not negatively impact the estimation of examinees� ability relative to 

the no exposure control condition.  

The measurement statistics, bias, standardized difference between means 

(SDM), average absolute difference (AAD), root mean squared error (RMSE), and 

standardized root mean squared difference (SRMSD), are reported in Table 6 and 

Table 7 for the PC model. For each statistic, the mean, minimum, and maximum 

across the ten data samples are listed. The bias and SDM statistics are functionally 

zero when rounded to the second decimal place for each condition. The means for the 

AAD statistic range from 0.217 to 0.233. The means for the RMSE statistic range 

from 0.276 to 0.298. The means for the SRMSD statistic range from 0.539 to 0.565. 

The small differences in the measurement statistics across the exposure control 

conditions are not practically significant. In comparison to the no exposure control 

condition, MI, incorporation of the exposure control conditions in the PC CAT 

systems did not significantly decrease measurement precision. 
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TABLE 5: Descriptive Statistics of the Correlation Coefficients Between Known and 

Estimated Thetas for the Partial Credit Model Across Ten Replications 

Partial Credit Model 

 
 

Correlation Coefficient 

Exposure Control Condition 
 

Mean Minimum  Maximum 
 
Maximum Information 0.961 0.956 0.964 
 
Randomesque 0.954 0.950 0.958 
 
Modified Within .10 Logits 0.954 0.950 0.958 
 
Progressive Restricted (.20)a 0.954 0.952 0.955 
 
Progressive Restricted (.30) 0.955 0.952 0.958 
 
Sympson-Hetter (.20) 0.958 0.956 0.961 
 
Sympson-Hetter (.30) 0.960 0.955 0.965 
Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
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TABLE 6: Descriptive Statistics of the Bias, Standardized Difference Between Means 

(SDM) and Average Absolute Difference (AAD) for the Partial Credit Model Across 

Ten Replications 

Partial Credit Model 

Exposure Control 
Condition 

 
Bias 
Mean 

(Min, Max)  

SDM 
Mean 

(Min, Max)  

AAD 
Mean 

(Min, Max) 

Maximum 
Information 

 
0.000 

(-0.014, 0.024) 

 
0.001 

(-0.024, 0.015) 

 
0.217 

(0.208, 0.224) 

 
Randomesque 

 
-0.002 

(-0.029, 0.021) 

 
0.002 

(-0.022, 0.030) 

 
0.233 

(0.227, 0.239) 

Modified Within .10 
Logits 

 
-0.005 

(-0.032, 0.020) 

 
0.005 

(-0.020, 0.033) 

 
0.234 

(0.227, 0.239) 

Progressive 
Restricted (.20)a 

 
0.007 

(0.003, 0.011) 

 
-0.007 

(-0.011, -0.003) 

 
0.233 

(0.231, 0.235) 

Progressive 
Restricted (.30) 

 
-0.002 

(-0.011, 0.019) 

 
0.002 

(-0.019, 0.012) 

 
0.231 

(0.225, 0.235) 

Sympson-Hetter (.20) 

 
0.003 

(-0.006, 0.013) 

 
-0.003 

(-0.013, 0.006) 

 
0.223 

(0.216, 0.231) 

Sympson-Hetter (.30) 

 
0.004 

(-0.007, 0.015) 

 
-0.004 

(-0.015, 0.007) 

 
0.220 

(0.209, 0.228) 
Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
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TABLE 7: Descriptive Statistics of the Root Mean Squared Error (RMSE) and 

Standardized Root Mean Squared Difference (SRMSD) for the Partial Credit Model 

Across Ten Replications 

Partial Credit Model 

Exposure Control 
Condition 

 
RMSE 
Mean 

(Min, Max)  

SRMSD 
Mean 

(Min, Max)  

Maximum  
Information 

 
0.276 

(0.263, 0.283) 

 
0.539 

(0.527, 0.561) 

 
Randomesque 

 
0.297 

(0.287, 0.304) 

 
0.562 

(0.544, 0.518) 

Modified Within .10 
Logits 

 
0.298 

(0.284, 0.306) 

 
0.563 

(0.547, 0.586) 

Progressive  
Restricted (.20)a 

 
0.295 

(0.293, 0.298) 

 
0.565 

(0.559, 0.571) 

Progressive  
Restricted (.30) 

 
0.294 

(0.286, 0.299) 

 
0.559 

(0.545, 0.574) 

Sympson-Hetter (.20) 

 
0.284 

(0.277, 0.296) 

 
0.550 

(0.532, 0.566) 

Sympson-Hetter (.30) 

 
0.279 

(0.264, 0.286) 

 
0.544 

(0.520, 0.567) 
Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
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Exposure Rates 

The exposure rate is the proportion of the number of times an item is 

administered to the total number of CATs administered. When examining exposure 

rates, a key indicator for the effectiveness of the exposure control condition is the 

maximum exposure rate. Table 8 lists the grand mean, minimum mean and maximum 

mean of the exposure rates for each of the exposure control conditions. As expected 

the maximum information (MI) condition yielded the highest maximum exposure 

rate, .617, indicating that some testlets were exposed to as many as 62% of the 

examinees. The maximum testlet exposure rate for the randomesque (RA) condition 

was .195 and for the modified within .10 logits (MW) condition the maximum 

exposure rate was .198. The maximum testlet exposure rates for the RA and MW 

conditions reflect a high level of exposure control. The progressive restricted 

conditions and Sympson-Hetter conditions yielded maximum testlet exposure rates 

equivalent to their restricted exposure rates assigned to the conditions, 0.20 or 0.30.  

The exposure control procedures have the same mean exposure rate because it 

is the ratio of test length to testlet pool size. However, the exposure control 

procedures do not provide the same level of exposure control. This is evident in the 

standard deviation of the exposure rates. Table 9 lists the mean, minimum, and 

maximum for the standard deviation of the exposure rates for each of the exposure 

control conditions. The MI condition yielded the highest average standard deviation 

(0.105) of the exposure rate, indicating the most variability in exposure rates across 

the testlets. The PR20 condition reported the lowest average standard deviation 
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TABLE 8: Descriptive Statistics of Testlet Exposure Rates for the Partial Credit 

Model Across Ten Replications 

Partial Credit Model 

 
 

Testlet Exposure Rates 

Exposure Control Condition 
Grand 
 Mean 

 
Minimum 

Testlet 
Exposure Rate 

Mean 

Maximum  
Testlet 

Exposure Rate 
Mean 

 
Maximum Information 0.047 0.000 0.617 
 
Randomesque 0.047 0.000 0.195 
 
Modified Within .10 Logits 0.047 0.000 0.198 
 
Progressive Restricted (.20)a 0.047 0.002 0.201 
 
Progressive Restricted (.30) 0.047 0.001 0.300 
 
Sympson-Hetter (.20) 0.047 0.000 0.214 
 
Sympson-Hetter (.30) 0.047 0.000 0.315 
Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
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TABLE 9: Descriptive Statistics of Standard Deviation of the Exposure Rates for the 

Partial Credit Model Across Ten Replications 

Partial Credit Model 

 
 

Standard Deviation of the Exposure Rates 

Exposure Control Condition 
 

Mean 
 

Minimum Maximum 
 
Maximum Information 

 
0.105 

 
0.104 

 
0.107 

 
Randomesque 0.050 0.050 0.051 
 
Modified Within .10 Logits 0.051 0.051 0.052 
 
Progressive Restricted (.20)a 0.049 0.049 0.049 
 
Progressive Restricted (.30) 0.055 0.054 0.056 
 
Sympson-Hetter (.20) 0.072 0.071 0.073 
 
Sympson-Hetter (.30) 0.084 

 
0.083 0.085 

Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
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(0.049) of the exposure rate, indicating the least variability in exposure rates across 

the testlets. Ideally, the standard deviation of the exposure rates will be low indicating 

an even usage of testlets throughout the testlet pool.  

