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 Choosing a strategy for controlling the exposure of items to examinees has 

become an integral part of test development for computerized adaptive testing (CAT).  

Item exposure can be controlled through the use of a variety of algorithms which 

modify the CAT item selection process. This may be done through a randomization, 

conditional selection, or stratification approach. The effectiveness of each procedure 

as well as the degree to which measurement precision is sacrificed has been 

extensively studied with dichotomously scored item pools.  However, only recently 

have researchers begun to examine these procedures in polytomously scored item 

pools.   

 The current study investigated the performance of six different exposure 

control mechanisms under three polytomous IRT models in terms of measurement 

precision, test security, and ease of implementation.   The three models examined in 
 vi



the current study were the partial credit, generalized partial credit, and graded 

response models.  In addition to a no exposure control baseline condition, the 

randomesque, within .10 logits, Sympson-Hetter, conditional Sympson-Hetter, a-

Stratified, and enhanced a-Stratified procedures were implemented to control item 

exposure rates.  The a-Stratified and enhanced a-Stratified procedures were not 

evaluated with the partial credit model.  Two variations of the randomesque and 

within .10 logits procedures were also examined which varied the size of the item 

group from which the next item to be administered was randomly selected.    

 The results of this study were remarkably similar for all three models and 

indicated that the randomesque and within .10 logits procedures, when implemented 

with the six item group variation, provide the best option for controlling exposure 

rates when impact to measurement precision and ease of implementation are 

considered.  The three item group variations of the procedures were, however, 

ineffective in controlling exposure, overlap, and pool utilization rates to desired 

levels.  The Sympson-Hetter and conditional Sympson-Hetter procedures were 

difficult and time consuming to implement, and while they did control exposure rates 

to the target level, their performance in terms of item overlap (for the Sympson-

Hetter) and pool utilization were disappointing.  The a-Stratified and enhanced a-

Stratified procedures both turned in surprisingly poor performances across all 

variables. 
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Chapter I 

Introduction 

 

 Wainer (1990) lists among the advantages of computerized adaptive tests 

(CATs) over paper and pencil tests that CATs provide improved test security.  This is 

due to both the increased physical security of the computerized item pool and to the 

individualized nature of a CAT which makes it more difficult to “artificially boost 

one’s score by merely learning a few items.”  Since each examinee takes a test 

individually tailored to his or her trait level, it was thought that it would be necessary 

to learn a large portion of the item pool in order for this preknowledge to have any 

impact on an examinee’s score.  While not entirely incorrect, a rather high profile 

case has shown this logic to be incomplete by not taking into account the continuous 

nature of CAT administrations, the manner in which items are selected for 

administration in a CAT, and the size of the item pool.   

 In the Fall of 1993, after five years of development, Educational Testing 

Service (ETS) launched the computerized adaptive version of the Graduate Record 

Examinations (GRE) (Mills, 1999).  In December of 1994, Kaplan Educational 

Centers, one of the country’s largest test preparation companies, instructed its 

employees to take the GRE CAT, to remember as many items as possible, and to 

report those items back to Kaplan.  Subsequently, other employees would review the 

list of now compromised items (so as not to duplicate efforts) and repeat the process.  

Within a few weeks, Kaplan employees discovered that most of the items they were 
 1



administered already appeared on the list of compromised items.  Kaplan had 

successfully compromised a large enough portion of the item pool that ETS, upon 

notification of the incident by Kaplan, temporarily shut down testing while new items 

were developed (Mills, 1999; Wainer & Eignor, 2000).     

 One reason that Kaplan was able to compromise the GRE CAT item pool in 

this manner has to do with the continuous nature of computerized adaptive testing 

administrations.  When admissions tests were only administered using paper and 

pencil methods, students would gather by the hundreds in university auditoriums a 

limited number of times a year to take the examination.  Because tests were 

administered on the same day to a large group of individuals and the number of items 

in common with the next form of the test was relatively small, test administrators and 

developers did not have to be so concerned that examinees would pass information 

about the test to one another that could affect a student’s performance at a later time 

(i.e. artificially raise their score due to advanced knowledge of the test material).  The 

primary concerns in terms of test security were physical—the security of the testing 

facility and the security of the test materials before, during, and after the examination.  

The largest security threat was that someone would obtain and distribute an advanced 

copy of the test, but with appropriate precautions this threat could be minimized.   

However, a more surreptitious security concern did exist in terms of students using 

the differences in administration times and time zones to obtain information about the 

test content.  A student who took the test on the east coast, could inform students on 
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the west coast of which items were on the test, before the west coast administrations 

began. 

 With high stakes tests being moved increasingly to computerized format, 

exam administration procedures have changed dramatically causing many new 

security concerns to arise and old concerns to be exacerbated.   Tests that had been 

printed in booklets and required little more than a chair and desk of some sort to 

administer, now required expensive computer equipment.  Due to the relative expense 

of computerized testing over paper and pencil, it was quickly determined that testing 

en masse in large auditoriums would no longer suffice.  Because of the need for 

appropriate computer equipment, test centers that could seat many fewer examinees 

(five to ten at a time originally), supplanted the traditional auditoriums (that could 

handle hundreds of students at the same time).  To compensate for the fact that test 

volumes per administration would be so much lower, test centers would have to offer 

the test on a near continuous basis—multiple administrations per day throughout the 

week.  Changing the venue and, consequently, frequency of test administration, has 

resulted in a much larger potential for examinees to share test related material with 

one another.  Now, a student taking a test on Friday, can obtain information from a 

friend who took the test on the previous Wednesday.  

 While continuous testing has contributed to an increased threat to test security 

in CAT, the primary threat stems from the CAT algorithm itself.  In CAT, items may 

be selected based on the relative information provided at a given trait level.  We learn 

little about an examinee’s trait level from items which are too hard or too easy.  On 
 3



the other hand, we learn the most about an examinee’s trait level when items are 

selected to be close to the estimated trait level of the examinee and maximize the item 

information at that estimated trait level (Wainer, 1990).  Maximum information item 

selection may, therefore, be used to optimize measurement precision. While this 

makes the CAT quite efficient in terms of trait level estimation, it also produces 

variability in the frequency with which items are used.  Because each item has its own 

set of characteristics definable by the parameters of a given model, items will differ in 

terms of the desirability of these characteristics for measuring an examinee’s trait 

level.  Items which are of average difficulty will be more often selected for 

administration because of the assumed normal distribution of examinee trait level.  

Additionally, items which are more informative will be selected more often because 

of the use of maximum information item selection.  The converse of this situation 

would be one in which items are selected for administration randomly, thus producing 

uniform item usage, but poor measurement efficiency.  Uneven item usage presents a 

problem for test security, because more popular items (those with the most desirable 

characteristics for measuring trait level) will be administered quite frequently, 

whereas some items may be administered less frequently or never be administered at 

all.  This results in a differentiation between the available item pool (all items 

available for administration) and the functional item pool (those items which will 

most often be administered on examinee tests).  Rather than having to memorize the 

available item pool (a daunting task), examinees may only have to have 
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preknowledge of the functional item pool (which is often much smaller) in order to 

artificially raise their scores. 

 One often proposed solution to this dilemma has been to create larger 

available item pools for CATs thus making the functional item pools larger as well.  

A related option would be to create multiple pools which can be frequently rotated in 

and out of use such that even if examinees had preknowledge of the functional item 

pool, the lifespan of its usefulness would be short.  However, either of these solutions 

would require extensive item development which is both costly and time consuming.  

Test items are generally written by experienced content area experts (often teachers 

and retired educators) who must receive additional training in order to write items.  It 

can be difficult to find and recruit item writers and is often costly since they must be 

paid for their expertise.  Once items are written, they must then undergo a rigorous 

review process from committees looking for biased or poorly performing items.  Any 

items which do not meet the statistical and bias requirements are rewritten or 

discarded, causing additional item development costs.  

 Regardless of the time and cost required for item development, simply 

enlarging the pool of possible items fails to address the real problem of differential 

item usage.  Wainer & Eignor (2000) discuss this problem in terms of the relationship 

between the frequency of item usage and the rank order of item usage (Zipf, 1949; 

Wainer, 2000; Wainer & Eignor, 2000).  In the case of item selection, an item with a 

low rank order (close to 1) is administered more frequently than an item with a high 

rank order.  They demonstrated that typically, CAT item selection produces a 
 5



scenario whereby not only are the pool’s most informative items most often 

administered, but also that a very small percentage of the pool’s items account for a 

very large percentage of the administered items.  In other words, the most popular 

items are popular by a large margin, resulting in an exponential decline in item usage 

as rank increases.  Enlarging the available item pool will not alter this relationship. 

 In practical terms, this explains why Kaplan was able to succeed in 

compromising test security over such a short period of time.  They did not need to 

capture the entire pool of items, only the functional pool.  Wainer and Eignor (2000) 

report on the severity of this relationship in the GRE CAT and an experimental 

version of the SAT CAT.  They found that as few as 12% of the available item pool 

can account for as much as 50% of the functional item pool (those items actually 

administered) and that as few as 33% of the available item pool can account for as 

much as 75% of the functional item pool. 

 Many algorithms exist which seek to control item exposure through 

constraining the administration of more popular items.  These algorithms differ in 

terms of their complexity and the variables taken into consideration.   Parshall, 

Davey, and Nering (1998) discuss the three often conflicting goals of item selection 

in CAT.  First, item selection must maximize measurement precision, by selecting the 

item which maximizes information or posterior precision for the examinee’s current 

trait level.  Second, item selection must seek to protect the security of the item pool 

by limiting the degree to which items may be exposed.  Third, item selection, must 

ensure that examinees will receive a content balanced test.  Stocking and Swanson 
 6



(1998) add a fourth goal to this list, stating that item selection must also maximize 

item usage so that all items in a pool are used, thereby ensuring good economy of 

item development.  Stocking and Lewis (2000) equate the item selection problem to 

an inflated balloon—pushing against one side, may address one issue, but will 

ultimately cause another problem to appear as a bulge on another side of the balloon.   

 Different approaches to the goals of item selection will produce different 

testing algorithms (Stocking & Lewis, 2000).  Attempts to address the third goal are 

denoted exposure control methodologies (Parshall, Davey, & Nering, 1998).  Way 

(1998) discusses two types of exposure control strategies—randomization and 

conditional selection.  Randomization strategies randomly choose the next item for 

administration from a set of nearly optimal items rather than selecting the single most 

informative item.  The conditional selection strategies are those in which the 

probability of an item being administered is controlled conditional on a given 

criterion, such as the expected frequency of item usage.  Finally, a third approach to 

exposure control has recently been proposed by Chang and Ying (1996) in which 

items in the pool are stratified according to their statistical properties (item 

parameters) and items are constrained to be administered from certain strata. 

 While the research investigating the extent that measurement precision is 

affected when using exposure control procedures with  dichotomous (right/wrong) 

scoring is extensive, only recently have researchers begun to address the effects of 

exposure control when using polytomous (partial credit) scoring.  Polytomously 

scored items have properties unique and separate from dichotomously scored items 
 7



and must be separately studied under conditions of constrained item selection.  

Therefore, the purpose of the present dissertation was to examine the utility of several 

exposure control methods with three commonly used polytomous IRT models.  Each 

procedure was evaluated in terms of its ability to successfully control item exposure 

and test overlap rates and make optimal use of the available item pool while 

minimizing impact on measurement precision.  In addition, the ease or difficulty of 

implementation of each procedure was evaluated with respect to the gains made in 

each of these variables. 
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Chapter II 

Literature Review 

 This literature review is divided into four main topics of discussion, 

culminating in the statement of problem.  The first section discusses the assumptions 

and properties of item response theory and presents several IRT models appropriate 

for use with both dichotomous and polytomous scoring.   Special attention is given to 

the polytomous IRT models as they are used in the current study.  The second section 

provides an introduction to computerized adaptive testing with dichotomous items, 

discussing the advantages of CAT over paper and pencil testing and the components 

of a CAT system, including the item pool, item selection procedure, trait estimation 

method, stopping rule, content balancing, and exposure control procedures.  The third 

section provides an in-depth discussion of the three broad approaches for controlling 

item exposure in CAT along with a detailed presentation of specific methods which 

exemplify each of these approaches.  Finally, the fourth section addresses the special 

issues faced when CAT is implemented with polytomous items and provides a review 

of the research examining exposure control methods in polytomous CAT. 

Item Response Theory with Dichotomous Items 

 The psychometric foundation of computerized adaptive testing lies in item 

response theory (IRT) which provides a measurement model that focuses on the 

individual item as the level of analysis as an attempt to address several of the deficits 

of classical test theory (CTT).   Wainer (1990) explains IRT as “a mathematical 

characterization of what happens when an individual meets an item.”  IRT provides a 
 9



mathematical description of the probability of getting an item correct conditional on 

trait level.  The properties of IRT and assumptions of some common IRT models are 

discussed in the next two sections.  Following this, several dichotomous and 

polytomous IRT models are discussed in detail. 

Properties of IRT 

 IRT describes a group of probabilistic models in which a set of parameters 

that define an item (i.e. difficulty, discrimination, guessing) interact with an 

examinee’s trait level (θ) to determine the probability of a correct response when the 

examinee attempts the item.  Examinee trait level and item difficulty are expressed on 

the same scale.  If an examinee’s trait level is high relative to the difficulty of a given 

item, the probability of a correct response would be high.  Conversely, if an 

examinee’s trait level is low relative to the difficulty of a given item, the probability 

of a correct response would be also be low.  When the item difficulty equals the 

examinee’s trait level, the probability of a correct response is equal to .50 for models 

which do not assume guessing (Wainer, 1990).   This relationship can be displayed 

graphically using an item characteristic curve (ICC) where trait level forms the 

abscissa, probability of a correct response forms the ordinate, and the item parameters 

define the shape of the function which relates the two.   

 IRT models possess several features which make them useful for CAT.  

