INCOMPLETE ORDERS AND COMPUTERIZED TESTING

A computerized adaptive testing system has three main
aspects, and consequently it can differ in three main ways
from a noncomputer system. First, there is the test item.
Full utilization of a computer allows an enormous broaden-
ing in the type of problem that can be presented to the
individual. Typing out objective questions to him is the
most obvious thing to do, but it is far from the only thing,
and is perhaps far from the best thing. There is perhaps
even a greater extension of the possible types of examinee
response, as we can see not only from what is described
here but by borrowing from CAI techniques. Moreover, we
can easily incorporate speed of response into the scoring;
we can determine not only whether the person can give the
answer, but whether he can give it in ten seconds. But the
greatest difference between computerized adaptive testing
and ordinary testing is in the extent and nature of the
decision process that goes on between items.

It is with the latter aspect that 1 will be concerned here
today; the approach suggested here is quite different
conceptually than others such as the branching and the
Bayesian methods, so the paper will trace its origins. Tests
try to order persons, so we will first consider the basic
nature of orders and then how orders can be constructed
from incomplete data. Testing will be shown to be a type of
ordering process which utilizes incomplete data; computer-
ized adaptive testing develops orders from highly incom-
plete data. We will give a simple example of how a
computer program based on these concepts works. Finally,
some of the ways in which these concepts form the basis
for a test theory will be suggested.

Our approach to a model for computerized testing has
its origins in quite a different area, computer-interactive
judgment methods. In order to demonstrate the relation
between testing and ordering, let us consider for a moment
a simple order. A simple order is defined, and please let me
use quite informal language, as a set whose members display
a relation between elements which demonstrates asym-
metry and transitivity. Now what that means is that, if we
have a matrix which records the existence of the relation as
a 1, or its non-existence as a 0, between a pair of elements
of the set, the matrix must display the triangular form
shown in the first figure. Paired comparisons judgments of
some stimulus property of course often display a close
approximation to this form. For example, suppose we used
the five indicated letters, presented them in pairs, and asked
a child which came first in the alphabet. Then we record his
judgment as a 1 if he responds that the row letter comes
before the column letter and a O if he says the reverse. If he
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vV W X V z
v —1 111
w 0 111
x 00 -11
y 000 — 1
z 00 00 -

Fig. 1. Complete adjacency
transitivity and asymmetry.

matrix for a simple order showing

knew the order of the alphabet, then the data would be as
shown.,

An interesting property of such paired comparisons
matrices is that they need not be complete. Suppose we do

not ask about all pairs, but do assume that the data is
asymmetric and transitive. Then we may be able to
complete the matrix by performing matrix algebra on the
elements which we do have. This is illustrated in the second
set of figures. The lefthand one shows an incomplete
dominance matrix, one which incidentally would typically
be found by the kind of interactive ordering program we
developed, and the right one shows that matrix multiplied
by itself. We see that in this instance the square of the
obtained matrix shows exactly the same triangular form as
the complete matrix in Fig. 1. Actually, the data matrix
could be even more incomplete than this one and still yield
a complete order. The necessary part of the matrix is the
supradiagonal chain of ones which corresponds to the
judgments concerning the letters which are next to each
other in the alphabet. As long as we have these, then the
matrix can be completed; we just have to raise it to a high
enough power. Of course, when dealing with human
judgments with their inconsistency, we have to build in
some safeguards and redundancy in the process.

The reason for going through that exercise is that the
model we propose for computerized testing is exactly the

VW XYy z vV W X Yy z VW Xy z
v — 1 11 v - 1 1 v — 1 11 2
w 0 - 1 1 w - 1 w 0 111
X 0 -1 x 0 — 1 x 00 - 11

0 0 -1 y 0 — y 000 -1
z 00 0 - z 0 0 - z 000 0 -

Fig. 2. Sufficient adjacency matrix A, its square A% and the sum A,
+ A}, showing that the latter has the same qualitative form as A.



same! We say that tests order people. In what sense is that
so? In what sense is the relation between people one which
is asymmetric and transitive? It is superficially obvious that
if examinees are given different scores, then the relation
between the scores is asymmetric and transitive. That is just
a property of numbers, in fact the one which served as a
model for ordering in the first place. But it is a property
which is just as true of the testees’ zip-codes, or their social
security numbers, or their football jersey numbers, as it is
of their test scores. What is it about test scores that makes
the order empirically meaningful rather than arbitrary?

Test scores start out from binary relations between
people and items. How is it that we are allowed to derive
from such relations numbers which give us an order of
people, in the same sense that we can assign numbers to
stimuli that give their order? Where is the asymmetric,
transitive relation?