Table 10 lists the frequency of testlet exposure rates averaged across ten data 

samples for each of the exposure control conditions. For all the exposure control 

conditions except MI, the majority of the testlets yielded exposure rates less than 

0.20. Pool utilization represents the percentage of testlets not administered during any 

of the CAT administrations. As anticipated, the MI condition yielded the highest 

percentage of testlets not administered (62%). Both the SH20 and SH30 procedures 

yielded high percentage of testlets never administered, 52% and 57% respectively. 

This indicates that examinees� performance is estimated using less than half of the 

testlet pool. The RA and MW procedures performed much better with percentage of 

testlets never administered being 28% for both procedures. Surprisingly, the PR20 

and PR30 procedures used the entire testlet pool, yielding 0% of the pool never being 

administered.  

Test Overlap 

Test overlap, or testlet overlap, refers to the number of testlets that two 

examinees have in common. Each testlet was evaluated for test overlap across all 

examinees, examinees with similar abilities, and examinees with different abilities. 

Examinees� audit trails were compared to determine the test overlap. Examinees� with 

similar abilities were defined in two ways: examinees having theta values within two 

logits and examinees having theta values within one logit. Examinees with different 
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TABLE 10: Frequency of Testlet Exposure Rates for the Partial Credit Model 

Averaged Across Ten Replications 

Partial Credit Model 

 
 

Exposure Control Condition 
 

Exposure Rate MI RA MW PR20a PR30 SH20 SH30 
 

.71-1.0 0 0 0 0 0 0 0 
 

.61-.70 1 0 0 0 0 0 0 
 

.51-.60 0 0 0 0 0 0 0 
 

.41-.50 3 0 0 0 0 0 0 
 

.36-.40 3 0 0 0 0 0 0 
 

.31-.35 0 0 0 0 0 0 2 
 

.26-.30 0 0 0 0 3 0 6 
 

.21-.25 5 0 0 1 1 3 6 
 

.16-.20 4 6 7 8 4 24 7 
 

.11-.15 6 19 19 16 9 4 7 
 

.06-.10 13 33 31 23 29 14 13 
 

.01-.05 23 49 50 103 102 28 25 
 

0.0 
(Not Admin.) 

92 
(62%) 

41 
(28%) 

42 
(28%) 

0 
(0%) 

0 
(0%) 

77 
(52%) 

84 
(57%) 

Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
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abilities were defined as examinees with discrepancy in theta values larger than two 

logits or examinees with discrepancy in theta values larger than one logit. 

Table 11 shows the mean, minimum, and maximum for test overlap for all 

examinees, examinees with similar abilities (within two logits), and examinees with 

different abilities (greater than two logits). The largest overlap values are reported by 

the MI condition with examinees overall sharing as many as two testlets on average. 

Yet, when ability is taken into consideration for the MI condition, the examinees with 

similar abilities are sharing two testlets on average while examinees with different 

abilities have less than a testlet in common. Both the SH20 and SH30 procedures 

yield average overall overlap values above one indicating that on average examinees 

have a testlet in common. On closer examination for the SH20 and SH30 procedures, 

examinees with similar abilities (within two logits) are receiving one to two testlets in 

common, while different ability (greater than two logits) examinees are not likely to 

have testlets in common. The other four conditions, RA, MW, PR20, and PR30, yield 

average overall overlap rates below one indicating that on average examinees have 

less than a testlet in common. For examinees with similar abilities, these four 

conditions still yield overlap rates below one.  
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TABLE 11: Descriptive Statistics of Test Overlap for the Partial Credit Model Across 

Ten Replications Using Two Logits to Define Ability Groups 

Partial Credit Model 

 
 

Test Overlap 

Exposure Control 
Condition 

Overall 
Overlap 
Mean 

(Min, Max)  

 
Similarb 
Abilities 

Mean 
(Min, Max)  

Differentc 
Abilities 

Mean 
(Min, Max) 

 
Maximum 
Information 

1.962 
(1.923, 2.001) 

2.234 
(2.194, 2.270) 

0.473 
(0.422, 0.518) 

 
 
Randomesque 

0.700 
(0.691, 0.707) 

0.755 
(0.749, 0.762) 

0.397 
(0.377, 0.410) 

 
Modified Within .10 
Logits 

0.714 
(0.705, 0.724) 

0.770 
(0.763, 0.781) 

0.407 
(0.392, 0.421) 

 
Progressive 
Restricted (.20)a 

0.681 
(0.6809, 0.681) 

0.739 
(0.734, 0.744) 

0.354 
(0.337, 0.372) 

 
Progressive 
Restricted (.30) 

0.764 
(0.750, 0.780) 

0.838 
(0.825, 0.854) 

0.354 
(0.336, 0.378) 

 
 
Sympson-Hetter (.20) 

1.082 
(1.062, 1.104) 

1.224 
(1.203, 1.239) 

0.306 
(0.285, 0.342) 

 
 
Sympson-Hetter (.30) 

1.364 
(1.331, 1.390) 

1.545 
(1.527, 1.567) 

0.368 
(0.344, 0.399) 

Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
bSimilar = abilities within two logits. 
cDifferent = abilities greater than two logits. 
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In order to examine overlap rates more closely across examinees with 

similar abilities, the definition for similar abilities was restricted to a smaller range. 

Table 12 lists the mean, minimum, and maximum overlap rates for examinees with 

similar abilities (within one logit) and examinees with different abilities (greater than 

one logit). The largest overlap values are reported by the MI condition with similar 

examinees sharing as many as three testlets on average. The overlap rates for the 

SH20 and SH30 increased with the new definition of similarity. Examinees within 

one logit of each on the ability scale shared two testlets on average. The other four 

conditions, RA, MW, PR20, and PR30, maintained overlap rates below one indicating 

that on average examinees have less than a testlet in common. 
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TABLE 12: Descriptive Statistics of Test Overlap for the Partial Credit Model Across 

Ten Replications Using One Logit to Define Ability Groups 

Partial Credit Model 

 
 

Test Overlap 

Exposure Control 
Condition 

 
Similarb Abilities 

Mean 
(Min, Max)  

Differentc Abilities 
Mean 

(Min, Max) 
 
Maximum 
Information 

2.818 
(2.773, 2.865) 

1.017 
(0.978, 1.050) 

 
 
Randomesque 

0.860 
(0.855, 0.867) 

0.523 
(0.509, 0.533) 

 
Modified Within .10 
Logits 

0.874 
(0.869, 0.880) 

0.538 
(0.525, 0.552) 

 
Progressive 
Restricted (.20)a 

0.868 
(0.858, 0.878) 

0.470 
(0.463, 0.477) 

 
Progressive 
Restricted (.30) 

1.006 
(0.994, 1.040) 

0.496 
(0.477, 0.518) 

 
 
Sympson-Hetter (.20) 

1.540 
(1.523, 1.578) 

0.577 
(0.549, 0.621) 

 
 
Sympson-Hetter (.30) 

1.949 
(1.926, 1.988) 

0.716 
(0.685, 0.743) 

Note: Each replication contained 1,000 observations. 
aStatistics are based on the two of ten replications that were successfully completed. 
bSimilar = abilities within one logit. 
cDifferent = abilities greater than one logit. 
 