Among these, is the concept of parameter invariance which states that item 

parameters are independent of the group of examinees on which they are calibrated 
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(within a linear transformation) and that trait estimates are independent of the 

particular subset of items which an examinee receives (Hambleton & Swaminathan, 

1985).  This property is especially important because, in a CAT, examinees take 

different sets of items of varying difficulties, but their trait levels can still be 

expressed on a common metric.  In addition, IRT provides a measure of precision for 

each level of the trait (Hambleton & Swaminathan, 1985).  A separate standard error 

of measurement is available for each trait estimate and is often used as a criterion in 

ending CAT administration. 

Assumptions of Common IRT Models 

 While IRT models which can handle the measurement of multiple traits or 

dimensions have been developed (Reckase & McKinley, 1991; Reckase, 1985), the 

majority of currently used IRT models make the assumption that a single trait or 

ability is being measured.  Various statistical procedures such as factor analysis, 

multidimensional scaling, and DIMTest (Stout, 1987) have been implemented to test 

for unidimensionality.  This assumption must be carefully considered before 

employing a unidimensional IRT model, as such factors as speededness or multiple 

content areas can introduce additional dimensionality into a test.   

 A second assumption of IRT which follows from unidimensionality is that of 

local independence of item responses within a given trait level.  That is, for a given 

trait level, item responses should be uncorrelated.  Only when this criterion is met can 

the probability of a response string be defined as the product of the independent item 

probabilities.  Any time that a set of items refers back to the same stimuli (such as a 
 11



reading passage), this assumption is threatened.  When this assumption is violated, 

trait estimates may be inflated due to overestimation of item information (Wainer & 

Lewis, 1990). 

 Finally, an assumption is made when a particular IRT model is chosen that the 

model will fit the data.  In other words, it must be assumed that the mathematical 

function (ICC) which represents the relationship between trait level and item response 

will be an accurate reflection of that relationship for the data.  While model fit 

statistics such as the likelihood ratio chi-square have been proposed (McKinley & 

Mills, 1985), the capacity to check this assumption is hindered both by issues with 

statistical power and by the fact that trait level is a latent variable and not directly 

measurable (Hambleton & Swaminathan, 1985).   

Dichotomous IRT models 

 There are three models which are primarily used to describe data scored in a 

binary, right/wrong fashion:  the one parameter logistical  (or Rasch) model (1PL; 

Wright, 1968; Rasch, 1960), the two parameter logistic model (2PL; Lord, 1952; 

Birnbaum, 1968), and the three parameter logistic model (3PL; Lord, 1952; 

Birnbaum, 1968).   

 The one parameter logistic model defines the probability of correctly 

responding to an item as: 

)(
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1
)( bi

bi
i

e
eP −
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+
= θ
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where θ represents the examinee’s trait level, and bi represents the difficulty of item i.  

The location of bi is the point at which the examinee has a 50 percent chance of 

answering the item correctly (Hambleton & Swaminathan, 1985). 

 The two parameter logistic model defines the probability of correctly 

responding to an item as: 
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where θ represents the examinee’s trait level, and bi represents the difficulty of item i, 

and ai represents the discrimination of item i.  The item discrimination is proportional 

to the slope of the ICC at the point where  θ=bi.  The steeper the slope at this point, 

the higher the item discrimination (Hambleton & Swaminathan, 1985). 

 The three parameter logistic model defines the probability of correctly 

responding to an item as: 
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where θ represents the examinee’s trait level, and bi represents the difficulty of item i, 

ai represents the discrimination of item i, and ci represents the pseudo-guessing 

parameter for item i.  The psuedo-guessing parameter marks the lower asymptote of 

the ICC and represents the probability that low trait level examinees would have of 

answering the item correctly based on factors such as guessing.  It should be noted 

that when the pseudo-guessing  parameter is greater than zero, the probability of an 
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examinee with trait level θb answering the item correctly exceeds 50 percent 

(Hambleton & Swaminathan, 1985). 

 Each model has properties and assumptions which make it more or less 

attractive.  The Rasch model has the advantage of requiring the fewest parameters, so 

it is easier to work with and provides fewer estimation problems than the other 

models.  In addition, with the Rasch model, raw score is a sufficient statistic, meaning 

that every person with the same raw score will receive the same trait estimate.  

However, the Rasch model also assumes that guessing does not influence an 

examinee’s response to an item and that all items are equally discriminating.  Many 

researchers (Birnbaum, 1968; Traub, 1983; Hambleton & Swaminathan, 1985) have 

questioned the degree to which achievement test data can meet these assumptions.  

On the other hand, the 3PL model, while presenting the most flexibility in terms of 

modeling the data, also requires the most parameters.  The pseudo-guessing 

parameter is especially hard to estimate because of sparse data conditions at low trait 

levels (Hambleton & Swaminathan, 1985). 

 Each item calibrated with an IRT model has an item information function, 

I(θ), which reflects the precision of measurement conditional on trait level.  

Information can be defined as: 
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where Pi(θ) equals the probability of correctly responding to item i given θ , P’i(θ) is 

the first derivative of Pi(θ) with respect to theta, and  Qi(θ) is equal to (1-Pi(θ)).  

These bell shaped functions can be used to describe, compare, and select items.  

Information is inversely related to the standard error of measurement according to the 

formula 

)(
1)(
θ

θ
I

SE = ; (5) 

where SE(θ) represents the standard error of measurement at θ and I(θ) represents the 

value of the test information function (which is the sum of all item information 

functions) at θ. 

 The maximum value and the location of that maximum value are a function of 

the particular item parameters. The item information function peaks at bi for the 1PL 

and 2PL models.  For the 3PL model, maximum information occurs slightly to the 

right of bi depending on the value of the pseudo-guessing parameter.  In the 1PL 

model, the value of maximum information is constant, with only the location at which 

it occurs shifting across items.  In the 2PL model, the value of maximum information 

is proportional to the square of the discrimination.  The steeper the slope of the ICC, 

the greater the discrimination, and the greater the information provided by the item.  

In the 3PL model, the smaller the pseudo-guessing parameter, the greater information.   

Item Response Theory with Polytomous Items 
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While, to date, less commonly used than the dichotomous models, polytomous 

IRT models allow for the scoring of items when multiple response categories are 

allowed.  Examples of polytomous scoring include Likert type scaling for attitudes, 

essay scoring in which different score values are awarded for different essay qualities, 

or any situation in which partial credit might be awarded to indicate differing levels 

of item performance.  In short, any time a gradient that reflects varying amounts of 

the trait measured is applied to scoring rather than a simple right/wrong approach, 

polytomous models would be appropriate.   

Polytomous IRT models are extended from the dichotomous models, but 

differ in that they use multiple parameters to represent the probability of responding 

in each category rather than a single item difficulty parameter. These parameters are 

called step difficulties or category boundaries, depending on the particular model 

chosen.  Rather than having a single item characteristic curve (ICC) to represent the 

relationship between trait level and the probability of a correct response, polytomous 

models have multiple category characteristic curves (CCCs) which represent the 

relationship between trait level and the probability of responding in a given category.    

An examinee with a given trait level will be most likely to respond in the category 

whose curve is highest for their trait level. 

In the family of polytomous models, there are two basic types:  difference 

models and divide-by-total models.  The difference models (Samejima, 1969; Muraki, 

1990) artificially dichotomize the item to obtain the probability of responding in a 

given category or higher.  For example, in an item with possible scores of 0,1, or 2, 
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the dichotomization would represent the probability of responding in category 0 

versus in categories 1 or 2 and the probability of responding in categories 0 or 1, 

versus category 2.  Adjacent probabilities are then subtracted to obtain the probability 

of responding in a particular category.  The divide-by-total models (Bock, 1972; 

Muraki, 1992; Masters, 1982; Rost, 1988, Andrich, 1978) calculate the probability of 

responding in a given category by normalizing the probability space to sum to 1.0  

This is accomplished by dividing the numerator which represents a response in a 

given category by the denominator which represents each possible response.  While 

there are many different polytomous IRT models with different derivations and 

parameterizations, only the models examined in the current study will be discussed in 

detail.  These models are the graded response model, the generalized partial credit 

model, and the partial credit model. 

The Graded Response Model 

 The graded response model (Samejima, 1969) is an extension of the two-

parameter logistic model to the polytomous case.  The model assumes that item 

responses occur in two or more ordered categories.  The graded response model is a 

difference model and requires two steps in which response categories are artificially 

dichotomized and then subtracted in order to obtain the probability of responding in a 

given category.  The cumulative probability function of scoring in category x or 

higher on item i given the examinee’s trait level, θ, for the graded response model is 

defined as: 
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where bix is the difficulty parameter associated with score category x and ai is the item 

discrimination.  The graded response model allows items to differ in discrimination, 

however, it is assumed that categories within an item are uniformly discriminating, 

therefore, each item has only one discrimination parameter.  For an item with m+1 

categories, there will be m ways to dichotomize the item, and, therefore, m 

equations.  In order to obtain the probability of responding in a given 

category, adjacent cumulative probability functions are subtracted such that; 
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For the lowest and highest categories (x=0 and x=m+1), the cumulative probabilities 

are P*
i0=1 and P*

im+1=0 respectively. 

 Samejima (1969) extended the formulation for the information function to the 

polytomous case.  The information for a given item can be expressed as: 
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where Pix is equal to the probability of scoring in category x on item i,  and P’ix is the 

first derivative of Pix with respect to theta, and mi is the number of categories.  Test 

information can be computed simply by summing the item information values.  

Samejima’s formulation of the information function can be applied to all polytomous 

models. 
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The Generalized Partial Credit Model 

 The generalized partial credit model (Muraki, 1992) is an extension of the two 

parameter logistic model to the polytomous case.  The generalized partial credit 

model is a divide-by-total model and allows for steps to be unordered (that a later step 

may be easier than a former step).   The generalized partial credit model allows items 

to differ in discrimination, however, it is assumed that categories within an item are 

uniformly discriminating, therefore each item has only one discrimination parameter.  

The probability function of scoring in category x on item i given the examinee’s trait 

level, θ, for the partial credit model is defined as: 
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where mi is the number of score categories minus one, bik is the difficulty parameter 

associated with score category x, and ai is the item discrimination. The generalized 

partial credit model simplifies to the partial credit model, when item discrimination 

values are uniform.  

The Partial Credit Model 

 The partial credit model (Masters, 1982) is an extension of the one-parameter 

logistic (Rasch) model to the polytomous case.  The probability function of scoring in 

category x on item i given the examinee’s trait level, θ, for the partial credit model is 

defined as: 
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where mi is the number of score categories minus one and bik is the difficulty 

parameter associated with score category x.  Like the generalized partial credit model, 

it is a divide-by-total model and allows for steps to be unordered. 

Computerized Adaptive Testing with Dichotomous Items 

 Computerized adaptive testing (CAT) provides a bridge between the 

advantages of cost effective group administered testing and measurement efficient 

individually administered testing, by creating a hybridization which allows 

individualized testing in a group setting using the computer as a delivery medium.  

CAT is based on the idea that items which are too easy or too difficult contribute little 

to the information about an examinee’s trait level.  By eliminating the need to 

administer items of inappropriate difficulty, CAT can shorten testing time, increase 

measurement precision, and reduce measurement error due to boredom, frustration or 

guessing (Wainer, 1990).  In CAT, an examinee’s trait level is re-estimated after each 

item based on the responses to all previous items and testing ceases when a certain 

criterion of measurement precision is met (Bergstrom & Lunz, 1999).  The following 

sections will provide a more detailed description of CAT.  First, CAT will be 

contrasted with paper and pencil testing and the advantages of CAT outlined.  

Second, the components which make up a CAT will be discussed. 

Advantages of CAT over Paper and Pencil Testing 
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 CAT offers many advantages over the traditional paper and pencil testing 

format.  The purported benefits of CAT include (Wainer, 1990): 

1) Increased efficiency in testing.  Examinees may take shorter tests without 

reduction in measurement precision because items are targeted to their trait 

level, so they do not waste time with inappropriate items. 

2) Improved test security due to both the increased physical security of the 

computerized item pool and to the individualized nature of a CAT.  Each 

examinee takes a test individually tailored to his or her trait level so that it 

would be necessary to learn a large portion of the item pool in order for this 

pre-knowledge to have any impact on an examinee’s score. 

3) Reduction in the negative effects of time constraints for some examinees.  

Since testing time can be individualized, within certain reasonable constraints, 

examinees can work at their own pace with the influence of speededness 

largely negated. 

4) Reduction in examinee frustration and boredom.  Since examinees see only 

those items appropriate for their trait level, they remain engaged and 

challenged. 

5) Elimination of separate answer documents.  All examinee responses are 

automatically recorded in a computer file, which eliminates the additional 

paperwork associated with separate answer documents, as well as eliminates 

the possibility of errors in recording examinee responses. 
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6) Immediate scoring and feedback to examinees.  The computer can 

automatically translate the examinee’s trait estimate into the chosen scaled 

score and report the results immediately upon completion of testing. 

7) Simple pretesting of items.  Since test forms are not preconstructed, new items 

can simply be inserted into an examinee’s test form at any point. 

8) Easy removal of faulty items.  If a poorly performing or incorrect item is 

identified it may simply be removed from the item pool, without the need for 

expensive form reprints. 

9) Ability to include new and innovative item types.  The computer as a medium 

for test delivery offers many possibilities for the use of interactive audio, 

visual, or simulation based items, not possible when the test is administered 

on paper. 

 While many of these advantages remain, the past two decades of research 

have uncovered issues which bring into question whether certain of these benefits are 

recognized in operational testing.  One specific example, relates to the supposed 

improvement in test security which a CAT provides.  The third section of this 

literature review will address test security in a CAT environment with specific focus 

on methods for controlling item exposure and test overlap rates. 