A long time ago, Louis Guttman gave part of the answer
(Guttman, 1941). He said that items order persons if the
score matrix displays the form we have come to call the
Guttman scale, but should more fairly call the Guttman
Loevinger scale since she invented an almost identical
concept and developed it in a superior way (Loevinger,
1947). But Guttman’s answer is not completely satisfactory
to the formalist. The score matrix is rectangular, not
square; item responses are defined as right or wrong by fiat
and have no chance to be other then asymmetric. The
transitivity of a Guttman scale is indirect.

The most important part of the answer to the questions
concerning the legitimacy of items as orderers of persons
lies in the realization that the score matrix is only part of a
larger matrix of relations. The relations matrix is really
items-plus-persons by items-plus-persons, not just items by
persons. We think of the response of a person to an 1tem as
indicating a dominance relation between the person and
the item. Habitually, we put a one in the score matrix if the
person gets the item right and a zero if he gets it wrong. But
that is because, being people, we identify with the persons
dimension of the matrix. If instead we were items, in some
through-the-looking-glass world, we would use the opposite
notation, giving the ifem a one if the person got it wrong
and a zero if the dumb thing allowed itself to be gotten
right by the person.

a b1l 2 3 a b 12 3
a 011 a 1
b 0 0 1 b 00
111 1 01 2
2 01 2 001
300 3 0 00
S N

Fig. 3. Complete (showing rights and wrongs) score matrix S for two
items a, b and three persons, 1, 2, 3 for scalable data; and S2
showing item-item and person-person dominance.
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Taking the point of view of neither items nor persons
but rather of test theorists, we must take a less chauvinistic
stance and play fair in our scorekeeping. The score matrix is
expanded. In the expanded matrix, we give a one to the
winner of the contest between item and person and a zero
to the loser, regardless of which is which. Such a matrix is
given at the left of Figure 3. In the lower left corner of the
matrix we have the usual binary score matrix which shows
which items were defeated by which persons. The matrix
here is of the Guttman form. In the upper right we have
the same matrix from the item point of view, giving a one
each time an item defeats a person. Since the score matrix
is complete here, the upper right matrix is the transposed
complement of the lower right one.

There are two other sections of this expanded score
matrix and these are left blank. These sections correspond
to the item-item and person-person relations, which are not
observed directly. In the case of pairwise judgments, we
found above that an incomplete matrix could be completed
by squaring the observed matrix. Let us do that in the
present case. The result is shown in the right side of the
figure. It is two triangular matrices, one for items and one
for persons. Thus, treated in this formal fashion, we see
that a GL scale does give two asymmetric transitive
relations, one for items and one for persons. We will return
to these two order matrices in another context.

We can put the two orders together. This is illustrated in
Figure 4; the matrix on the left is simply the sum of the
two matrices from Figure 3, that is S + S2. The matrix on
the right of Figure 4 contains exactly the same elements,
but they have been rearranged, that is, pre- and postmulti-
plied by a permutation matrix P, into the order which is
implied here, a joint order of persons and items, which is
seen to in fact be a simple order because of the triangular,
i.e., asymmetric and transitive form of the matrix. This
answers those querulous questions about where the order is
in the case of test data. If the data are a Guttman scale,
then the score matrix, expanded and operated on in the
manner indicated, does indeed define an order in the rather
strict sense of the existence of a relation on a set, a relation
which is transitive and asymmetric.

Let me say that for illustrative purposes here the matrix
operations have been carried out in ordinary arithmetic.

a b1l 2 3 1 a 2 b 3

a 01t 011 1 111 2

b 06 00 01 a 0 - 111

11101 2 200 -11

201001 b 000 -1

300000 30000 —
S+8§?2 P(S + S2)P

Fig. 4. S + S? in its original segregated form (left) and reordered
form (right), the latter showing qualitative asymmetry and transi-
tivity like a simple order.



Because the relations are logical rather than arithmetic, we
should have been doing the matrix multiplication with
Boolean arithmetic. The only thing that changes in the
present context is that all numbers greater than one in the
matrices should be set equal to one.