 



 102

Testlet Response Theory 

The seven exposure control conditions were successfully completed for the 

testlet response theory model across all ten replications. Unlike the PC model, the 

TRT model contained more than one item for the ten-item social science content area 

and ten-item natural science content area. The following sections discuss the 

descriptive statistics, exposure rates, and test overlap for the exposure control 

conditions using the testlet response theory model.  

Descriptive Statistics 

The TRT model testlet pool consisted of 176 testlets with a total of 1,210 

dichotomous multiple-choice items: 105 six-item passages, 33 seven-item passages, 

17 eight-item passages, and 22 ten-item passages. The mean, standard deviation, 

minimum and maximum for the item parameters are listed in Table 13. The difficulty 

item parameter estimate yielded a mean of �0.760 and minimum and maximum 

estimates in the normal range for this parameter, -4.759 and 3.469 respectively. 

Although, the mean item parameter estimate of the discrimination, 1.018, is within an 

acceptable range, the minimum value of 0.178 is very low indicating that this item 

performed poorly in distinguishing between examinees with high levels of ability and 

examinees with low levels of ability. Ideally, the psuedo-guessing item parameter 

should be less than the probability of selecting the correct response by chance. The 

multiple-choice items in this study had four response options; therefore the 

probability of selecting the correct response by chance is 0.25. The mean for the  
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TABLE 13: Descriptive Statistics of the Item Parameter Estimates Calibrated Using 

the Testlet Response Theory Model 

Testlet Response Theory Model 
 
Item Parameter N Mean Std Dev Minimum Maximum 
 
Difficulty 1210 -0.760 1.390 -4.759 3.469 
 
Discrimination 1210 1.018 0.441 0.178 5.112 
 
Psuedo-Guessing 1210 0.097 0.112 0.0 0.806 
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psuedo-guessing item parameter estimate was 0.097 indicating that on average 

examinees were unlikely to obtain a correct response by guessing The psuedo-

guessing item parameter estimate had a maximum value of 0.806, which is a concern 

because examinees were very likely to obtain a correct response based on guessing 

for this particular item. 

Table 14 shows the mean, standard deviation, minimum and maximum for the 

variance of the testlet effect by reading passage content area. The degree of 

dependency present in the testlets used in the current research was examined for the 

TRT model. The mean of the variance of the testlet effect was 0.49 with a minimum 

of 0.01 and a maximum of 1.67. Since the testlet effect was allowed to vary across 

testlets, testlets were examined for differences in the testlet effects. Specifically, the 

variances of the testlet effect parameters were compared across content of the reading 

passages and number of items per reading passage. A significant difference (F(2,173) 

= 6.25, p = 0.0024) in the estimates of the testlet effect parameter variance estimates 

was found between the reading passages (humanities, social science, and natural 

science). A post-hoc Tukey�s test indicated a significant difference between the mean 

testlet effect variances between humanities (mean = 0.588) and natural science 

reading passages (mean = 0.358). The mean for social science was 0.489. Analysis of 

variance yielded no significant differences in the means for the number of items per 

reading passage (6, 7, 8, and 10); F = .22, df = 3, 172, and p-value = 0.8806. 
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TABLE 14: Descriptive Statistics of the Testlet Parameter Estimates Calibrated Using 

the Testlet Response Theory Model 

Testlet Response Theory Model 

 
 

Testlet Effect Variance 
 
Reading Passage N Mean Minimum Maximum 
 
Humanities 66 0.588 0.022 1.582 
 
Social Sciences 66 0.489 0.010 1.504 
 
Natural Sciences 44 0.358 0.033 1.673 
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The grand mean, standard error of the mean, minimum mean, and maximum 

mean for the estimated thetas across ten replications for each of the exposure control 

conditions are listed in Table 15 for the TRT model. The grand mean across ten 

replications for the known theta was -0.002 with a minimum mean of -0.053 and a 

maximum mean of 0.023. For the standard deviation of the estimated thetas, Table 16 

lists the mean, minimum, and maximum across ten replications. The means of the 

standard deviation of the estimated thetas for the exposure control conditions were 

lower than the means of the standard deviation for the known thetas. Since the 

exposure control conditions yielded similar means of the standard deviations as the 

maximum information (MI) condition, the exposure controls do not appear to be 

responsible for the lower means of the standard deviation of the estimated thetas. The 

TRT model may be more susceptible to the tendency for EAP estimation to regress 

toward the mean of the prior distribution (Kim & Nicewander, 1993; Weiss, 1982).  

The standard error of the ability estimate reflects the precision of 

measurement of the exposure control conditions. The mean, minimum, and maximum 

of the standard errors across ten replications for each of the exposure control 

conditions are listed in Table 17 for the testlet response theory model. The MI, the no 

exposure control condition, yielded the lowest mean standard error of 0.311. The 

Sympson-Hetter conditions yielded slightly higher means of the standard errors than 

the MI, with the Sympson-Hetter condition restricted to a maximum exposure rate of 

.30 (SH30) reporting better measurement precision then the Sympson-Hetter 
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TABLE 15: Descriptive Statistics of the Estimated Thetas Yielded by the Testlet 

Response Theory Model Across Ten Replications 

Testlet Response Theory Model 

 
 

Estimated Thetasa 

Exposure Control Condition 
Grand 
Mean 

 
Standard 

Error of the 
Mean 

Minimum 
Mean 

Maximum 
Mean 

 
Maximum Information 0.007 0.022 -0.030 0.039 
 
Randomesque -0.018 0.021 -0.059 0.017 
 
Modified Within .10 Logits -0.009 0.021 -0.049 0.021 
 
Progressive Restricted (.20) -0.007 0.022 -0.048 0.023 
 
Progressive Restricted (.30) -0.011 0.022 -0.047 0.025 
 
Sympson-Hetter (.20) -0.011 0.019 -0.041 0.012 
 
Sympson-Hetter (.30) -0.001 0.017 -0.035 0.023 
Note: Each replication contained 1,000 observations. 
aKnown Thetas: grand mean = -0.012, standard error of the mean = 0.023, minimum 
mean = -0.053, and maximum mean = 0.027 
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TABLE 16: Descriptive Statistics of the Standard Deviation of the Estimated Thetas 

Yielded by the Testlet Response Theory Model Across Ten Replications 

Testlet Response Theory Model 

 
 