Components of a Computerized Adaptive Test 

 Reckase (1989) lists four major components of a CAT.  These include, the 

item pool, the item selection method, the trait estimation method, and the stopping 

rule.  In addition to these basic elements, two new components which have become 
 22



routinely adopted by testing programs using CAT are discussed.  These are the 

content balancing and exposure control mechanisms. 

 Item Pool.  Unlike paper and pencil testing, where items are developed and 

used for a particular test form, CAT requires the development of an item pool, from 

which all tests will be drawn.  This pool will need to have a sufficient number of high 

quality items across a large range of difficulties to allow the CAT to estimate trait 

level for a broad range of examinees.  In addition, care must be taken to ensure that 

the item pool provides a sufficient number of items in each desired content area to 

meet the test specifications (Wainer, 1990).  The necessary size of an item pool is 

determined by test length, size of the examinee population, and target item exposure 

and overlap rates (Bergstrom & Lunz, 1999).  Guidelines for the appropriate size of 

the item pool range from six to twelve times the number of items seen on a paper and 

pencil form (Stocking, 1993;Patsula & Steffan, 1997; Luecht, 1998).  However, 

issues of item exposure, item retirement, and pool rotation may require this number to 

be much larger.  Due to the continuous nature with which many CATs are 

administered, the useful life of an item or a item pool is limited.  Luecht (1998) 

suggests that between 3,800 and 21,000 items may be needed to begin a CAT 

program when sufficient pool size, multiple pools, and item pretesting are taken into 

consideration.  Strategies to extend the life of a pool such as drawing multiple 

overlapping pools from an item vat (Patsula & Steffan, 1997) have been proposed, 

however, the cost and effort to create and maintain a CAT item pool remains 

formidable and far exceeds that of paper and pencil testing. 
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 Item Selection Procedure.  In a paper and pencil test, examinees begin with 

the first item and proceed in a largely linear fashion, taking each item in sequence, 

until the end of the test is reached.  In CAT, however, items are selected adaptively 

based on the examinee’s trait level.  The trait estimate for an examinee is updated 

after each item and the next item administered is one that maximizes a given 

mathematical function (McBride, 1997).  The two most popular methods of item 

selection in CAT are maximum information and Owen’s Bayesian (Owen, 1969).  

Items selected according to the maximum information criterion are those which 

provide the most information at the examinee’s current trait estimate.  Information 

values are calculated for each item at the estimated trait level and the item with the 

largest information is selected for administration.  Items selected according to the 

Owen’s Bayesian criterion are those which maximize the expected posterior precision 

of the trait estimate, or, conversely, that will minimize the expected posterior variance 

of the trait estimate.  After each item is administered, the posterior distribution of trait 

level is computed.  All items are evaluated and the item which will maximally reduce 

the posterior variance is selected.  The Owen’s Bayesian method is computationally 

easier than the maximum information method, which made it more popular when 

computing power was limited.  However, increases in available computing power and 

the fact that with the Owen’s Bayesian method, estimated trait level varies as a 

function of item order have made maximum information more widely used (Wainer, 

1990). 
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 Trait Estimation Method.  Two issues need to be addressed in terms of 

estimating trait level for examinees.   First, since no information is known about an 

examinee at the beginning of the test administration, an initial value for trait level 

must be supplied.  This value is commonly the expected mean trait level of the testing 

population, however, other values may be used when prior information is available or 

when it is desirable to limit the exposure of an initial item.  

 Second, after each item is administered an examinee’s trait level is re-

estimated based on his or her responses to all previously answered items.  This can be 

accomplished either through maximum likelihood estimation (MLE) or one of the 

Bayesian estimation approaches.  MLE determines the most likely trait level for an 

examinee given the response string to items with specified parameters, by multiplying 

together the individual probabilities of a correct response given theta to compute a 

cumulative probability with the function, 

∏== −
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where xi is the vector of item responses for examinee i to items 1 to j and β is the 

matrix of item parameters.  L(θi|xi) represents the likelihood that a particular response 

vector, xi , would be observed if θ were the true value for examinee i.  The function is 

plotted across values of theta and the modal value is used as the new trait estimate.  

Mathematically, the most likely value of θ can be found by taking the derivative of 

the likelihood function, L(θi|xi), setting the result equal to zero and solving for θ using 

the Newton-Raphson iteration procedure (Wainer, 1990). 
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 The Bayes Modal estimation procedure works in the same fashion as 

described above except that the likelihood function is multiplied by a prior 

distribution of theta such that, 

)()|()|( θθθ pxLxp ii ∝ , (12) 

where p(θ) represents the prior distribution of θ.  In essence, the Bayes Modal 

procedure treats the prior as an additional item and multiplies it in with the product of 

the probabilities of the other item responses.  Note that when no prior is used, p(θ) 

has the same uniform value for all θ and the Bayes Modal procedure simplifies to 

MLE (Wainer, 1990). 

 Expected a posteriori (EAP) estimation is popular variant on the Bayes Modal 

procedure which divides the prior distribution into many distinct quadrature points 

rather than evaluating it as a continuous distribution (Bock & Aitkin, 1981; Bock & 

Mislevy, 1982).  EAP is mathematically easier to implement than the Bayes Modal 

procedure. 

 The Bayesian procedures have the advantage of smaller standard errors than 

with MLE for the same number of items administered because prior information is 

known.  However, use of a bad prior can result in the need to administer more items 

to recover and a regression toward the mean in trait estimation tends to occur.  With 

the Bayesian procedures a trait estimate can be obtained after the first item response.  

MLE cannot estimate trait level until one correct and one incorrect response are 

obtained.  Thus, MLE cannot be used after the first item or in the case in which an 
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examinee answers all items correctly or incorrectly.  Therefore with MLE, a variable 

stepsize—moving the trait estimate half the distance to the most extreme item—is 

typically recommended until estimation can occur.  

  Stopping Rule.  A paper and pencil test ends when the examinee completes the 

final item or when time runs out.  Several methods have been proposed to determine 

when to stop administering items in a CAT and compute a final trait estimate.  One 

such method deemed “fixed length” requires that all examinees take some 

predetermined number of items.  While this produces equity in terms of test length, 

measurement precision will differ across trait levels, with the worst precision 

typically being obtained for examinees of low or high trait level.  Conversely, the 

“variable length” method requires that examinees continue to take items until some 

predetermined level of precision is reached, such as a target level of information 

(standard error) or posterior precision.  While this produces equity in terms of 

measurement precision, examinees will take tests of different lengths (Wainer, 1990).  

Variable length tests tend to make better use of the item pool as they minimize test 

length (Bergstrom & Lunz, 1999).  However, Lunz and Bergstrom (1994) found that 

it may be difficult to explain the equity of variable length tests to examinees.  In 

practice, some minimum or maximum number of items may be applied with the 

variable length stopping rule. 

 Content Balancing.  In a paper and pencil exam, appropriate content coverage 

can be ensured by writing items to match a table of specifications.  Since all 

examinees take all items, all examinees are ensured a valid test covering all content 
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areas.  In a CAT, however, each examinee is administered a unique set of items.  

Equivalent content coverage across examinees may be achieved in a number of ways 

through the use of what are commonly called “content balancing” techniques.    

The first issue to be considered in content balancing is the number and type of 

content areas or item features that are of interest to the test developer.  Stocking & 

Swanson (1993) discuss three levels of non-statistical item features that may be used 

in classifying and selecting items for administration in a CAT environment—intrinsic 

item properties, overlap constraints, and item set constraints.  Intrinsic item properties 

are those features of an item which contribute to its content area, item format, etc.  

Overlap constraints refers to the fact that items may be similar to or inform each other 

in a way that is not relevant to the trait being measured.  Item set constraints 

acknowledge that certain items may share a common stimulus or set of directions.  

Some researchers and testing programs have opted to consider all three levels of item 

features (Stocking & Swanson, 1993; Parshall, Davey, & Nering, 1998),  while others 

have chosen to consider only the major content classifications represented by the 

intrinsic item properties (Morrison, Subhiyah, & Nungester, 1995; O’Neill, Lunz, & 

Thiede, 1998; Kalohn & Spray, 1998; Bergstrom & Lunz, 1999).  The major 

difference between these two approaches is in the number of  “contents” considered 

(as many as 50 in the former approach and as few as three to five in the latter) and the 

particular technique implemented for content balancing.  The weighted deviations 

model (WDM) proposed by Stocking and Swanson (1993) may be necessary for large 
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numbers of content constraints, whereas less complex methods may be applied when 

fewer contents are of interest. 

 Equivalent content coverage across examinees may be achieved in a number 

of ways.  When content areas are disparate or introduce additional dimensionality, 

one option is to split the item pool by administering separate tests, with separate trait 

estimations for each content area (Segall, Moreno, & Hetter, 1997).  Another option 

is to use a multidimensional model and estimate separate trait levels within a single 

test (Parshall, Davey, & Nering, 1998).  However, when content areas are shown to 

measure a single trait dimension it is possible to design the item pool with item 

quantities proportional to the desired content coverage for each examinee’s test 

(Segal, Moreno, & Hetter, 1997).  For example, in a test of mathematical ability it 

might be desirable to ensure equal coverage for the content areas of 

addition/subtraction, multiplication, long division, and fractions.  Such a decision 

would dictate that 25% of the item pool would represent each content area.  

Programmatic restrictions to the item selection procedure would be necessary to 

ensure the desired content coverage during the CAT.  

Kingsbury and Zara (1989) discuss a procedure whereby an item is selected 

for administration not only according to the properties of its parameters, but also by 

examining the discrepancies between the desired percentage of items to be 

administered from a given content area and the actual number of items administered 

from that content area.   Segall, Moreno, and Hetter (1997) present a strategy used for 

the General Science section of the CAT-ASVAB (Armed Services Vocational 
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Aptitude Battery) whereby the three primary content areas are administered in a 

rotational fashion to mirror the proportion of items from each content area 

administered in the paper and pencil reference test.  Within a specific content area, 

the next item to be administered can be selected based on maximum information as 

constrained by the level of exposure control.  Content areas are then rotated through 

so that each content area will have an approximately equal representation in the 

examinee’s test.   

One possible drawback for any content balancing method is that the most 

informative item in the selected content area may not be the most informative item 

available in the item pool.  This threatens measurement precision (in a fixed length 

test) and could result in longer tests (in a variable length test) due to administration of 

sub-optimal items. 

 Exposure Control.  CAT administration creates special circumstances that 

lead to over-exposure of certain items within the item pool to examinees.  Frequently 

exposed items will cease to be a valid measure of the trait because they may have 

been compromised (Parshall, Davey, & Nering, 1998).  Any time an examinee has 

prior knowledge of an item, his/her response will not be an accurate measure of 

his/her true trait level.  One source of prior knowledge comes from the necessity of 

pretesting items.  An examinee may see an item in its pretest and again in operation.  

In order to minimize the damage from this exposure, items that are pretested together 

can be put into separate item pools (Stocking & Lewis, 2000). 
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  Continuous test administration poses another security risk, as examinees may 

seek to share information with one another (Stocking & Lewis, 2000).  Luecht (1998) 

describes a threat from what he calls “Examinee collaboration networks (ECNs).”  

These ECNs are global groups of examinees who seek to pool their resources and test 

experience to discover a sufficient number of test items from an item pool to 

artificially increase scores.  While not all examinees are associated with an ECN, the 

higher the stakes associated with scores from a given test, the more tempting cheating 

becomes.  Luecht (1998) compares the threat to test security to those threats faced by 

casinos and lotteries.  Any time stakes are high, cheaters will look for anything that 

will give them an advantage.  Stocking and Lewis (2000) note that the amount of 

effort a testing program should put into exposure control does, indeed, depend on the 

uses of the test scores and whether the testing program can be classified as high, 

medium, or low stakes.   

 Finally, the CAT item selection algorithm itself, constitutes a threat to item 

security.  Under maximum information item selection, certain items will be 

administered to almost all examinees and a small proportion of items available will 

account for a large proportion of items actually administered (Parshall, Davey, & 

Nering, 1998).  Wainer and Eignor (2000) describe the relationship between the 

frequency of item usage and the rank order of item usage as defined by a modified 

version of Zipf’s law (Zipf, 1949; Wainer, 2000; Wainer & Eignor, 2000).  

Specifically, the log of the frequency of an event (item administered) is related to the 

rank order of the event in a linear fashion.  In the case of item selection, an item with 
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a low rank order (close to 1) is administered more frequently than an item with a high 

rank order.  They proposed using Zipf plots to examine the usage of items within a 

pool.  A steeper slope indicates highly differential item usage, whereas a flatter slope 

would indicate more uniform item usage.  They demonstrated that typically, CAT 

item selection produces a plot with a steep negative slope indicating that not only are 

the pool’s most informative items most often administered, but also that a very small 

percentage of the pool’s items account for a very large percentage of administered 

items.  In other words, the most popular items are popular by a large margin, resulting 

in an exponential decline in item usage as rank increases.   In addition to the Zipf 

relationship of CAT item selection, when the same initial trait estimate is used for all 

examinees, the initial item sequences are limited and predictable, becoming easily 

overexposed.  Furthermore, with maximum information item selection, two 

examinees with the same trait estimate will see the same item (Hetter & Sympson, 

1997). 

 Parshall, Davey, and Nering (1998) discuss the three often conflicting goals of 

item selection in CAT.  First, item selection must maximize measurement precision, 

by selecting the item which maximizes information or posterior precision for the 

examinee’s current trait level.  Second, item selection must seek to protect the 

security of the item pool by limiting the degree to which items may be exposed.  

Third, item selection, must ensure that examinees will receive a content balanced test.  

Stocking and Swanson (1998) add a fourth goal to this list, stating that item selection 

must also maximize item usage so that all items in a pool are used, thereby ensuring 
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good economy of item development.  Stocking and Lewis (2000) portray the item 

selection problem as a balloon—pushing in on one side will cause a bulge to appear 

on another.   