So far, we have not referred directly to anything having
to do with “computerized adaptive testing,” but the
relevance of the above theoretical sketch is quite direct.
Just as the score matrix itself is a kind of incomplete
matrix of dominance relations that can be completed by

the powering operation, an even more incomplete set of

relations is all that is really necessary to define the joint

a 0o 1 o+ o0* oO*
b o 0 1 0% o
c 0 o* o o0 1  o*
d 0* 0+ 0 0 1
1 1 1
2 0 1 1 0
3 0o 1 1
4 0o 1
5 0

A

b 0 0 1 1 0

c 0 0 0 1

d 0 0 0 0

1 0 1 1 1 0
2 0 0 1 1 1
3 0 0 0 0 1 1
4 0 0 0 0 1
5 0 0 0 0 0

AA +DB)

person-item order. If we happen to ask each person only
the hardest item he can answer correctly and the easiest
item he would miss, those 2n relations—actually, 2n-2 is
enough—are sufficient to define the complete joint order of
items and persons. This subset of relations can quite simply
be shown to correspond to the relations between adjacent
elements in the order, the supradiagonal string of ones we
saw in the incomplete paired comparisons matrix of Fig. 2.
In fact, if you look at the righthand matrix of Figure 4, the
string of ones just above the diagonal there denotes exactly
this set of item-person relations. In the 1975 Bulletin article
(Cliff, 1975) 1 illustrated the way in which such a set of

a 0 1 1* 1*

b 0 0 1 1* 1*
c 0 0* 0 0 1 1*
d 0* 0* 0 0 1

3 0* 0 1 1

a 0 1 1* 1* 1*
b 0 0 0 1 1* 1*
c 0 0 0 1 1*
d 0 0 0 0 1

3 0* 0 1 1 0

A(A + I)(4)

Fig. 5. Illustration of completion by powering. Starred entries are derived by implication.



relations could be used to reconstruct the complete score
matrix. That process is reproduced here in Figure 5 where
the matrix powering is carried out.

Unfortunately, there is a problem; we do not know the
right items to ask a person until after wethave asked them.
The routine by which the computer searches for the right
items to ask is one of the two main aspects of the
processing part of computerized adaptive testing, the other
main aspect being how it damps out error. In our research,
what we are doing is carrying over some principles which
we have previously found to be effective in the paired
comparisons ordering case.

The next set of figures illustrate the operation of a
prototype program of the kind we have in mind, written by
Jerry Kehoe. First, the program asks each person two items
at random. The entries in the lefthand matrix of Figure 6
show the results of these preliminary rounds and the
righthand one shows the powered matrix which contains
the implications of these responses as well as the responses
themselves. So far these are very few. The computer then
decides which items to ask which persons next by seeing
which are closest together in the order so far determined.
This process of presentation, powering, and selection would
go on for several rounds. The next figure shows the score
matrix for an intermediate round on the left and the
implications on the right. Now the powering process is
having some effect. The next one shows the final score
matrix on the left and the implications on the right where

items persons

a b ¢ d e f g 1 2 3 4 S5 6

5 1 1
6 0 o0

we see that not only has the score matrix been completed
by implication but there are now complete simple orders of
persons and items. )

We incidentally do not have a name for this method. We
would like to call it the Extended Transitivity System, or
ETS, but those initials have been preempted.

You can see that the savings are not very great in this
instance; each person must be asked most of the items. This

impression is primarily a function of the size ol the data
matrix here. The savings are much, much greater with large
matrices. An upper bound for the number of item-person
relations that must be observed for # persons and x items is
log,(n + x)!. For 200 persons and 200 items this number is
about 2886. That means we would need to ask each person
only 15 items to get the complete order; moreover, this
upper bound is quite a generous one in the present instance,
a couple fewer might well be sufficient.

Thus the method will work if the responses form a
Guttman scale. It works surprisingly quickly and requires
surprisingly little space in the computer, primarily because
the programs take advantage of the binary nature of the
data to store responses as single bits and then to carry out
many of the calculations on whole words, that is, 32
elements at a time are processed in raising the matrix to the
next power.

[t is really no surprise that it works with errorless data.
The_crucial guestions are_how_well will it work with the
kind of inconsistent items and persons that the real world

items persons

5 1 1

6 0 0 0

Fig. 6. (Left) Initial item responses matrix S, showing both person dominances and item dominances. Blank entries indicate item-person pairs
not yet observed. (Right) S + S?, showing the implied item-item and person-person dominances.
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items persons items

a b ¢ d e f g 1 2 3 4 5 6 a b ¢ d e f
a 1 1 a 1 1 1% 1*
b 0 1 1 b 0 1
c 0 0 1 c 0 1 1*
d 0 1 d 1 1*
e 0 0 1 e 0* 0 0 1
f 0 0 £ 0* 0 0* 0* 0
g 0 0 1 g 0 0 0* 0* O
1 0 1 1 1 0 1 1 1* 1%
2 1 1 1 2 1 1 1* 1*
3 0 1 1 3 0 0 1
4 0 0 1 4 0* 0o 0 1 1*
5 0 1 1 5 0* 0 0 0 1
6 0 O 0 6 0 0 0 0* 0 O