Standard Deviation of Estimated Thetasa 

Exposure Control Condition 
 

Mean Minimum  Maximum  
 
Maximum Information 0.884 0.836 0.904 
 
Randomesque 0.875 0.855 0.889 
 
Modified Within .10 Logits 0.877 0.858 0.911 
 
Progressive Restricted (.20) 0.883 0.852 0.911 
 
Progressive Restricted (.30) 0.878 0.857 0.895 
 
Sympson-Hetter (.20) 0.891 0.846 0.911 
 
Sympson-Hetter (.30) 0.890 0.849 0.905 
Note: Each replication contained 1,000 observations. 
aStandard Deviation of Known Thetas: mean = 0.992, minimum = 0.954, and 
maximum = 1.022 
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TABLE 17: Descriptive Statistics of the Standard Errors Yielded by the Testlet 

Response Theory Model Across Ten Replications 

Testlet Response Theory Model 

 
 

Standard Errors 

Exposure Control Condition 
 

Mean 
 

Minimum  Maximum  
 
Maximum Information 0.311 0.310 0.312 
 
Randomesque 0.355 0.353 0.357 
 
Modified Within .10 Logits 0.355 0.353 0.356 
 
Progressive Restricted (.20) 0.350 0.349 0.351 
 
Progressive Restricted (.30) 0.346 0.346 0.348 
 
Sympson-Hetter (.20) 0.326 0.326 0.328 
 
Sympson-Hetter (.30) 0.317 0.316 0.318 
Note: Each replication contained 1,000 observations. 
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condition restricted to a maximum exposure rate of .20 (SH20). The progressive 

restricted condition restricted to a maximum exposure rate of .30 (PR30) yielded a 

mean of the standard errors equal to 0.346 and the progressive restricted condition 

restricted to a maximum exposure rate of .20 (PR20) yielded a mean of the standard 

errors equal to 0.350. The randomesque (RA) and modified within .10 logits (MW) 

procedures yielded the poorest measurement precision with a mean of the standard 

errors equal to 0.355 for both. In practical terms, the differences between the 

exposure control conditions� mean standard errors are negligible. 

The correlation coefficients between the known and estimated thetas were 

calculated for the ten data samples within each exposure control condition. The mean, 

minimum, and maximum of the ten correlation coefficients for each exposure control 

condition are listed in Table 18. For the seven exposure control conditions, the mean 

of the correlations yielded similar results ranging from 0.91 to 0.92.  

The measurement statistics, bias, standardized difference between means 

(SDM), average absolute difference (AAD), root mean squared error (RMSE), and 

standardized root mean squared difference (SRMSD), are reported in Table 19 and 

Table 20 for the PC model. For each statistic, the mean, minimum, and maximum 

across the ten data samples are listed. The bias and SDM statistics are functionally 

zero when rounded to the second decimal place for each condition except MI, which 

is 0.02, and SH30, which is 0.01. The means for the AAD statistic range from 0.311 

to 0.334. The means for the RMSE statistic range from 0.392 to 0.420. The grand  
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TABLE 18: Descriptive Statistics of Correlation Coefficients Between Known and 

Estimated Thetas for the Testlet Response Theory Model Across Ten Replications 

Testlet Response Theory Model 

 
 

Correlation Coefficient 

Exposure Control Condition 
 

Mean 
 

Minimum  Maximum  
 
Maximum Information 0.919 0.915 0.924 
 
Randomesque 0.907 0.897 0.916 
 
Modified Within .10 Logits 0.907 0.900 0.915 
 
Progressive Restricted (.20) 0.908 0.900 0.917 
 
Progressive Restricted (.30) 0.909 0.900 0.918 
 
Sympson-Hetter (.20) 0.916 0.904 0.923 
 
Sympson-Hetter (.30) 0.921 0.910 0.935 
Note: Each replication contained 1,000 observations. 
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TABLE 19: Descriptive Statistics for the Bias, Standardized Difference Between 

Means (SDM) and Average Absolute Difference (AAD) for the Testlet Response 

Theory Model Across Ten Replications 

Testlet Response Theory Model 

Exposure Control 
Condition 

 
Bias 
Mean 

(Min, Max)  

SDM 
Mean 

(Min, Max)  

AAD 
Mean 

(Min, Max) 

Maximum 
Information 

 
-0.019 

(-0.045, 0.000) 

 
0.020 

(0.000, 0.048) 

 
0.311 

(0.297, 0.322) 

 
Randomesque 

 
0.006 

(-0.018, 0.029) 

 
-0.007 

(-0.030, 0.019) 

 
0.334 

(0.321, 0.349) 

Modified Within .10 
Logits 

 
-0.002 

(-0.026, 0.012) 

 
0.003 

(-0.013, 0.028) 

 
0.332 

(0.321, 0.342) 

Progressive 
Restricted (.20) 

 
-0.005 

(-0.017, 0.011) 

 
0.005 

(-0.012, 0.019) 

 
0.330 

(0.319, 0.340) 

Progressive 
Restricted (.30) 

 
0.001 

(-0.012, 0.014) 

 
0.001 

(-0.015, 0.013) 

 
0.328 

(0.318, 0.348) 

Sympson-Hetter (.20) 

 
-0.001 

(-0.027, 0.030) 

 
0.001 

(-0.032, 0.030) 

 
0.318 

(.307, 0.334) 

Sympson-Hetter (.30) 

 
-0.011 

(-0.029, 0.005) 

 
0.012 

(-0.005, 0.031) 

 
0.307 

(0.291, 0.316) 
Note: Each replication contained 1,000 observations. 
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TABLE 20: Descriptive Statistics of the Root Mean Squared Error (RMSE) and 

Standardized Root Mean Squared Difference (SRMSD) for the Testlet Response 

Theory Model Across Ten Replications 

Testlet Response Theory Model 

Exposure Control 
Condition 

RMSE 
Mean 

(Min, Max)  

 
SRMSD 

Mean 
(Min, Max)  

Maximum Information 

 
0.392 

(0.378, 0.401) 

 
0.666 

(0.652, 0.695) 

 
Randomesque 

 
0.420 

(0.402, 0.435) 

 
0.692 

(0.673, 0.712) 

Modified Within .10 
Logits 

 
0.418 

(0.406, 0.427) 

 
0.690 

(0.663, 0.707) 

Progressive  
Restricted (.20) 

 
0.415 

(0.403, 0.426) 

 
0.686 

(0.669, 0.713) 

Progressive  
Restricted (.30) 

 
0.413 

(0.399, 0.431) 

 
0.686 

(0.667, 0.702) 

Sympson-Hetter (.20) 

 
0.400 

(0.389, 0.417) 

 
0.670 

(0.651, 0.709) 

Sympson-Hetter (.30) 

 
0.387 

(0.367, 0.400) 

 
0.660 

(0.628, 0.698) 
Note: Each replication contained 1,000 observations. 
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means for the SRMSD statistic range from 0.666 to 0.692. The small differences in 

the measurement statistics across the exposure control conditions are not practically 

significant. Overall, the exposure control conditions did not significantly impact the 

precision of measurement. 