Overview of Exposure Control Methods 

 Different approaches to the goals of item selection will produce different 

testing algorithms (Stocking & Lewis, 2000).  Attempts to address the third goal are 

denoted exposure control methodologies (Parshall, Davey, & Nering, 1998).  Way 

(1998) discusses two types of exposure control strategies—randomization and 

conditional selection.  Randomization strategies randomly choose the next item for 

administration from a set of nearly optimal items rather than selecting the single most 

informative item.  The conditional selection strategies are those in which the 

probability of an item being administered is controlled conditional on a given 

criterion, such as the expected frequency of item usage.  Finally, a third approach to 

exposure control has recently been proposed by Chang and Ying (1996) in which 

items in the pool are stratified according to their statistical properties (item 

parameters) and items are constrained to be administered from certain strata.  This 

section will provide a detailed description of exposure control methodologies which 

exemplify these three categories.  The randomization procedures will be presented 

first, followed by the conditional selection procedures, and finally the stratification 

procedures.   

 Before beginning this discussion, however, a brief overview of the most 

popular method for controlling item exposure—the Sympson-Hetter procedure—is 
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provided, so that comparisons of other procedures to the Sympson-Hetter can be 

better understood.  The Sympson-Hetter is an example of a conditional selection 

procedure which seeks to control exposure by assigning exposure control parameters 

to each item.  These parameters are derived through a series of simulations in which 

the frequency with which an item is administered is recorded.  Items which are 

administered more frequently are assigned more restrictive exposure control 

parameters.  Items which are administered less frequently are assigned less restrictive 

exposure control parameters.  In operational testing, items are selected according to 

the item selection procedure (maximum information), but an item will be 

administered only if the value of its exposure control parameter exceeds that of a 

random number.  The Sympson-Hetter procedure (or one of its many variants) is the 

most frequently used method of controlling item exposure and represents the standard 

to which all other methodologies are compared.  

Randomization Procedures  

 Randomization procedures are usually considered to be easy to understand 

and simple to implement, but provide no guarantee that item exposure will be 

constrained to a given level.   This section will present five different types of 

randomization procedures and will also discuss possible variations or combinations 

for each of these. 

 5-4-3-2-1 procedure.  Early research by the military for the CAT-ASVAB 

(Armed Services Vocational Aptitude Battery) spawned a randomization procedure 

which sought to control the exposure of items early in a CAT administration through 
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what has been called the 5-4-3-2-1 procedure (McBride & Martin, 1983; Hetter & 

Sympson, 1997).  The first item to be administered in a CAT is not the single most 

informative, but rather, is randomly selected from among the five most informative 

items.  The second item to be administered is selected from among the four most 

informative items, the third from among the three most informative, and so on, until 

the fifth item when maximum information item selection resumes (Hetter & 

Sympson, 1997).  The number of items to which the random component may be 

applied can, of course, be customized to the test developer’s needs, with maximum 

information item selection resuming after the third item or not until the eighth.  The 

goal of the procedure is to alter the ordering of item administration among the earliest 

items based on the recognition that after the first few items, examinee trait estimates 

will become distinct enough that test overlap will be minimized (Stocking, 1992). 

 The procedure, while extremely simple to implement has taken much 

criticism.  While it does appear to reduce the predictability of initial item sequencing, 

it still overexposes the pool’s most informative items (Hetter & Sympson, 1997) and 

provides no specific guarantee that item exposure will be constrained to a given level 

(Parshall, Davey, & Nering, 1998).  Items which are considered in the group for 

administration, but not administered are not blocked from further selection, so it is 

likely that the pool’s most informative items will eventually be exposed (Davey & 

Parshall, 1995).  Further research has even suggested that the procedure does not 

noticeably increase item security over the no exposure control condition (Chang, 

1998). 
 35



 Randomesque procedure.  Kingsbury and Zara (1989) proposed the 

randomesque method for controlling item exposure.  Similar to the mechanism 

employed by the 5-4-3-2-1 procedure, the randomesque procedure randomly selects 

the next item to be administered from a group of the most informative items, rather 

than selecting the single most informative item.  However, rather than returning to 

maximum information item selection after the initial few items, the randomesque 

method continues to employ a random component throughout the test administration.  

The size of the group from which an item is randomly administered may be 

customized for each testing program.  The goal of this procedure is not just to reduce 

item overlap in the beginning of the test, but also to control the exposure of items to 

examinees with similar trait levels later in the test (Stocking, 1992; Morrison, 

Subhiyah, & Nungester, 1995). 

 Morrison, Subhiyah, & Nungester (1995) implemented the randomesque 

procedure in a variable length CAT for the In-Training Examination in Internal 

Medicine using the Rasch model.  They randomly selected the next item for 

administration from the five most informative items.  Their results showed that the 

randomesque procedure was not effective for reducing item exposure; concurring 

with the results of Eignor, Stocking, Way, and Steffen (1993).  They speculated that a 

group size of five may not have been large enough to affect changes in the exposure 

rate.  This illustrates the largest criticism of the randomesque procedure, that there is 

no way to decide a-priori the size of the item group from which the item should be 
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randomly selected, leaving only trial and error which can be frustrating and time 

consuming (Stocking, 1992).   

 Revuelta and Ponsoda (1998) also investigated the randomesque procedure 

with a group size of five with fixed 35 item and variable length (standard error less 

than .22 or a maximum of 50 items) CATs.  They found a modest increase in pool 

utilization and a slightly decreased maximum exposure rate over the maximum 

information condition with the use of the randomesque procedure at little to no 

expense to measurement precision, but overall evaluated the procedure poorly in 

comparison to other options which are discussed below. 

 Thomasson (1998) evaluated a modified randomesque procedure which he 

called “Choose 1 of 3.”  In this variant, an item is randomly chosen to be 

administered from among the three most informative items, with the two items not 

selected for administration being blocked from further consideration for the current 

examinee.  He evaluated this procedure along with several variants of the Sympson-

Hetter procedure, including one designed to mimic the one-third probability of item 

administration expected with the “Choose 1 of 3” technique with a 15 item fixed 

length CAT based on the CAT-ASVAB Math Knowledge item pool.  He concluded 

that the modified randomesque procedure was robust to changes in distributions of 

trait level and that it appeared to use the item pool more efficiently than the 

comparable modified Sympson-Hetter alternative while still providing the same level 

of exposure control and measurement precision. 
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 Within .10 logits procedure.  Lunz and Stahl (1998) created a randomization 

procedure whereby rather than selecting the single most informative item for an 

examinee's trait estimate, all items within 0.10 logits of the needed item difficulty are 

available for selection and the item to be administered is randomly chosen from 

among them.  This procedure, which was designed to work with the Rasch model, 

does not utilize information in item selection, but rather matches the current trait 

estimate directly to the difficulty values of the items.  The number of items which will 

appear in any selection grouping will depend on the distribution of item difficulties in 

the pool and within a given content area.   If there are no items within 0.10 logits of 

the required item difficulty, the algorithm will randomly select the item having the 

closest difficulty to the target. 

 Lunz and Stahl (1998) evaluated this procedure with five different item pool 

sizes ranging from a low of 183 to a high of 823 items in a content balanced variable 

length CAT.  They concluded that the procedure worked well to control test overlap, 

especially with the larger pool sizes.  They further point out that even though test 

overlap may be extensive in smaller pools and for candidates of similar trait levels, 

the procedure served to alter the sequential ordering of items presented such that each 

candidate had a unique testing experience.  Changing item order has often been used 

to control security on paper and pencil tests, so it is reasonable to assume that 

different item orderings in CAT may also provide some security.  Bergstrom and 

Lunz (1999) further demonstrate the utility of the procedure with a 900 item pool, 

concluding that maximum exposure rate is less than 30% for most items, with only a 
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few items near the pass point and in content areas where the number of items was 

insufficient to meet target constraints being administered with higher frequency. 

 Restricted Maximum Information procedure.  Revuelta and Ponsoda (1998) 

sought to develop randomization methods which would be similar in exposure control 

performance to the Sympson-Hetter, but which would be less complex and more 

straightforward to implement.  One of the methods they proposed is called the 

restricted maximum information procedure.  With this method, items are removed 

from the item pool when their exposure rate exceeds some predetermined level and 

are only returned once the increase in tests administered forces the exposure rate back 

below the critical level.   

 Like the Sympson-Hetter, a target maximum exposure rate, r, is set that no 

item’s frequency of administration should exceed.  The number of tests on which an 

item has appeared is divided by the total number of tests which have been 

administered.  This proportion is compared to the target exposure rate and if it 

exceeds this rate, the item is removed from the pool for the next test administration.  

After each test administration, all items, both those included and excluded from the 

current pool are evaluated and their probability of administration compared to the 

target.  As an excluded item lies dormant, its probability of administration decreases 

as the total number of test administrations increase, but the number of tests on which 

it has been administered remains unchanged.  Eventually the probability of 

administration for the item will drop below the target value and the item may again be 

included for selection in the item pool.  In this way, items will constantly be moving 
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in and out of the available pool.  Within the available pool, items are selected 

according to maximum information.  Exposure is controlled simply by the removal of 

overexposed items from consideration for administration.  

 Revuelta and Ponsoda (1998) evaluated the restricted maximum information 

method using a target exposure rate of 0.40 with both fixed (35 item) and variable 

(standard error less than 0.22 or maximum of 50 items) length tests with a  221 item 

pool.  They compared its performance to other randomization procedures (5-4-3-2-1, 

randomesque, progressive) and to the Sympson-Hetter using the same 0.40 target 

maximum exposure rate.  They found that the restricted maximum information 

procedure was comparable to the Sympson-Hetter in terms of both measurement 

precision and maximum observed exposure rate with both procedures requiring an 

average of 3-4 more items in the variable length conditions to attain the same level of 

precision as the optimal condition and both procedures successfully constraining 

exposure to the desired 0.40 level.  While the restricted maximum information 

procedure had slightly better pool utilization than did the Sympson-Hetter, the percent 

the of pool that went unused remained greater than 15%.   

 Progressive procedure.  Revuelta and Ponsoda (1998) proposed a second 

randomization procedure which they termed the progressive method.  In this method 

a weight is computed for each item, i, according to the formula  

Wi=(1-s)Ri + sIi, (13) 

where s represents the serial position in the test (how many items have been 

administered divided by the total test length), I represents the item information at the 
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estimated trait level and R represents a random uniform number.  The item with the 

largest weight is administered.  Item information is weighted by the serial position in 

the test and so is less important early in the test, but increases in importance as the 

test progresses.  Conversely, the random component is weighted by one minus the 

serial position in the test and so is most important for items early in the test, but 

becomes less important as the test progresses.  The authors postulate that because 

initial trait estimates can differ substantially from final trait estimates that the 

progressive method should offer exposure control without greatly reducing 

measurement precision. 

 Revuelta and Ponsoda (1998) examined the progressive procedure using the 

same study design reported for the restricted maximum information procedure.  The 

results showed that measurement precision was comparable to the Sympson-Hetter 

and restricted maximum information procedures, but slightly worse than optimal.  

The progressive procedure had 100% pool utilization, however, like the 5-4-3-2-1 and 

the randomesque procedures had a high maximum exposure rate (0.64).   

  Revuelta and Ponsoda (1998) concluded that since the progressive procedure 

had good pool utilization, but high maximum exposure rates and the restricted 

maximum information procedure had low maximum exposure rates, but poor pool 

utilization, that a combination of the two procedures might provide a good solution.  

The combined procedure would weight items according to the progressive strategy, 

but would only consider those items included in the available pool according to the 

restricted maximum information strategy.  In a second study, they compared the 
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combined procedure under two different levels of target maximum exposure rate 

(0.40 and 0.15) to both procedures individually and the Sympson-Hetter.   They 

evaluated three fixed test lengths (20, 40, and 60) and two item pool sizes (500 and 

1000 items).  The results revealed that while the combined procedure with the most 

restrictive target maximum exposure rate (0.15) had poor measurement precision, the 

other conditions performed well.  Previous findings for the individual procedures in 

terms of pool utilization and maximum exposure rates were replicated and the 

combination procedure under the 0.40 target exposure rate was successful in 

producing both good pool utilization and low maximum exposure rates. 

Conditional Procedures 

 The conditional selection strategies are those in which the probability of an 

item being administered is controlled conditional on a given criterion.  The advantage 

of the conditional procedures is that they allow a preset target exposure rate (r) to be 

set and provide a reasonable guarantee that exposure will be constrained to this level.  

The next section presents four different types of conditional selection  procedures.  

The Sympson-Hetter procedure is discussed first, followed by the conditional 

Sympson-Hetter procedure, the Stocking and Lewis multinomial procedures, and 

finally, the Davey-Parshall procedures. 

 Sympson-Hetter procedure.  The Sympson-Hetter procedure (Sympson & 

Hetter, 1985; Hetter & Sympson, 1997) attempts to directly control the rate of item 

exposure through the use of probabilistically determined exposure control parameters 

assigned to each item.  The goal of the Sympson-Hetter is to constrain the maximum 
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probability of administration for an item to a predetermined level.  The advantage of 

the Sympson-Hetter is that it allows a preset target exposure rate (r) to be reasonably 

ensured as long as the characteristics of the sample to which the test is given are 

distributed the same as those from which the parameters were derived.  The target 

exposure rate stipulates what maximum proportion of the population should see each 

item (Hetter & Sympson, 1997).  

 In effect, the Sympson-Hetter attempts to control exposure by differentiating 

between the probability of selecting an item, P(S), and the probability of 

administering an item, P(A).  This is accomplished by implementing exposure control 

parameters to modify P(S) according to  

P(A) = P(A|S) * P(S) , (14) 

where P(A|S) is the probability of administering an item given that it is selected and is 

used as the exposure control parameter (Ki) (Stocking & Swanson, 1998). 

 The Sympson-Hetter uses the frequency with which an item is administered in 

a simulated sample of examinees to determine the rate of exposure for each item.  