1*

1*

1*

1*

1*

1*

0*
0*

0*

0
0*

0

o*

0*

0
0
0*

0*

persons
3 4
1* 1%
1
1
1
0
0 o*
0 0*
1 1
I 1
0
0 0*

1*

1*

1*

1%

1*

0

1*

1*

1%

1*

1*

Fig. 7. (Left) intermediate item response matrix S. (Right) S + () +SG) + §(+) + §(5)_Starred (*) entries are derived by indirect implication,

ie., from SC) S(4) or s(s),

a b ¢ d e f g 1 2 3 4 5 6 a b ¢ d e f
a 1 1 1 a 1 1 1 1 1*
b 0 1 1 1 1 b 0 1 1 1 1
c 0 0 1 1 c 0 0 1 1 1
d 0 0 o0 1 d 0 0 0 1 1*
e 0 0 o0 1 e 0 0 0 O 1
f 0 0 1 f 0 0 0 0* 0
g 0 0 0 g 0 O O O 0 O
1 0 1 1 1 1 0 1 1 1 1% 1%
2 0 0 1 1 1 2 0 0 1 1 1 1*
3 0 0 1 1 1 1 3 0 0 0 1 1 1
4 0O 0 o0 1 4 0* 0 0 O 1 1*
5 0 1 1 S 0% 0* 0 0* 0 1
6 0 O 0 1 6 0 0 0 0* 0* 0

1*

1*

1*

1

1

0*
0*
0*

0*

0

O*

0*

0*

3 4
1* 1%
11
11
0 1
0 0
0 o*
0 o*
11
11
1
0
0 0
0 0*

1*

1*

1*

1*

0

1*

1*

1*

1*

1*

Fig. 8. (Left) Final response matrix S, showing 26 of the 42 item-person combinations which were used. (Right) § + S() + 8G) + g(#) 4+ 5(5)

with starred (*) elements indicating those entered by indirect implication.

22



faces us with, and what advantages does it offer over other
approaches? The answer to the first question must await
the opportunity to test it first with artificial stochastic data
and then with real data. How well it will do in practice
relative to the other approaches that have been reported
and which we are hearing about during these two days must
await even further data.

A priori, the methodology here appears to offer at least
one potential advantage, the avoidance of extensive pre-
testing to determine item characteristics. Such pretesting
presented problems, even to paper and pencil testing. There
was the security problem, the question of comparability of
populations, the differing contexts, the expense itself. In
the computerized situation, these all become more acute.
The present process avoids pretesting since items and
persons are processed in parallel.

This method does require a substantial number of
persons being tested simultaneously, however; but this is
only initially true. Once a substantial set of person-item
relations has been built up, additional persons can be
processed individually as they appear, being fit into the
previously determined order by means of their responses to
the items. Under that mode of operation the amount of
additional computer processing would be quite small.

It also seems to me that this way of thinking about
tailored testing makes it easier to think of testing as
integrated into a total personnel process. After all, it could
be that the item selected for a person at a given point could
be something like, “You have been assigned to welders’
school. Come back when you have completed the course.”
The ““item” in that case is successful completion of the
course.

But to me, the most promising aspect of this method is
theoretical. It furnishes the basis for a test theory which I
think is more appropriate to the computerized testing
context. If what is wanted from testing is an order of
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persons, and norms after all just tell the individuals’
positions relative to some benchmark persons, then surely
we want the order to be consistent and complete. How do
you tell if the order is consistent and complete? You look
at the person-person relation matrix and see if it is
asymmetric and transitive. It is easy to think of indices
which would reflect the degree to which that matrix has
those properties. Indeed, 1 had intended to spend my time
here today talking about them, but the results of our study
are not quite ready for presentation yet. Such indices
furnish analogues of the familiar Kuder-Richardson for-
mulas which are central to basic test theory, and in fact are
related to them in the case of complete data. They have the
additional property of being readily generalizable to the
incomplete or computer-adaptive case. Thus if we go about
computerized testing in the way described here, we can at
least have appropriate evaluational indices built into the
system. Other tailored testing schemes rely on external
information from traditional modes of testing to get their
biserial correlations, item difficulties, reliabilities, and so
on. Here, analogues of these indices will come out of the
interactive process itself.
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