Exposure Rates 

The exposure rate is the proportion of the number of times an item is 

administered to the total number of CATs administered. When examining exposure 

rates, a key indicator for the effectiveness of the exposure control condition is the 

maximum exposure rate. Table 21 lists the grand mean, minimum and maximum of 

the testlet exposure rates for each of the exposure control conditions. As expected the 

maximum information (MI) condition yielded the highest maximum testlet exposure 

rate, .710, indicating that some testlets were exposed to as many as 71% of the 

examinees. The maximum testlet exposure rate for the randomesque (RA) condition 

was .234 and for the modified within .10 logits (MW) condition the maximum testlet 

exposure rate was .233. The maximum testlet exposure rates for the RA and MW 

conditions reflect a high level of exposure control. The progressive restricted 

conditions and Sympson-Hetter conditions yielded maximum exposure rates 

equivalent to their restricted exposure rates assigned to the conditions, 0.20 or 0.30.  

The exposure control procedures have the same grand mean because it is the 

ratio of test length to testlet pool size. However, the exposure control procedures do 

not provide the same level of exposure control. This is evident in the standard 

deviation of the exposure rates. Table 22 lists the mean, minimum, and maximum for  
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TABLE 21: Descriptive Statistics of Exposure Rates for the Testlet Response Theory 

Model Across Ten Replications 

Testlet Response Theory Model 

 
 

Testlet Exposure Rates 

Exposure Control Condition 

 
Grand 
Mean 

 
Minimum 

Testlet 
Exposure Rate 

Mean 

Maximum 
Testlet 

Exposure Rate 
Mean 

 
Maximum Information 0.040 0.000 0.710 
 
Randomesque 0.040 0.000 0.234 
 
Modified Within .10 Logits 0.040 0.000 0.233 
 
Progressive Restricted (.20) 0.040 0.001 0.201 
 
Progressive Restricted (.30) 0.040 0.001 0.300 
 
Sympson-Hetter (.20) 0.040 0.000 0.216 
 
Sympson-Hetter (.30) 0.040 0.000 0.316 
Note: Each replication contained 1,000 observations. 
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TABLE 22: Descriptive Statistics of the Standard Deviation of the Exposure Rates for 

the Testlet Response Theory Model Across Ten Replications 

Testlet Response Theory Model 

 
 

Standard Deviation of the Exposure Rates 

Exposure Control Condition 
 

Mean 
 

Minimum Maximum 
 
Maximum Information 0.113 0.112 0.115 
 
Randomesque 0.054 

 
0.054 

 
0.055 

 
Modified Within .10 Logits 0.054 

 
0.053 

 
0.055 

 
Progressive Restricted (.20) 0.050 

 
0.050 

 
0.051 

 
Progressive Restricted (.30) 0.057 

 
0.057 0.058 

 
Sympson-Hetter (.20) 0.069 

 
0.068 

 
0.069 

 
Sympson-Hetter (.30) 0.085 

 
0.084 

 
0.086 

Note: each replication contained 1,000 observations. 
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the standard deviation of the exposure rates for each of the exposure control 

conditions. The MI condition yielded the highest average standard deviation (0.113) 

of the exposure rate, indicating the most variability in exposure rates across the 

testlets. The PR20 condition reported the lowest average standard deviation (0.050) of 

the exposure rate, indicating the least variability in exposure rates across the testlets. 

Ideally, the standard deviation of the exposure rates will be low indicating an even 

usage of testlets throughout the testlet pool.  

The pool utilization represents the percentage of items not administered 

during any of the CAT administrations. Table 23 lists the average pool utilization and 

the average frequency of exposure rates for the ten data samples for each of the 

exposure control conditions. As anticipated, the MI condition yielded the highest 

percentage of testlets not administered (71%). Both the SH20 and SH30 procedures 

yielded high percentage of testlets never administered, 59% and 64% respectively. 

This indicates that examinees� performance is estimated using less than half of the 

testlet pool. The RA and MW procedures performed much better with percentage of 

testlets never administered being 32% for both procedures. Surprisingly, the PR20 

and PR30 procedures used the entire testlet pool, yielding 0% of the pool never being 

administered. Table 23 also reports the frequency of the exposure rates. For all the 

exposure control conditions except MI, the majority of the testlets had exposure rates 

less than 0.20.  
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TABLE 23: Frequency of Exposure Rates for the Testlet Response Theory Model 

Averaged Across Ten Replications 

Testlet Response Theory Model 

 
 

Exposure Control Condition 
 

Exposure Rate MI RA MW PR20 PR30 SH20 SH30 
 

.71-1.0 0 0 0 0 0 0 0 
 

.61-.70 2 0 0 0 0 0 0 
 

.51-.60 1 0 0 0 0 0 0 
 

.41-.50 0 0 0 0 0 0 0 
 

.36-.40 1 0 0 0 0 0 0 
 

.31-.35 2 0 0 0 0 0 3 
 

.26-.30 2 0 0 0 4 0 10 
 

.21-.25 4 5 4 1 4 5 4 
 

.16-.20 3 5 6 10 1 22 3 
 

.11-.15 5 16 13 9 9 6 2 
 

.06-.10 11 24 28 19 20 12 14 
 

.01-.05 21 71 69 137 138 28 27 
 

.00 
(Not Admin.) 

124 
(71%) 

56 
(32%) 

56 
(32%) 

0 
(0%) 

0 
(0%) 

104 
(59%) 

112 
(64%) 

Note: Each replication contained 1,000 observations. 
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Test Overlap 

Test overlap, or testlet overlap, refers to the number of testlets that two 

examinees have in common. Each testlet was evaluated for test overlap across all 

examinees, examinees with similar abilities, and examinees with different abilities. 

Examinees� audit trails were compared to determine the test overlap. Examinees� with 

similar abilities were defined in two ways: examinees having theta values within two 

logits and examinees having theta values within one logit. Examinees with different 

abilities were defined as examinees with discrepancy in theta values larger than two 

logits or examinees with discrepancy in theta values larger than one logit.  

Table 24 lists the mean, minimum, and maximum test overlap rates for all 

examinees, examinees with similar abilities (within two logits), and examinees with 

different abilities (greater than two logits). The largest overlap rates are reported by 

the MI condition with examinees sharing as many as three testlets on average. Yet, 

when ability is taken into consideration for the MI condition, the examinees with 

similar abilities are sharing as many as three testlets on average while examinees with 

different abilities have one testlet in common on average. Both the SH20 and SH30 

procedures yield average overall overlap rates above one indicating that on average 

examinees have a similar testlet in common. When considering ability, the number of 

testlets shared by examinees with different abilities decreases to less than one testlet 

in common for the SH20 and SH30 procedures The other four conditions, RA, MW, 

PR20, and PR30, yielded average overall overlap rates below one indicating that on  
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TABLE 24: Descriptive Statistics of Test Overlap for the Testlet Response Theory 

Model Across Ten Replications Using Two Logits to Define Ability Groups 

Testlet Response Theory Model 

 
 

Test Overlap 

Exposure Control 
Condition 

 
Overall  
Overlap 
Mean 

(Min, Max)  

 
Similara 
Abilities 

Mean 
(Min, Max)  

Differentb 
Abilities 

Mean 
(Min, Max) 

 
Maximum 
Information 

2.503 
(2.453, 2.571) 

2.760 
(2.717, 2.809) 

1.095 
(1.024, 1.161) 

 
 
Randomesque 

0.789 
(0.777, 0.802) 

0.830 
(0.820, 0.840) 

0.565 
(0.549, 0.586) 

 
Modified Within .10 
Logits 

0.790 
(0.772, 0.805) 

0.831 
(0.814, 0.844) 

0.566 
(0.547, 0.597) 

 
Progressive 
Restricted (.20) 

0.714 
(0.709, 0.724) 

0.771 
(0.765, 0.80) 

0.407 
(0.388, 0.428) 

 
Progressive 
Restricted (.30) 

0.844 
(0.837, 0.853) 

0.918 
(0.908, 0.933) 

0.442 
(0.430, 0.454) 

 
 
Sympson-Hetter (.20) 

1.098 
(1.089, 1.109) 

1.207 
(1.194, 1.233) 

0.504 
(0.493, 0.529) 

 
 
Sympson-Hetter (.30) 

1.529 
(1.513, 1.560) 

1.699 
(1.670, 1.717) 

0.603 
(0.561, 0.656) 

Note: Each replication contained 1,000 observations. 
aSimilar = abilities within one logit. 
bDifferent = abilities greater than one logit. 
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average examinees have less than one testlet in common. For examinees with similar 

abilities, these four conditions still yield overlap rates below one testlet. 