This iterative process results in each item being assigned an exposure control 

parameter (Ki) with a value between zero and one.  These parameters are then used in 

live testing to constrain the probability of administering an item.  When an item is 

selected for administration by maximum information or other optimal selection 

strategy, the corresponding exposure control parameter must be compared to a 

random number drawn from a uniform distribution.  If the value of the item’s Ki 

exceeds the random number, the item is administered.   Otherwise, the item is 
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blocked from further administration and the next most informative item is selected for 

consideration.  This process then continues until an item is administered.   

 In practice, the Sympson-Hetter proceeds in two phases, the first of which 

establishes the exposure control parameters and the second of which uses the final 

parameters from the first phase in operational testing.  To establish the exposure 

control parameters, all Kis are initially set to 1.0, indicating that if the item is selected, 

it will be administered.  A simulated CAT is then administered to a set of simulees 

with known trait levels, making a comparison for each item selected between a 

random uniform number and the item’s Ki.  The proportion of times an item is 

selected and administered are computed for each item according to the following 

formulae:  

P(S) = NS/NE, (15) 

P(A) = NA/NE, (16) 

where NS is the number of times an item was selected, NA is the number of times an 

item was administered, and NE is the number of examinees.  Note that for the first 

iteration where all Kis equal 1.0, P(S) will equal P(A).  The probability of selection is 

then compared to the desired target value (r) and adjustments are made to the Kis as 

follows: 

 If P(S) > r, then Ki = r/P(S),  

 If P(S) ≤, then Ki = 1.0. 

 44



If an item is selected more often than desired, the new exposure control parameter 

will be more restrictive.  If an item is selected less often than desired, the new 

exposure control parameter will be set to 1.0, indicating no restriction on its 

administration.  This process is then iteratively repeated, using the Kis from the 

previous iteration, until the maximum probability of administration for any item 

approaches a limit slightly above r.  After each iteration, it may be necessary to make 

some adjustment to the exposure control parameters to ensure that a sufficient number 

of items are available to allow for a complete test to be administered.  To accomplish 

this, it is suggested that the ‘n’ largest (least restrictive) Kis be set to 1.0, where ‘n’ is 

equal to the test length. The final round of Kis are then used in operational testing 

(Hetter & Sympson, 1997). 

 Stocking (1992) extended the Sympson-Hetter to work with the more complex 

testing scenario of item blocks which correspond to the same stimulus and must be 

administered together by controlling passage exposure rates as well as item exposure 

rates.  Using a target exposure rate of 0.20 for items and passages, she compared the 

Sympson-Hetter to a modification of the 5-4-3-2-1 randomization procedure.  She 

concluded that the Sympson-Hetter provided better exposure control than did the 

randomization procedure.   

 The primary impact of the Sympson-Hetter, other than controlling item 

exposure, is that it forces the administration of sub-optimally informative items.  

While Hetter and Sympson (1997) found that the use of the Sympson-Hetter did not 

significantly impact measurement precision, other studies have found an increase in 
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standard error of measurement and a decrease in reliability over the optimal condition 

(Stocking, 1992; Parshall, Davey, & Nering, 1998; Chang, 1998). 

 Other criticisms of the method include the fact that the simulations to obtain 

the exposure control parameters are time consuming and that if even a single item is 

added to or deleted from the item pool, the simulations must be rerun (Stocking & 

Lewis, 2000).  In addition, the exposure control parameters are dependent on the 

distribution of examinee trait level used in the simulation.  If the distribution differs 

in operation, the exposure control parameters are no longer valid and cannot 

guarantee the expected level of exposure control (Parshall, Davey, & Nering, 1998;  

Stocking & Lewis, 2000).  Parshall, Davey, and Nering (1998) also point out that the 

procedure tends to produce more relaxed exposure control parameters for items 

whose information peaks at the tails of the distribution, because of the sparseness of 

examinees at those trait levels.  While the item may not be seen by more than the 

targeted proportion of the population, almost all examinees of low or high trait level 

will see it.  This is especially problematic in test-retest scenarios as the person’s true 

trait level does not change and they are likely to be exposed to the same items.  

Additionally, there is reason to believe that examinees are more likely to have friends 

of the same trait level and may share information with them.  Finally, Stocking (1992) 

demonstrates that when implementing the Sympson-Hetter in conjunction with 

content constraints, the procedure may not converge if the item pool does not closely 

match the test specifications.   
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 Conditional Sympson-Hetter.  Even though an item’s global exposure rate 

may be 20%, it may, in fact, be seen by most or all test takers of high or low trait 

level.  This becomes an issue in test-retest scenarios where the examinee may see the 

same items on the retest as on the initial test. Additionally, test takers are more likely 

to have friends of similar trait level so shared information about test questions may be 

more beneficial for increasing scores than the global exposure rate would predict.  

The threat from high trait level examinee exposure and overlap is especially 

troublesome since efforts to steal tests are usually focused on the more difficult 

questions and may employ individuals with good memorization skills who are most 

likely to be of high trait level.  These observations resulted in the development of an 

extension to the Sympson-Hetter procedure which establishes exposure control 

parameters conditional on trait level  (Parshall, Davey, & Nering, 1998; Chang, 

Ansley, & Lin, 2000).  It is important here to distinguish between conditional 

selection strategies which select items based on a given condition, such as frequency 

of administration, and conditional exposure control which provides control of item 

exposure conditional on trait level.  While most attempts to control exposure 

conditional on trait level have been implemented with conditional selection strategies, 

it is possible to implement conditional exposure control with a randomization or 

stratification procedure. 

 The conditional Sympson-Hetter procedure is conducted in exactly the same 

fashion as the Sympson-Hetter procedure with the exception that the frequency of 

item administration is tallied separately for each of ‘m’ discrete trait levels.  The 
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simulations to develop the exposure control parameters are then conducted separately 

for each level of theta.  The result is a matrix of n(items) X m(theta values) which 

yields the conditional exposure control parameters.  In operation, the examinee’s 

current trait estimate determines which column of parameters will be used. 

 The advantages of this procedure are that a test developer may exercise direct 

exposure control at different trait levels and may even select different target exposure 

rates for different levels within the trait distribution  In addition, the exposure control 

parameters are not dependent on the trait distribution used in the simulation.  

However, any addition or deletion of items from the pool will continue to require the 

exposure control parameters to be recalculated and the simulations for the conditional 

Sympson-Hetter procedure are more time consuming and difficult than those for the 

Sympson-Hetter procedure.   

 Parshall, Davey, and Nering (1998) compared the performance of the 

conditional Sympson-Hetter to the unconditional version of the procedure with a 600 

item pool using a variable length stopping rule.  They found that while, the 

conditional Sympson-Hetter provided better pool utilization, it overexposed a much 

larger portion of the items than the unconditional Sympson-Hetter.  The authors 

attributed this to the lack of global (across trait level) exposure control with the 

conditional Sympson-Hetter.  In addition, the conditional Sympson-Hetter yielded 

longer test lengths to examinees whose trait levels were in the tails of the distribution, 

but provided lower rates of test overlap for these same examinees.   
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 Stocking & Lewis Multinomial Procedures.  Stocking (1992) observed some 

difficulty in establishing a smooth convergence of the Sympson-Hetter parameters 

due to the “fix-up” of setting the ‘n’ largest parameters equal to 1.0, where ‘n’ is 

equal to the test length.  While this corrective measure seems to work well when the 

‘n’ parameters all have values reasonably close to 1.0, if the parameters to be 

corrected are too far from 1.0, the correction can cause fluctuations in the iteration 

process, and, consequently, the parameters will not converge (Stocking & Lewis, 

1995).  Stocking and Lewis (1995) proposed a new procedure based on the same 

technique as the Sympson-Hetter, but using a multinomial model to deal with these 

convergence problems.  The logic behind the procedure remains the same as that 

behind the Sympson-Hetter, but the new procedure has fewer problems with 

convergence during the exposure control parameter iterations (Chang, Ansley, & Lin, 

2000).   Like the Sympson-Hetter, the Stocking and Lewis Multinomial procedure 

develops a Ki for each item, but it uses a multinomial model for item selection 

(Chang, Ansley, & Lin, 2000). 

 Item selection is based on a distribution of multinomial probabilities—that is, 

the probability that a given item is selected and administered and that all previous 

items have been rejected.  The multinomial probabilities are calculated such that 

K1= P1(A|S), (17) 

K2= (1-P1(A|S))*P2(A|S), (18) 

K3= (1-P1(A|S))*(1-P2(A|S))*P3(A|S), etc., (19) 
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where K1 is the probability that the first item is selected and administered, K2 is the 

probability that the first item is rejected and the second item is selected and 

administered, and K3 is the probability that both the first and second items are 

rejected and that the third item is selected and administered.  Note that the probability 

of an item being administered given that it is selected, Pi(A|S), is the Sympson-Hetter 

exposure control parameter.  These probabilities are then summed together to create a 

cumulative multinomial distribution.  A random number is drawn from a uniform 

distribution and compared to this cumulative distribution of probabilities.  The 

location in the cumulative distribution which corresponds to the random number then 

determines which item will be administered.  All items occurring in the list prior to 

the administered item are blocked from further administration (Stocking & Lewis, 

1995; 2000). 

 Stocking and Lewis (1995) investigated the usefulness of this procedure with 

the 3PL model using a 35 item fixed length CAT.  Item exposure was examined at 

four different target levels—0.10, 0.20, 0.30, and 0.40.  They concluded that the 

multinomial model provided smoother convergence than the Sympson-Hetter at all 

levels of target exposure rate and that it was still able to provide a guaranteed level of 

exposure control. 

 Stocking and Lewis (1998) evaluated the performance of a conditional version 

of the multinomial procedure against that of the unconditional multinomial procedure.  

Like the conditional Sympson-Hetter, the conditional multinomial procedure 

develops an n(item) X m(trait level) matrix of conditional exposure parameters which 
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allow exposure to be controlled for examinees of similar trait level.  Item selection for 

the simulations to set the exposure control parameters is conducted, however, 

according to the multinomial model.  They ran a series of simulated 28 item fixed 

length CATs using the 3PL.  The unconditional procedure was evaluated at a target 

global exposure rate of 0.20 and the conditional procedure was evaluated at a target 

exposure rate of 0.20 for all trait levels.  They found that the conditional procedure 

yielded slightly poorer reliability and slightly higher conditional standard errors of 

measurement than the unconditional procedure, but that the conditional procedure 

increased pool utilization over the unconditional procedure and greatly evened out 

and reduced test overlap, especially for extreme trait levels. 

 Chang (1998) compared the conditional multinomial procedure to the 

unconditional multinomial, the Sympson-Hetter, the 5-4-3-2-1 procedure, and the 

Davey-Parshall procedure (which will be described in the next section).  He 

determined that the randomization procedure produced the worst results, with the 

Sympson-Hetter and the unconditional multinomial procedures performing better, but 

similarly, and the Davey-Parshall and the conditional multinomial performing best.  

He concluded that the conditional multinomial performed the best when all factors 

were considered. 

 Chang, Ansley, & Lin (2000) compared the conditional multinomial, the 

conditional Sympson-Hetter, and the Davey-Parshall procedures using four pool sizes 

(360 ,480, 600, and 720 items) and two different target exposure rates (.10 and .20) in 

a fixed length 30 item CAT.  They found that while the conditional multinomial 
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procedure performed well, the conditional Sympson-Hetter actually outperformed it.  

The conditional multinomial had higher observed exposure rates than did the 

conditional Sympson-Hetter especially when the pool size was small or when 

exposure control was most restrictive and that the variability in exposure rates across 

ability levels was somewhat less for the conditional Sympson-Hetter than for the 

conditional multinomial.   The authors concluded that the conditional Sympson-

Hetter yielded better performance than the conditional multinomial and provided an 

easier method for obtaining the exposure control parameters. 

 Stocking and Lewis (2000) have proposed a modification to the conditional 

multinomial procedure which would condition on estimated trait level rather than on 

true trait level.  They conduct two experiments (one conditioning on true trait level, 

the other on estimated trait level) where they attempt to set different rates of target 

exposure for different trait levels.  The results demonstrate that due to discrepancies 

between true and estimated trait level, setting different target exposure rates for 

different trait levels is ineffective when conditioning on true trait level is used.  

However, when exposure control parameters are conditioned on estimated trait level, 

the correspondence between observed and target conditional exposure rates is greatly 

increased, at the expense, however, of slightly lower reliability.    

  Davey-Parshall procedures.  The Davey-Parshall procedure (Davey & 

Parshall, 1995) was developed as a modification to the Sympson-Hetter which allows 

for exposure control parameters to be established not just for each individual item, but 

also conditionally for pairs or groups of items.  The purpose of this procedure is not 
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just to control overall item usage, but also test overlap.  Parshall, Davey, & Nering 

(1998) observe that in an unconstrained CAT, groups of items will often cluster 

together—appearing together repeatedly across test administrations.  The Davey-

Parshall focuses on situations where substantial test overlap could mean that 

examinees could share large portions of the test with one another or where test-retest 

of the same examinee is likely.  By conditioning on items previously administered 

(rather than on trait level as in the conditional Sympson-Hetter or the Stocking and 

Lewis conditional multinomial procedures), the extent that tests overlap across 

examinees or across testing occasions can be controlled.  Once one item of a set 

appears in a test administration, the Davey-Parshall restricts the administration of 

other items in that set (Parshall, Davey, & Nering, 1998). 

 The procedure for the Davey-Parshall is similar to the Sympson-Hetter and 

other conditional procedures in that it establishes exposure control parameters 

through a set of simulations.  The Davey-Parshall establishes both an individual item 

exposure control parameter (unconditional) and an item exposure control parameter 

for each pair of items.  This results in an nXn matrix of parameters where n is equal 

to the number of items.  The unconditional exposure control parameters make up the 

diagonal of the matrix, while the off diagonal elements are composed by the 

conditional exposure control parameter for each pair of items.  The Sympson-Hetter 

can be viewed as a special case of the Davey-Parshall where all the off diagonal 

elements are set to 1.0. 
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 All values in the parameter matrix are initialized to 1.0 indicating no 

constraints on item selection.  A series of simulated CATs is administered and the 

number of times each item appears alone and as part of a pairing is counted.  The 

frequency of administration for individual items is then compared to the desired target 

value.  If the probability of administration is greater than the target value, the 

exposure control parameter is adjusted downward, and if the probability of 

administration is less than the target value, the exposure control parameter is adjusted 

upward (Davey & Parshall, 1995).  For item pairs, the adjustment procedure is 

slightly more complicated.  A modified chi-square test of association is performed to 

determine if a given pair of items is occurring together more frequently than would be 

expected by chance.  If the chi-square value exceeds a predetermined threshold, then 

the item pair exposure parameter is adjusted up or down to compensate. To use the 

parameters operationally, multiply the item exposure control parameter by the mean 

of the set of all item pair exposure control parameters for those items previously 

administered.  This result then becomes the probability with which an item will be 

administered if selected.   

 Davey and Parshall (1995) compared this procedure to the Sympson-Hetter 

and a no exposure control condition with two item pool sizes (100 and 200 items) 

using a variable length stopping rule.  They set unconditional target exposure control 

rates of .25 and .15 respectively for the 100 and 200 item pools.  While test length 

was increased to about the same degree with both the Sympson-Hetter and the Davey-

Parshall, the Davey-Parshall reduced overlap more substantially than did the 
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Sympson-Hetter, especially for test-retest overlap.  This latter finding was not 

surprising as it is in test-retest scenarios where item clusters are most likely to form 

and therefore the Davey-Parshall would be most effective.  They concluded that the 

Davey-Parshall reduces overlap at no additional cost to measurement precision above 

the Sympson-Hetter procedure.   

 Parshall, Davey, and Nering (1998) followed this initial study with an 

examination of the Davey-Parshall in comparison to both the Sympson-Hetter and the 

conditional Sympson-Hetter procedures with a 600 item pool using a variable length 

stopping rule.  Results indicated that the Davey-Parshall and Sympson-Hetter both 

performed similarly with no items in the highest exposure category and a comparable 

number of items unused.  The conditional Sympson-Hetter had the best pool usage, 

but also produced the most overexposed items.  This was attributed to the lack of 

global exposure control (exposure is only controlled at specific trait levels) in the 

procedure.   The conditional Sympson-Hetter also produced longer test lengths in the 

tails of the distribution and shorter test lengths in the middle of the distribution when 

compared to either the Davey-Parshall or the Sympson-Hetter, again as a result of the 

trait level specific exposure control.  The authors conclude that all three procedures 

performed well.  The conditional Sympson-Hetter produced the most uniform test 

overlap rates, but at the cost of longer test lengths in the tails of the distribution.  The 

Davey-Parshall’s test overlap rates were only slightly worse, but required no increase 

in test length.  Both the Davey-Parshall and the conditional Sympson-Hetter generally 

outperformed the Sympson-Hetter. 
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 The Tri-Conditional Procedure, also called the Hybrid approach (Nering, 

Davey, & Thompson, 1998) or the Fully Conditional Method (Fan, Thompson, & 

Davey, 1999), combines elements of the Sympson-Hetter, the conditional Sympson-

Hetter, and the Davey-Parshall procedure to condition exposure control on trait level 

and previously administered items to provide improved exposure control over any 

single method alone.  The procedure works by constructing two separate tables of 

exposure control parameters through pre-operational simulations.  One table provides 

the n (item) X m (trait level) parameters, while the other is a nXn pairwise matrix 

(Parshall,  Hogarty, & Kromrey, 1999).  There is one set of off diagonal parameters 

for item pairs, but m sets of diagonal parameter values—one for each level of trait 

(Stocking & Lewis, 2000).   

 The value of the combined item exposure control parameter is based on the 

frequency with which an item is selected for a given trait level and the frequency with 

which it occurs with items that have been previously administered.  The average of all 

pairwise parameters for items previously administered is multiplied by the individual 

item parameter at the current theta estimate.  The Sympson-Hetter, conditional 

Sympson-Hetter, and Davey-Parshall are all special cases of the Tri-Conditional 

procedure in which different portions of the matrix are collapsed or set to unity 

(Parshall, Hogarty, & Kromrey, 1999). 

 Nering, Davey, and Thompson (1998)  {as cited in Stocking & Lewis, 2000} 

tested the Tri-Conditional procedure against its component procedures and concluded 

that it gave better results for overlap, pool usage, and exposure, than any of the 
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component procedures in isolation or when no conditioning was used.  However, they 

observed that as conditioning became more complex there appeared to be diminishing 

returns on these results.  Parshall, Hogarty, and Kromrey (1999) examined the 

performance of the Tri-Conditional against that of the Sympson-Hetter procedure and 

the a-Stratified design (discussed in the next section) using a fixed length content 

constrained CAT with a target exposure rate of 0.20 for the Sympson-Hetter and Tri-

conditional procedures.  They determined that while the a-Stratified design was more 

straightforward in its implementation, it performed less well overall in terms of 

exposure control  and that the Tri-Conditional procedure provided the best results 

when taking reliability and exposure rates into consideration. 

Stratification Procedures 

 While item selection in CAT has traditionally focused on selecting the most 

informative item at the examinee’s current trait estimate, Chang and Ying (1999) 

challenged this idea by pointing out several inherent problems with maximum 

information item selection.  The degree to which information is maximized by item 

selection depends on the extent to which estimated trait level approximates true trait 

level.  When estimated and true trait level are close, information about an examinee 

will be maximized.  However, when estimated and true trait level differ greatly, as is 

usually the case early in the test, an item selected to maximize information at the 

estimated trait level may provide much less information at the true trait level, and, 

therefore, inappropriate items for the examinee’s true trait level may be administered.  

Further, Chang and Ying (1999) point directly to the correspondence between item 
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information and the a-parameter, illustrating that highly informative items are those 

with higher discrimination parameters and that these items are most likely to be 

overexposed, while items with lower discrimination parameters may go completely 

unused.  This imbalance in item usage causes concerns for test security (when items 

are overexposed), economic considerations in item pool development (when items go 

unused), and efficiency in trait level estimation (when highly discriminating items are 

“misapplied” early in the testing process).  This section will detail the a-Stratified 

design along with variants and modifications to the procedure. 

 a-Stratified Design.  The a-Stratified design (Chang & Ying, 1996) requires 

test developers to partition an item pool into k different strata based on the value of 

the item discrimination parameter.  Strata are then arranged in ascending order of 

discrimination.  The test is divided into stages to match the number of strata such that 

a given number of items are chosen from each stratum, with the lowest discriminating 

stratum used at the beginning of the test and the highest discriminating stratum used 

at the end of the test.  Within a stratum, the item to be administered is randomly 

selected from the two items whose difficulty values most closely match the 

examinee’s current trait estimate.   

 The particular number of strata to be used depends on several factors (Chang 

& Ying, 1999).  The greater the variation in discrimination parameters among items 

in the item pool, the more strata can be implemented.  If however, the a parameters 

are more similar, fewer strata should be used.  In addition, item pools with a larger 

range of difficulties at different levels of discrimination can be partitioned into more 
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strata than item pools whose range of item difficulties is more restricted across 

discrimination values.  Finally, test length and pool size must be considered.  In larger 

item pools, the number of strata can be set close to the length of the desired test, such 

that a single item will be drawn from each stratum.  The procedure evens out 

exposure rates, because items with low and high discrimination values have an equal 

likelihood of being selected (Chang & Ying, 1999; Tang, Jiang, & Chang, 1998).   

 Hau and Chang (1998) challenge the assumption that in order to obtain 

balanced pool usage, we must sacrifice measurement precision, stating that the a-

Stratified design may even improve our measurement abilities because of the more 

targeted use of highly discriminating items.  They believe that using the a-Stratified 

design, can improve measurement precision, reduce the overexposure of highly 

discriminating items, and increase pool utilization.  Further, they suggest that the 

procedure is more effective overall than the Sympson-Hetter at obtaining these goals 

and is much easier to implement. 

 Tang, Jiang, and Chang (1998) compared the a-Stratified procedure  to the 

Sympson-Hetter when a target exposure rate of 0.20 was used.  They used 300 

TOEFL (Test of English as a Foreign Language) items as their pool and looked at two 

different test lengths (20 and 40 items) and three different levels of strata (4, 8, and 10 

strata).  They found that the a-Stratified design performed better than the Sympson-

Hetter in terms of both pool utilization and exposure rate.  The Sympson-Hetter did 

exhibit better measurement precision and less bias, but the differences between the 

two procedures were small.  Chang and Ying (1999) again compared the a-Stratified 
 59



design to the Sympson-Hetter procedure under both Bayesian and maximum 

information item selection.  They concluded that the a-Stratified design exhibited an 

overlap rate half that of the rate observed under either Sympson-Hetter condition and 

that the a-Stratified design greatly improved pool utilization.   

 Hau and Chang (1998) demonstrated that unlike the a-Stratified design, the 

Sympson-Hetter used high discrimination items early in the test, medium 

discrimination items late in the test, and, in general, very few low discrimination 

items and then only late in the test.  To further evaluate these contradictory stances in 

item selection, they compared the a-Stratified design (ascending stratification) to two 

contrived conditions in which items were grouped into strata based on discrimination, 

but the order of presentation of the strata were altered.  In the descending 

stratification design, strata were administered in order from most to least 

discriminating, which would mimic the ordering seen in the Sympson-Hetter 

procedure.  In the nonsystematic stratification design, medium discriminating strata 

were administered first, followed by the least and then highest discriminating strata.  

The results showed that the ascending discrimination design produced consistently 

smaller mean squared errors than either the descending or the non-systematic 

stratification designs, with the non-systematic design outperforming the descending 

design.  Further, when they examined the performance of the Sympson-Hetter and the 

a-Stratified design in more realistic contexts of item and pool rotation and retirement, 

they found that over time, the Sympson-Hetter resulted in more item retirements and 

a degraded item pool with few highly discriminating items because the items retired 
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were disproportionately of high discrimination which are difficult and costly to 

replace. 

 While these results speak well for the utility of the a-Stratified design in 

controlling item exposure, the procedure has suffered from some major criticisms.  

Stocking (1998) points out that correlations between the difficulty and discrimination 

parameters as well as correlations between the errors of estimation in the item 

parameters which often occur in IRT measurement, may cause problems for the a-

Stratified design.  Since item difficulty and discrimination are often positively 

correlated, the result of pool stratification based on discrimination alone may result in 

items in the lowest stratum having a wide range of difficulties, while those in the 

highest stratum have a much more narrow range of difficulties tending toward the 

more difficult.  Tang, Jiang, and Chang (1998) agree that the procedure does not work 

well when item difficulties are not well distributed with respect to the strata because 

item selection is based on matching difficulty to the current trait estimation.  When 

the items in a stratum have an insufficient range of difficulty, some items may 

become overly exposed.  Specifically, the lack of available easy items in the more 

discriminating strata may cause the easiest items in those strata to be overexposed.  

Stocking (1998) further points out that there is often a correlation between content 

area and item difficulty, such that one content may be more difficult than another.  

This would result in contents being poorly distributed across strata as well.  

Additionally, Stocking criticizes the procedure for the lack of specific guidelines for 
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determining the number of strata, the number of items to select per stratum, and the 

number of items to consider in the random item selection within strata, stating that  

the discovery of an optimum design under this approach is 
accidental and the search for an optimum may be even more 
time consuming and less certain of success than the 
development and application of test designs that the Chang and 
Ying approach was designed to replace. (p. 25) 
 

After evaluating fifteen different stratification options with a 28-item fixed length 

CAT using a 397 quantitative item pool, Stocking (1998) concluded that that the 

method was “impractical” due to unacceptably low reliabilities and failure to meet 

content constraints.  Parshall, Hogarty, and Kromrey (1999) also found that in their 

evaluation, the a-Stratified procedure did not provide effective exposure control even 

though it had a lower standard error for certain trait levels than the Sympson-Hetter or 

the Triconditional procedures. 

 To address some of these criticisms, Chang and his colleagues (Chang, Qian, 

& Ying, 1999; Leung, Chang, & Hau, 1999; Leung, Chang, & Hau, 2000) have 

developed several modifications to the procedure .  Chang, Qian, and Ying (1999) 

added b-blocking to the a-Stratified design.  The a-Stratified design assumes that the 

difficulty and discrimination parameters of an item are uncorrelated.  As Stocking 

(1998) points out, this is rarely true and may cause problems for the procedure.  The 

b-blocking method addresses this problem by dividing the item pool into blocks 

according to difficulty.  These blocks are then arranged in ascending order and each 

block is individually partitioned into the desired number of strata according to 

discrimination.  The items corresponding to each stratum are then pulled from each 
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block and reassembled by strata.  For example, if 4 strata are desired, the item pool is 

grouped into four item blocks of ascending difficulty.  The four easiest items make up 

one block; the next four easiest items make up the second block; and so on.  Within 

each block, items are ordered according to discrimination.  The least discriminating 

item from each block will then be used to construct the first stratum.  The most 

discriminating item from each block will make up the fourth stratum.  This procedure 

guarantees that there is an equivalent distribution of item difficulties across strata, 

however, it may result in the distribution of discrimination values within a stratum 

being more heterogeneous than when b-blocking is not used.  While this may make 

for some overlap in discrimination between strata, on average, the strata should 

increase in discrimination as the test proceeds.  Chang, Qian, and Ying (1999) 

evaluated this modification in a 360 item GRE Quantitative item pool which had an 

average correlation between difficulty and discrimination parameters of 0.44.  The a-

Stratified design with b-blocking demonstrated better measurement precision for low 

examinees, had lower bias and RMSEs, and had improved pool utilization and 

overlap rates than did the a-Stratified design without the modification.  In addition, 

the b-blocking method appeared to reduce the overexposure of the low difficulty 

items in later strata. 