In order to examine overlap rates more closely across examinees with similar 

abilities, the definition for similar abilities was restricted to a smaller range. Table 25 

lists the mean, minimum, and maximum for examinees with similar abilities (within 

one logit) and examinees with different abilities (greater than one logit). The largest 

overlap rates are reported by the MI condition with similar examinees sharing as 

many as three testlets on average. The overlap rate for the SH20 and PR30 increased 

with the new definition of similarity. Examinees within one logit of each other on the 

ability scale shared two testlets on average for the SH20 condition and one testlet for 

the PR30 condition. The other conditions, RA, MW, and PR20, maintained overlap 

rates below one indicating that on average examinees have less than one testlet in 

common. 
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TABLE 25: Descriptive Statistics of Test Overlap for the Testlet Response Theory 

Model Across Ten Replications Using One Logit to Define Ability Groups 

Testlet Response Theory Model 

 
 

Test Overlap 

Exposure Control 
Condition 

 
Similara Abilities 

Mean 
(Min, Max)  

Differentb Abilities 
Mean 

(Min, Max) 
 
Maximum 
Information 

3.152 
(3.090, 3.219) 

1.774 
(1.729, 1.834) 

 
 
Randomesque 

0.881 
(0.872, 0.890) 

0.688 
(0.673, 0.704) 

 
Modified Within .10 
Logits 

0.884 
(0.866, 0.897) 

0.685 
(0.674, 0.711) 

 
Progressive 
Restricted (.20)b 

0.860 
(0.850, 0.871) 

0.553 
(0.542, 0.564) 

 
Progressive 
Restricted (.30) 

1.041 
(1.024, 1.067) 

0.628 
(0.617, 0.642) 

 
 
Sympson-Hetter (.20) 

1.379 
(1.364, 1.419) 

0.788 
(0.777, 0.799) 

 
 
Sympson-Hetter (.30) 

1.968 
(1.913, 2.008) 

1.046 
(1.010, 1.080) 

Note: Each replication contained 1,000 observations. 
aSimilar = abilities within one logit. 
bDifferent = abilities greater than one logit. 
 



 123

CHAPTER FIVE: DISCUSSION 

The discussion is divided into three sections. First, the four research questions 

listed in the problem statement are addressed based on the results of this study. 

Secondly, applications for this research to practical issues are described. Finally, 

directions for future research are presented, limitations of this study are noted, and 

conclusions are drawn. 

Research Questions 

To what extent do the exposure control procedures impact the precision of 

measurement for the CAT systems based on either the three-parameter logistic testlet 

response theory model or the partial credit item response theory model? 

Test administrators face two competing goals when implementing a CAT 

system. They need to ensure that examinees� performance is estimated accurately and 

they need to protect the item pool. Protecting the item pool involves controlling the 

frequency of item administrations, usually through an exposure control procedure. 

This often leads to administering items that are not optimal for the examinees� current 

ability level. The trade off for item security is less precise measurements of ability. 

This research investigated the impact of various exposure control procedures on the 

precision of measurement when using the partial credit model and the three-parameter 

logistic testlet response theory model.  

The partial credit model yielded high levels of measurement precision across 

all seven exposure control conditions. The estimated thetas, standard deviations of the 

estimated thetas and the standard errors of ability estimates reported negligible 
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differences across the exposure control conditions. The bias, standardized difference 

between means, average absolute difference, root mean squared error, and 

standardized root mean squared error statistics yielded similar results across the 

exposure control conditions when compared to the maximum information, no 

exposure control condition. These results indicate that the addition of these exposure 

control conditions to CATs using the partial credit model to score testlets does not 

significantly impact precision of measurement. The results reflect that of previous 

research with the partial credit model (Chen, Hou & Dodd, 1998; Davis & Dodd, 

2001; Davis, 2002; & Pastor, Dodd, & Chang, 2002).  

The testlet response theory model yielded similar results across the exposure 

control conditions for precision of measurement. The exposure control conditions 

yielded accurate estimates of the thetas and the descriptive statistics: bias, 

standardized difference between means, average absolute difference, root mean 

squared error, and standardized root mean squared error. The results of the average 

absolute difference are similar to the average absolute difference results found by 

Wainer, Bradlow, and Du (2000) for a 3PL-TRT CAT with unequal testlet effect 

variances. The estimates of the standard deviations of the estimated thetas were lower 

than the standard deviations of the known thetas. This may be due to the use of EAP 

estimation in the CAT systems. The correlations between the known thetas and the 

estimated thetas ranged from .90 to .94. These results mirror the correlations reported 

by Wang, Bradlow, and Wainer (2002) when the variance of the testlet effect was 0.5 
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or 1.0. Overall, the inclusion of exposure controls in three-parameter logistic testlet 

response theory CAT systems does not significantly reduce measurement precision. 

To what extent do the exposure control procedures control testlet exposure 

and testlet pool utilization for a CAT system based on either the three-parameter 

logistic testlet response theory model or the partial credit item response theory 

model? 

The purpose of exposure control is to limit the frequency with which testlets 

are administered to examinees thereby maintaining the integrity of the testlet pool. If 

testlets are seen too often, the testlets may be compromised due to examinees sharing 

information about the test or by an examinee seeing the testlet again when retaking 

the test. The effectiveness of the exposure control procedures is measured by the 

exposure rates of the testlets and the overlap of testlets across examinees. In this 

dissertation, seven exposure control conditions, including a no exposure control 

condition, were investigated for use with two testlet-based measurement models.  

The grand mean exposure rate was 0.047 for all exposure control conditions 

for the partial credit model and 0.040 for all exposure control conditions for the three-

parameter logistic testlet response theory model. The grand mean exposure rate is a 

constant for all the exposure control conditions due to the CAT systems having fixed 

test lengths and fixed testlet pool sizes for the PC model (Chen, Ankenmann, & 

Spray, 1999). 

The partial credit model yielded anticipated results for maximum exposure 

rates. The highest level of maximum exposure, .62, resulted from the maximum 
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information condition (MI), which by definition always selects the most informative 

items for administration. In comparison to the MI condition, the other six exposure 

conditions controlled the rate of testlet exposure very well. On average, the 

randomesque (RA) and modified within .10 logits (MW) conditions reduced the 

maximum exposure rate of a testlet to .20. Both of these procedures are 

randomization procedures and therefore easy to implement with simple calculations. 