 Chang and Ying (1999) observed that while the a-Stratified design was 

successful in reducing exposure rates, it did not provide a mechanism to set a 

guaranteed maximum exposure rate.  They suggested that incorporating the Sympson-

Hetter algorithm into the a-Stratified design might serve this purpose while still 
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allowing for the benefits of improved pool utilization and overlap.  Leung, Chang, 

and Hau (1999) implemented this recommendation in a modified procedure they 

termed the Enhanced a-Stratified design or a-Stratified design with Sympson-Hetter.   

Sympson-Hetter item exposure control parameters are set through pre-operational 

simulation with the item pool partitioned into the desired strata.  Observed 

probabilities of item administration are, therefore, based on the stratified structure of 

the pool and exposure control parameters are set accordingly.     

 The results of the study in which Leung, Chang, and Hau (1999) evaluated the 

enhanced a-Stratified design in a simulated 400 item pool and a real data 252 item 

pool, indicated that the enhanced a-Stratified design had similar pool utilization to the 

original a-Stratified method, but was superior in terms of exposure and overlap rates.  

They also found that the simulations to generate the exposure control parameters took 

less time with the enhanced a-Stratified than with the Sympson-Hetter.  Leung, 

Chang, and Hau (2000) extended the enhanced procedure even further by 

incorporating it into the a-Stratified design with b-blocking.  In a two study 

comparison of the a-Stratified, a-Stratified with b-blocking, enhanced a-Stratified, 

and enhanced a-Stratified with b-blocking to the Sympson-Hetter and maximum 

information item selection, the authors determined that the enhanced a-Stratified with 

b-blocking outperformed all other methods in terms of exposure control, pool 

utilization, and item overlap.  However, it also had slightly higher RMSEs and lower 

reliability than the other procedures.   

Computerized Adaptive Testing with Polytomous Items 
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 As computerized adaptive testing moves out of its adolescence, there is a push 

to incorporate more performance oriented items into large scale CAT programs—

mirroring the trend seen in paper and pencil tests.  Many new item types are being 

developed which make use of the visual and auditory features of the computerized 

testing environment such as the graphical modeling problem type developed by 

Bennett, Morely, and Quardt (1998) which requires examinees to model mathematical 

scenarios by plotting points on a graph or the architectural site-design problems on 

the NCARB (National Council of Architectural Registration Boards) exam which ask 

examinees to arrange landscape and structures within a space to meet certain criterion 

(Bejar, 1991).  In addition, the advent of complex scoring algorithms allow for online 

automated scoring of these and other partial credit items such as essay questions, 

testlets, and constructed response math items (Bejar, 1991; Burstein, Kukich, Wolff, 

Lu, & Chodorow, 1998; Clauser, Margolis, Clyman, & Ross, 1997). 

 Polytomous items differ from dichotomous items in that they yield a higher 

modal level of information across a larger span of the theta scale than dichotomously 

scored items and tend to have smaller item pools than dichotomously scored items 

(Koch & Dodd, 1989). The potential size of the item pool for polytomous items will 

vary from testing program to testing program depending on the item type, the 

difficulty and cost of writing the items, and the frequency with which item pools may 

be rotated in or out of use.  Koch and Dodd (1989) concluded that it was possible for 

a polytomous CAT to perform well in terms of measurement precision with item 

pools as small as 30 items, however these results did not take into account the need 
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for content balancing or exposure control.  The following section presents a review of 

exposure control research conducted with polytomous IRT models. 

 Exposure Control Research with Polytomous IRT models.  Pastor, Chiang, 

Dodd, and Yockey (1999), examined the performance of the Sympson-Hetter 

exposure control algorithm in fairly small (60 and 120) item pools using the partial 

credit model and concluded that it provided some protection against item exposure 

with minimal reduction in measurement precision.  Davis, Pastor, Dodd, Chiang, and 

Fitzpatrick (2000) replicated these results with regard to measurement precision, 

again examining the performance of the Sympson-Hetter with the partial credit model 

in a more realistic range of conditions which included content balancing, an 

additional item pool size (240 items), and two levels of test dimensionality.  

However, the Davis, et al. (2000) study found that the Sympson-Hetter was relatively 

ineffective in constraining item exposure rates to the desired target value and that 

observed improvements in exposure rate, item overlap, and pool utilization when the 

Sympson-Hetter was implemented were modest.  The authors concluded that 

difficulties incurred in the implementation of the Sympson-Hetter mechanism, 

especially problems with convergence of the exposure control parameters in small 

item pools, were not outweighed by the observed gains in test security. 

 Pastor, Dodd, and Chang (in press) examined a broader range of exposure 

control mechanisms with two pool sizes (60 and 100 items) using the generalized 

partial credit model.  The authors sought to evaluate the a-Stratified design as a more 

simplistic alternative to the Sympson-Hetter and modified the procedure to work in 
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the polytomous case by selecting items within strata using maximum information.  

The study compared the a-Stratified design to both the Sympson-Hetter and the 

enhanced stratified design.  In addition, conditional exposure control was examined 

using both the conditional Sympson-Hetter and the newly proposed conditional 

enhanced stratified design, which incorporated the conditional Sympson-Hetter 

algorithm into the a-Stratified design.  In contrast to the previous two studies, the 

results demonstrated a noticeable decrease in measurement precision as exposure 

control became more restrictive.  The best results for measurement precision were 

seen with the a-Stratified design with the worst measurement precision occurring in 

the conditional enhanced stratified design.  While the a-Stratified design was able to 

decrease item exposure and overlap and increase pool utilization over the no exposure 

control condition, the other exposure control methods were generally superior in 

terms of the test security variables.  As in previous research, though, convergence 

problems were observed when establishing exposure control parameters for the 

conditions incorporating the Sympson-Hetter or conditional Sympson-Hetter.  The 

authors concluded that a more simplistic approach to exposure control such as the a-

Stratified design would be most appropriate with low or medium stakes tests or when 

the item pool to test length ratio was small.  However, when high stakes testing 

necessitates tighter control of item exposure, the more restrictive conditional selection 

procedures should be considered. 

 Davis and Dodd (2001) evaluated the performance of the Within .10 logits 

randomization procedure with the partial credit model in a seven item fixed length 
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CAT using a 149 item pool calibrated with data from administrations of the Medical 

College Admissions Test (MCAT).  The procedure was modified to work with the 

polytomous case.  Rather than forming an item group of all items within .10 logits of 

the needed item difficulty, maximum information item selection was used to select 

the two most informative items at each of three points along the theta scale:  

estimated theta, estimated theta minus 0.10, and estimated theta plus 0.10.  This 

resulted in a group of six passages from which one was randomly selected for 

administration.  Results indicated that while measurement precision was somewhat 

reduced over the optimal, the procedure was successful in reducing exposure and 

overlap rates and increasing pool utilization.  Somewhat promising was the finding 

that maximum exposure rates were reasonably controlled even without the use of 

exposure control parameters. 

Statement of Problem 

 As the demand for performance items grows and partial credit scoring 

becomes more feasible on the computer, it becomes necessary to evaluate exposure 

control mechanisms with polytomous item pools.   While the research investigating 

the extent that measurement precision is affected when using such constraints in 

dichotomous item pools is extensive, only recently have researchers begun to address 

the effects of exposure control when using polytomous items.  The results of research 

on dichotomous items is not necessarily generalizable to the polytomous case because 

polytomously scored items yield a higher modal level of information across a larger 

span of the theta scale than dichotomously scored items (Koch & Dodd, 1989).  
 68



Therefore, the negative impact on measurement precision observed in the 

dichotomous case of administering suboptimal items may not occur.  In fact, the 

Pastor et al. (1999), Davis et al. (2000), and Davis and Dodd (2001) studies all have 

supported this compensatory view of polytomous items.   In addition, polytomous 

item pools tend to be smaller than dichotomous item pools.  Although, Koch and 

Dodd (1989) concluded that it was possible for a polytomous CAT to perform well 

with item pools as small as 30 items, this finding did not take into consideration the 

threat posed to the test’s validity if the item pool were to be compromised.  The 

degree to which exposure control mechanisms can be successfully implemented under 

these more restrictive pool conditions must also be evaluated. 

 Exposure control research conducted with polytomous IRT models has 

yielded mixed results both in terms of the effectiveness of various procedures for 

improving test security and the impact of exposure control on measurement precision.  

The Pastor et al. (1999) and the Davis et al. (2000) studies both found that the 

Sympson-Hetter could be used without negative impact to measurement precision, 

but the Pastor, et al. (in press) study did find a decrease in measurement precision 

when the Sympson-Hetter was used.  The Pastor, et al. (in press) study found that the 

Sympson-Hetter was effective in controlling item exposure, but the Davis, et al. 

(2000) study found that it was not.   

 Conclusions as to the cause of these inconsistencies cannot yet be drawn 

because of differences in the item pools and test structures studied.  One possibility is 

that results may differ for Rasch and non-Rasch models due to the influence, or lack 
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thereof, of item discrimination on information, and thus, maximum information item 

selection.  Way (1998) discusses the differential impact of the underlying 

measurement model on CAT performance with dichotomous items, citing research 

that demonstrates that Rasch based CATs tend to be robust to modifications in the 

item pool and item selection algorithms which may cause the administration of sub-

optimal items (Haynie & Way, 1994; Way, Zara, & Leahy, 1996).  In a Rasch model, 

when all items are assumed to be of equal discrimination, the substitution of one item 

for another may make less of an impact on trait estimation because they are all 

equally informative, only differing in their location along the difficulty scale. 

 Polytomous IRT models differ, however, not only in terms of their 

parameterizations, but also in how response probabilities are computed.  Both the 

generalized partial credit and the graded response models allow for variation in item 

discrimination, but the generalized partial credit model is a divide-by-total model, 

whereas the graded response model is a difference model.  It is reasonable to think 

that differences between these classes of models may influence the optimal method 

for controlling item exposure.  Since no research has examined the use of exposure 

control procedures with the graded response model, however, this, along with the 

potential effectiveness of various exposure control procedures for the model, remains 

sheer speculation. 

 Polytomous exposure research to date has been limited in the scope of 

exposure control procedures studied.  Clearly, the smaller nature of polytomous item 

pools impacts the implementation of conditional selection strategies because of 
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convergence problems observed in establishing the exposure control parameters.   It 

is also questionable as to whether procedures such as the Sympson-Hetter are even 

effective in controlling item exposure in polytomous pools (Davis, et al., 2000).   It is, 

therefore, highly desirable to investigate the utility of more simplistic procedures such 

as the a-Stratified design and various randomization procedures.   The results of the 

Davis and Dodd (2001) study indicate that randomization procedures may, in fact, 

yield sufficient test security with polytomous item pools, but further research is 

needed.   

 Certain randomization procedures, however, such as the randomesque and 

within .10 logits procedure (in the polytomous modification; Davis & Dodd, 2001) 

evoke questions as to the appropriate item group size from which to randomly select 

the next item for administration.  These procedures present no clear recommendations 

in terms of item group size to test developers and it is unclear how changes in this 

property will affect measurement precision and test security variables. 

 The current study attempted to address some of these issues by evaluating the 

performance of a series of exposure control procedures with three different 

polytomous IRT models.  Rasch and non-Rasch models as well as difference and 

divide-by-total models are represented in the three models chosen for study.  The 

exposure control procedures examined include representatives from all three 

classifications (randomization, conditional, and stratification).  Specific questions 

which are addressed by this dissertation are: 
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1) Can simpler methods such as the a-Stratified design or various randomization 

procedures be as effective (or more so) for protecting test security as 

conditional selection strategies such as the Sympson-Hetter? 

2) To what extent will measurement precision be sacrificed under each exposure 

control procedure? 

3) Does the optimal method for controlling item exposure differ depending on 

the polytomous model selected? 

4) What impact does item group size have on the effectiveness of certain 

randomization procedures?
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Chapter III 

 Methodology   

Overview of Techniques 

 Six different exposure control mechanisms were evaluated in the current 

study, two each from the randomization, conditional selection, and stratification 

procedures— the randomesque procedure, the within .10 logits procedure, the 

Sympson-Hetter, the conditional Sympson-Hetter, the a-Stratified design, and the 

enhanced a-Stratified design.   In addition, for the randomesque and the within .10 

logits procedures, two different item group sizes from which the item to be 

administered is randomly drawn were evaluated. Finally, a maximum information 

item selection condition was used for baseline no exposure control comparison, for a 

total of nine exposure control conditions. 

 Three different polytomous IRT models were used in the current study—the 

graded response model, the generalized partial credit model, and the partial credit 

model.  Each model was completely crossed with all of the above outlined exposure 

control methods except for the partial credit model.  Since this model assumes equal 

discrimination across items, the two conditions involving the a-Stratified design was 

not evaluated.  The result is a partially crossed 9 (exposure control) X 3 (polytomous 

model) within group factorial design yielding 25 evaluated conditions. 

 

Item pool 
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 Data were obtained from 22 forms of the Verbal Reasoning section of the 

Medical College Admissions Test (MCAT), collected during six separate 

administrations occurring from April 1996 through April 2001, to assemble an item 

pool consisting of 157 polytomously scored items.  Due to previously observed 

problems with low category frequencies in the extremes of the response distribution 

which caused difficulties with item calibration (Davis & Dodd, 2001), item responses 

were collapsed across categories and recoded.  Items which originally had 7 

categories were collapsed to 3 categories.   Items which originally had 8 categories 

were collapsed to 4 categories.  Items which originally had 9 or 11 categories were 

collapsed to 5 categories.  The result was an item pool which consisted of 63% 3-

category items, 18.5% 4-category items, and 18.5% 5-category items.   Original 

content area classifications which indicated an item’s membership in one of three 

content areas (Humanities, Social Sciences, Natural Sciences) were retained to 

preserve any naturally existing differences in item difficulty by content area.  Of the 

157 items, 39% represented the content area of Humanities, 37.5% represented the 

content area of Social Sciences, and 23.5% represented the content area of Natural 

Sciences.   