The reduction in the maximum exposure rate from .62 to .20 indicated that, at most, 

similar testlets were being seen by 20% of examinees when implementing RA and 

MW. The progressive restricted and Sympson-Hetter conditions are conditional 

procedures, therefore by definition; they will restrict the maximum exposure rate to a 

pre-specified value. For the partial credit model, both of these procedures were 

successful at restricting the maximum exposure rates.  

The differentiation in the performance of the exposure control conditions in 

the partial credit CAT systems is revealed through pool utilization and test overlap 

rates. Ideally, all the testlets in the testlet pool will be administered. This is not the 

case for five of the seven exposure control conditions. As anticipated, the MI 

condition did not use all of the testlet pool. An unexpected result was the high 

percentage of testlets not administered for the Sympson-Hetter conditions. For the 

SH20 condition, 52% of the testlet pool was never administered and for the SH30 

procedure, 57% of the testlet pool was never administered. Therefore, only 48% and 

43%, respectively, of the testlets were ever seen by examinees. Considering the 

immense cost involved in developing testlets, this does not appear to be a favorable 
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outcome. The RA and MW conditions performed better, yielding pool utilization 

rates of 28% for both. This is an improvement over the Sympson-Hetter conditions, 

but not ideal. The progressive restricted conditions, PR20 and PR30, met the goal of 

using all of the available testlets in the pool, on average.  

Test overlap is another indication of the effectiveness of exposure control 

procedures, by determining the frequency with which pairs of examinees see the same 

testlet. Over all possible examinee pairs, the RA, MW, PR20, and PR30 conditions 

reported the least number of testlet overlap, indicating that on average examinees 

have less than one testlet in common. The Sympson-Hetter conditions yielded on 

average at least one testlet in common across pairs of examinees of the seven testlets 

administered. When examined more closely the discrepancy between the Sympson-

Hetter procedures and the other exposure control conditions widens. Testlet overlap 

for pairs of examinees that have ability estimates within two logits and those with 

ability estimates within one logit yielded an overlap of one and half to two testlets, 

respectively, for the Sympson-Hetter condition, while the RA, MW, PR20, and PR30 

conditions maintained a testlet overlap rate of less than one testlet on average. 

The results for exposure control conditions within three-parameter logistic 

testlet response theory CAT systems mirror those of the partial credit model. The 

testlet response theory model yielded anticipated results for maximum exposure rates. 

The highest level of maximum exposure, .71, resulted from the maximum information 

condition (MI). In comparison to the MI condition, the other six exposure conditions 

controlled the rate of testlet exposure very well. On average, the randomesque (RA) 
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and modified within .10 logits (MW) conditions reduced the maximum exposure rate 

of a testlet to .23. Both of these procedures are randomization procedures and 

therefore easy to implement with simple calculations. The reduction in the maximum 

exposure rate from .71 to .23 indicated that, at most, similar testlets are being seen by 

23% of examinees when implementing either the RA or the MW conditions. The 

progressive restricted and Sympson-Hetter conditions are conditional procedures; 

therefore they will restrict the maximum exposure rate to a pre-specified value. For 

the TRT model, both of these procedures were successful at restricting the maximum 

exposure rates.  

The differentiation in the performance of the exposure control conditions in 

the testlet response theory CAT systems is revealed through pool utilization and test 

overlap rates. Ideally, all the testlets in the testlet pool will be administered. This is 

not the case for five of the seven exposure control conditions. As anticipated, the MI 

condition does not use all of the testlet pool. An unexpected result was the high 

percentage of testlets not administered for the Sympson-Hetter conditions. For the 

SH20 condition, 59% of the testlet pool was never administered and for the SH30 

procedure, 64% of the testlet pool was never administered. The RA and MW 

conditions performed better, yielding pool utilization rates of 32% for both. This is an 

improvement over the Sympson-Hetter conditions, but not ideal. The progressive 

restricted conditions, PR20 and PR30, met the goal of using all of the available 

testlets in the pool, on average.  
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Test overlap is another indication of the effectiveness of exposure control 

procedures, by determining the frequency with which pairs of examinees see the same 

testlet. Over all possible examinee pairs, the RA, MW, PR20, and PR30 conditions 

reported the least number of testlet overlap, indicating that on average examinees 

have less than one testlet in common. The Sympson-Hetter conditions reported at 

least one testlet in common across pairs of examinees of the seven testlets 

administered. When examined more closely the discrepancy between the Sympson-

Hetter procedures and the other exposure control conditions widens. Test overlap for 

pairs of examinees that have ability estimates within two logits and those with ability 

estimates within one logit yielded an overlap of one to two testlets, respectively, for 

the Sympson-Hetter condition, while the RA, MW, PR20, and PR30 conditions 

maintained a testlet overlap rate of less than one testlet on average. 

Which is the optimal exposure control procedure for a CAT system based on 

the three-parameter logistic testlet response theory model? 

The exposure control conditions incorporated in the three-parameter logistic 

testlet response theory CAT systems yielded similar levels of measurement precision 

and did not significantly decrease in the precision of measurement when compared to 

the no exposure control condition, MI. The use of several descriptive statistics across 

ten replications for each condition provides confidence in these results. The 

differentiation between the performances of the exposure control conditions is based 

on the exposure rates and their impact on pool utilization. The progressive restricted 

procedures restricted to a maximum exposure rate of .20 or .30 yielded the best 
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results. In addition, the progressive restricted exposure control procedure is simple to 

implement compared to other conditional selection procedures, such as the Sympson-

Hetter procedure. The utilization of all the testlets and the restriction of the maximum 

exposure rates distinguish the PR20 and PR30 as the optimal exposure control 

procedures for CAT systems modeled with three-parameter logistic testlet response 

theory.  

The choice between implementing the PR20 or PR30 should be based on the 

magnitude of the test and the size of the testlet pool compared to content balancing. 

High stakes tests that are continuously administered to many examinees often require 

a more restrictive exposure rate. Although the testlet response theory CAT systems 

did not have problems with the PR20 condition, the partial credit CAT systems, 

revealed a limitation to the progressive restricted procedure. Three solutions would 

keep the CAT systems from ending prematurely. One solution is to change the CAT 

algorithm to select a new content area if there are no items available for the targeted 

content area. Yet, this would alter the test specifications and may not be an acceptable 

solution for the test administrators. A second solution is to create more items for these 

content areas. A third solution would be to use a fixed order for selecting the content 

area. When selecting the maximum exposure rate for the PR procedure, it is necessary 

to consider the testlet pool and the frequency of available testlets within the content 

areas.  
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Does the optimal exposure control procedure for a CAT system based on the 

three-parameter logistic testlet response theory model differ from the optimal 

exposure control procedure for a CAT system based on the partial credit item 

response theory model? 

The optimal exposure control procedure for the CAT system modeled with 

three-parameter logistic testlet response theory is the progressive restricted procedure. 

This procedure is also the optimal exposure control procedure for the partial credit 

model. Although, the partial credit CAT system with the PR20 procedure did not 

work for the majority of the replications, this is an issue dealing with the number of 

testlets in the pool. Recall that twenty-seven testlets were dropped due to convergence 

problems when calibrating the data using the partial credit model. And evidently the 

problem with PR20 is resolved by increasing the maximum exposure rate to .30.  

Practical Applications 

Recent advancements in technologies have permitted new visions in the use 

of computers as assessment tools. Computers provide a medium for innovative item 

formats including the use of interactive multimedia for graphics and sound. Test 

developers are no longer restricted to multiple-choice item formats, such as those 

frequently used in paper-and-pencil tests. Computers provide a repository for 

collecting data such as examinees� responses and duration of time spent on an item. 

Schnipke and Scrams (2002) investigated response-time analyses within CATs and 

recommended directions for future research that utilize such information for scoring. 

In CATS, items are scored immediately or in �real time.� Computers allow for the 
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administration of performance-based items in which examinees are required to 

demonstrate their knowledge through practical applications. Usually, performance-

based items consist of several steps or tasks to be completed successfully; therefore 

the steps or tasks often demonstrate local dependency. These item formats are 

appropriate for polytomous or testlet scoring which account for local dependencies 

among items. The current research lays the foundation for developing appropriate 

measurement models for performance-based items with local dependency and 

incorporating them into a CAT system based on the assessment of a unidimensional 

trait. Often performance-based items assess multiple abilities; therefore future 

research in the realm of exposure control needs to be extended to multidimensional 

measurement models.  

The availability for examinees to experience CATs in �real time� and in the 

safe environment of a computer allows test administrators and test developers to 

pursue additional uses for CATs. For example, a CAT can be used for diagnostic 

purposes, such that as examinees complete items they can receive instant feedback on 

their performance. The feedback can provide examinees with future directions for 

study or validation of their abilities.  

For test developers, this research provides valuable information about the use 

of exposure control procedures with the partial credit model and the three-parameter 

logistic testlet response theory model. Test developers may apply these procedures to 

their tests to determine the optimal methods for their item pools. The computer 

programming that takes place �behind-the-scenes� not only provides accurate ability 
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estimates for admissions to medical schools, universities, colleges, etc. It also protects 

test developers and test administrators from law suits from disgruntled examinees. 

Conclusions, Limitations, and Directions for Future Research 

This dissertation compares seven exposure control conditions in CAT systems 

based on the three-parameter logistic testlet response theory (TRT) model and the 

partial credit (PC) model. The exposure control procedures are the randomesque 

procedure (Kingsbury & Zara, 1989), two levels of the progressive restricted 

procedure (Revuelta & Ponsoda, 1998), two levels of the Sympson-Hetter procedure 

(Sympson & Hetter, 1985), the modified within .10 logits procedure (Davis & Dodd, 

2001), and a maximum information procedure. Through realistic CAT simulations 

that include content balancing and expected a posteriori estimation, these exposure 

control conditions are evaluated based on precision of measurement and testlet 

exposure control. Precision of measurement is found to be similar across the exposure 

control conditions within the model-based CAT systems.  

As anticipated, maximum information yields the best measure of precision, 

the highest exposure rates, and the highest percentage of items not administered. The 

Sympson-Hetter conditions, which are conditional procedures, maintain the pre-

specified maximum exposure rate, but perform very poorly in terms of pool 

utilization. The randomization procedures, randomesque and modified within .10 

logits, yield low maximum exposure rates, but use only about 70% of the testlet pool. 

Surprisingly, the progressive restricted procedure, which is a combination of both a 

conditional and randomization procedure, yields the best results in its ability to 
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maintain and control the maximum exposure rate and use the entire testlet pool. The 

progressive restricted procedures are the optimal procedures for both the partial credit 

CAT systems and the three-parameter logistic testlet response theory CAT systems. A 

future direction for research in the area of exposure control procedures would be to 

provide summary statistics for comparing exposure control procedures. 

Revuelta and Ponsoda (1998) developed the progressive restricted exposure 

control procedure with CAT systems modeled with three-parameter logistic item 

response theory and ability estimation based on maximum likelihood estimation. The 

progressive restricted exposure control procedure needs to be examined for other 

CAT systems. This research expanded the application of the progressive restricted 

procedure to CAT systems using expected a posteriori (EAP) estimation with the 

three-parameter logistic testlet response theory model and the partial credit model. 

Further research is needed to explore the effectiveness of the progressive restricted 

procedure with additional polytomous models such as the graded response model and 

the generalized partial credit model. Each of these should be examined with both 

expected a posteriori estimation and maximum likelihood estimation.  

This research is based on the Verbal Reasoning section of the MCAT; 

therefore the results of this study are limited in the generalizations that can be made. 

The Verbal Reasoning section consists entirely of testlets in the form of reading 

passages with multiple-choice items. The Biological Science and Physical Science 

sections of the MCAT consist partly of testlets and partly of independent multiple-

choice items. The inclusion of the independent items in CAT systems with content 
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balancing and exposure controls similar to this study may find different optimal 

exposure control procedures. Continued research with simulated CATs based on real 

test administrations is needed not only for the other MCAT sections, but also for tests 

developed by other test developers. These results provide a blueprint from which 

other research studies can expand upon.  

The three-parameter logistic testlet response theory CATs require further 

investigation with estimation procedures due to the reduction in the standard 

deviations of the estimated thetas and the correlations between known thetas and 

estimated thetas. Further research with maximum likelihood estimation rather then 

expected a posteriori estimation would inform whether the standard deviations of the 

estimated thetas is lower due to the TRT model or the EAP estimation.  

In comparing the three-parameter logistic testlet response theory model and 

the partial credit model, only the correlations between the estimated thetas and known 

thetas can be directly examined since the models are on different scales. The partial 

credit model yielded higher levels of measurement precision across all of the 

exposure control conditions with correlations ranging from 0.95 to 0.96. The TRT 

model reported lower correlations ranging from 0.91 to 0.92. On a more general note, 

the standard errors are larger for the TRT model given a smaller range of theta then 

the PC model, indicating that the PC model is more accurate.  

Although, the PC model provided better measurement precision, the decision 

to use one model over the other depends on the testing company�s willingness to 

sacrifice measurement precision for testlet pool size. The TRT model�s available 
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testlet pool size was 176 testlets and the PC model�s available testlet pool size was 

149 testlets. A larger testlet pool may be more important for test security issues than 

the difference in correlations between estimated thetas and known thetas for the two 

models. In this dissertation the impact of a larger testlet pool for the TRT model 

versus the PC model is not as clear when examining the test overlap results. The TRT 

model yielded an average of two and half testlets overlapping across examinees for 

the maximum information condition compared to an average of two testlets 

overlapping for the PC model. When taking into account the exposure control 

conditions, the test overlap is similar for the TRT and PC models, although slightly 

higher for the TRT model.  

The three-parameter logistic testlet response theory model offers an advantage 

over the partial credit model by keeping the item as the unit of measurement, rather 

than the testlet being the unit of measurement. The CAT system based on the TRT 

model adapts the test at the testlet level rather than at the item within the testlet level. 

CATs based on one of the TRT models that allow selecting items adaptively within a 

testlet might further expand the functional item pool size. In addition, adapting items 

within a testlet may increase the precision of measurement of the three-parameter 

logistic testlet response theory model. Further research is warranted to fully 

understand the potential of the testlet response theory model. 
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