Data Generation 

 Response data to the 157 items was independently generated using 

conventional techniques for each of the three polytomous IRT models, resulting in 

separate, model specific datasets.  For each model, a random number was drawn from 

a normal distribution (0,1) to represent the known trait level for a simulee. The 
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probability of responding in each category given a simulee’s trait level was then 

computed for each item according to the appropriate model (see the Item Response 

Theory with Polytomous Items section of the Literature Review).  These probabilities 

were then summed to create a cumulative probability of response ranging from 0 to 1.  

A random number was drawn from a uniform distribution and compared to the 

cumulative response probability.  The simulee was assigned the score which 

corresponded to the location in the cumulative probability distribution that the 

random number fell at or below.  This procedure was repeated for all simulees and all 

items. 

Four separate data sets were generated for each model for use in the current 

study, yielding a total of twelve data sets.  The first data set for each model (N(0,1); 

N=7500) was used as the calibration sample to obtain item parameter estimates for 

use in the CATs.  The second data set for each model (N=8000) was used to set 

exposure control parameters for the Sympson-Hetter and enhanced a-Stratified 

design.  For procedures using the Sympson-Hetter, the exposure control parameters 

are distributionally dependent, and, therefore, must be set using a sample of simulees 

whose distribution of trait level will approximate that expected in operational testing.  

For the current study, a normal N(0,1) distribution was assumed.  The third data set 

for each model (N=15000) was used to set exposure control parameters for the 

conditional Sympson-Hetter.  For the conditional Sympson-Hetter, exposure control 

parameters are set independent of the trait level distribution, and, therefore, to attain 

the same level of precision for the exposure control parameters at all levels of theta, 
 75



the sample of simulees should be uniformly distributed across the theta levels.  For 

the current study, 1000 simulees were drawn at each of fifteen discrete theta levels in 

order to set the exposure control parameters for the conditional Sympson-Hetter.  The 

fourth data set for each model (N(0,1); N=1000) was generated for use in each of the 

CAT conditions.  This last data set is generated separately from the calibration data 

set so as to avoid any possibility of capitalizing on chance by using the same sample 

in the CATs that was used to estimate the item parameters.   

Parameter Estimation 

Responses from the three N=7500 calibration samples to the 157 items were 

separately submitted to PARSCALE (Muraki & Bock, 1993) for calibration 

according the graded response, generalized partial credit, and partial credit models.  

PARSCALE employs a marginal maximum likelihood EM algorithm for parameter 

estimation that consists of two steps: first, the provisional expected frequency and 

sample size are calculated, and second, the marginal maximum likelihood is 

estimated.  These steps continue through a series of iterations until item parameter 

estimates stabilize. 

Stratification of the Item Pool 

 For the a-Stratified and enhanced a-Stratified conditions the pool was divided 

into five strata with 32 items in the first two strata and 31 items in each of the 

remaining three strata.  Yi and Chang (2000) developed a modification to the a-

Stratified design in which items are stratified according to multiple factors which 

might include not only item discrimination, but also item difficulty, and item content 
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associations.  This multiple stratification modification, which they deemed the 

CBASTR, was designed to control for any variation in item difficulty across content 

areas which might result in a poor distribution of item contents across the strata. 

In the current study, it was found that a moderately strong negative correlation 

(-0.54) existed between the estimated item discrimination parameter and the number 

of categories, which resulted in the more discriminating strata containing items with 

fewer categories and the less discriminating strata containing items with more 

categories.  This caused problems due to the use of a content balancing mechanism 

which insured that each test administered reflected an appropriate distribution of 

items both in terms of content and number of categories.   It was determined that the 

CBASTR method of multiple stratification could be adapted to control for this 

phenomenon.  Therefore, before being stratified according to discrimination, items 

were first stratified according to content area and number of categories.  A triple 

stratification of the pool was implemented so that each stratum would contain a 

sufficient number of items from each content area and of each number of categories.     

 Combining the three levels of content with the three levels of categories 

resulted in nine unique sets of item characteristics.  The item pool was separated into 

nine different subpools representing each of the item types.   Each of these nine 

subpools was then sorted independently by discrimination.  The five strata were then 

formed by pulling items from each of the sorted subpools into the appropriate 

stratum—the 3 or 4 least discriminating items from each subpool were used to make 

the 1st stratum; the 3 or 4 highest discriminating of each type to were used to 
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construct the 5th stratum.  This process was implemented independently for the 

generalized partial credit and graded response models, utilizing the estimated item 

discrimination values obtained under each model. 

Setting the exposure control parameters 

Sympson-Hetter and Enhanced a-Stratified Conditions 

 Responses from the N=8000 data set were used with the estimated item 

parameters in setting the exposure control (Ki) parameters for the Sympson-Hetter 

and enhanced a-Stratified conditions.  Hetter and Sympson (1997) report that the 

maximum probability of administration will approach a value slightly above the 

target exposure rate.  While several operational CAT testing programs using 

dichotomous items have selected a target exposure rate of .20 (Stocking, 1992), the 

smaller nature of the polytomous item pool in the current study necessitates a more 

liberal criterion.  For the current research, a target exposure rate, r, of 0.39 was 

therefore set for each of the conditions to ensure that the maximum probability of 

administration would converge to the 0.40 level.  It should be noted that this target 

exposure rate was even higher than the 0.30 level used in previous research exploring 

the Sympson-Hetter in polytomous CAT (Pastor, et al., 1999; Davis, et al., 2000; 

Pastor, et al., in press), but was chosen after initial experimentation with more 

restrictive levels of exposure control failed to produce convergence of the exposure 

control parameters.   

For the first iteration, all Ki’s were set equal to 1.0 so that every item which 

was selected through maximum information item selection, would actually be 
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administered.  This provided a baseline exposure rate for all items in the pool.  After 

each iteration the probability of selecting each item, P(S), was computed by dividing 

the frequency of selection by the number of simulees (in this study, 8000).  Based on 

the probability of selection, new Ki’s were computed such that if an item’s P(S) was 

less than or equal to the target exposure rate (r=.39), Ki will be set equal to 1.0.  

Otherwise, if an item’s P(S) was greater than our target exposure rate (r=.39), Ki was 

set equal to r/P(S).  To ensure that there would always be at least as many items 

available for administration as the maximum test length, the Ki for 20 items was 

automatically set equal to 1.0 after each iteration.  These 20 items were identified 

according to two criteria.  First, the 20 items were selected to meet the necessary 

distribution of content and number of categories stipulated by the content balancing 

mechanism.  Second, within each set of item and content characteristics, items were 

chosen which had the lowest probability of selection.   

The iterations to set the exposure control parameters were conducted in 

exactly the same fashion for the enhanced a-Stratified design as for the Sympson-

Hetter procedure, with the exception that they were computed within the constraints 

of  stratification.  In other words, the probability of selection was computed and 

compared to the target exposure rate, but only those items in the first stratum were 

available for selection in the first stage of testing, only those items in the second 

stratum were available for the second stage of testing, etc.   

Conditional Sympson-Hetter  
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Responses from the N=15000 data set were used with the estimated item 

parameters in setting the exposure control (Ki) parameters for the conditional 

Sympson-Hetter.  This data set was designed to have 1000 simulees at each of 15 

levels of theta—from –3.5 to 3.5 logits in 0.5 logit increments.  Iterations to set the 

exposure control parameters for the conditional Sympson-Hetter were conducted in 

the same fashion as those for the Sympson-Hetter, with the exception that the 

probability of selection was computed separately for each trait level and a separate 

exposure control parameter was computed for each item at each trait level.  The target 

exposure rate for each theta level was set to 0.39.  All Kis were set equal to 1.0 for the 

first iteration and new Kis computed at each iteration by comparing the probability of 

selection to the target exposure rate. 

To ensure that there would always be at least as many items available for 

administration as the maximum test length, it was again necessary to set the Ki values 

for certain items equal to 1.0.  Unlike the procedures used for the Sympson-Hetter 

and Enhanced a-Stratified conditions, with the conditional Sympson-Hetter, there 

were 15 separate sets of Ki values—one for each level of theta.  It was, therefore, 

necessary to perform this operation separately for each level of theta.  Despite best 

attempts to incorporate this procedure, exposure control parameters for the 

conditional Sympson-Hetter would not converge with it in place.  Therefore, in the 

current study, this step was omitted in order to allow for convergence of the exposure 

control parameters.  This is not a recommended course of action for operational 
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implementation and implications of the decision to proceed without the procedure in 

place are covered in the Discussion section. 

CAT simulations 

 SAS computer programs originally developed by Hou, Chen, Dodd, and 

Fitzpatrick (1996) and Chen, Hou, and Dodd (1998) were modified to meet the 

specifications of each CAT condition in the current research.  The initial theta 

estimate for each simulee was zero in all administrations with the use of variable 

stepsize to estimate ability until responses were made into two different categories 

and MLE thereafter.  A 20 item fixed length stopping rule was used.   

 Content and item type were balanced using the Kingsbury and Zara (1989) 

constrained CAT (CCAT) method for all conditions.  Two content factors, unrelated 

to the psychometric properties of the items, were jointly balanced with this method—

content area affiliation and number of categories per item.  By combining the three 

levels of content area affiliation (Humanities, Social Sciences, Natural Sciences) with 

the three levels of numbers of categories (3,4, or, 5), nine unique sets of item 

characteristics were produced (i.e. Humanities with 3 categories, Social Sciences with 

5 categories, etc).  After each item administration, the proportion of each of the nine 

item types given was computed and compared to the target desired proportion.  The 

next item administered was constrained to be chosen from the area with the largest 

discrepancy. Target proportions for each of the nine item types were defined to match 

the observed percentages of each characteristic in the item pool.  Item selection is 

described for each of condition below. 
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No Exposure Control (Maximum Information)  

  In the maximum information item selection condition, items were chosen to 

maximize the information at the current trait estimate. 

Randomesque 

 An item group of the pool’s most informative items for a given trait level was 

assembled and the next item to be administered was randomly chosen from within 

this item group.  In the current study, two item group sizes were evaluated—three and 

six.  So, the next item to be administered was randomly chosen from among the three 

most informative items or the six most informative items respectively.  

Within .10 logits 

 This study made use of the modified within .10 logits procedure developed by 

Davis and Dodd (2001) for use in the polytomous case.   The procedure was 

implemented by using maximum information item selection to select the most 

informative items at each of three points along the trait metric:  estimated theta, 

estimated theta minus 0.10, and estimated theta plus 0.10.  The next item to be 

administered was randomly selected from among this item group.  In the current 

study, two group sizes were evaluated.  In the first case, one item was selected at each 

of these three theta points, resulting in an item group size of three.  In the second 

case, two items was selected at each of these theta points, resulting in an item group 

size of six.    

Sympson-Hetter 
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For the Sympson-Hetter condition, the appropriate Ki parameters were read in 

from an external file.  An item was selected for administration based both on 

maximum information and on the comparison of that item’s Ki parameter to a random 

number drawn from a uniform distribution.  If Ki was greater than the random 

number, then the item was administered, otherwise, the item was blocked from 

further selection for that simulee and the next most informative item was evaluated 

for administration.   

Conditional Sympson-Hetter 

For the conditional Sympson-Hetter condition, the appropriate matrix of Ki 

parameters was read in from an external file.  An item was selected for administration 

based both on maximum information and on the comparison of the Ki parameter 

corresponding to the theta level closest to the simulee’s estimated trait level to a 

random number drawn from a uniform distribution.  If Ki was greater than the random 

number, then the item was administered, otherwise, the item was blocked from 

further selection for that simulee and the next most informative item was evaluated 

for administration.  

a-Stratified design 

The a-Stratified design was implemented in this study according to the 

modifications made by Pastor, Dodd, and Chang (in press) for use in the polytomous 

case.  There were five stages of testing, with four items administered from each of the 

five increasingly discriminating strata.  Within a stratum, items were selected by 

maximum information item selection. 
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Enhanced a-Stratified design 

The enhanced a-Stratified design condition had the same stratification 

structure (five stages, four items administered per stratum) as the a-Stratified design.  

However, selection within a stratum was based both on maximum information item 

selection and the comparison of the item’s exposure control parameter to a random 

uniform number.   If Ki was greater than the random number, then the item was 

administered, otherwise, the item was blocked from further selection for that simulee 

and the next most informative item was evaluated for administration.   

While the triple stratification of the pool by content, number of categories, and 

discrimination parameter described above in the Stratification of the Item Pool 

section, ensured that enough items were present within each stratum to meet the 

content balancing constraints, the inclusion of the Sympson-Hetter exposure control 

parameters in the enhanced a-Stratified design could result in those items being 

unavailable for administration.  In the event that no item within the current stratum 

met the desired content and item type constraints and whose comparison between Ki 

and the random number allowed it to be administered, a method of backward and 

forward searching through the strata was implemented (Leung, Chang, & Hau, 2000; 

Leung, 2001).  This method allowed items from other strata to be considered for 

administration when no item from the current stratum could be administered.  Items 

from previous strata were first considered in a step down fashion from the current 

stratum with items from successive strata considered only if  no item from either the 

current or all previous strata could be administered.  For example, if the current 
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stratum was stratum 3, the order in which items from other strata would be considered 

would be stratum 2, stratum 1, stratum 4, and finally stratum 5. 

Data Analyses 

 In order to evaluate the recovery of known theta in each condition, several 

variables were used.  In addition to descriptive statistics, the Pearson product-moment 

(PPM) correlation coefficients were calculated between the known and estimated 

theta values.  Bias, root mean squared error (RMSE), standardized difference between 

means (SDM), standardized root mean squared difference (SRMSD), and average 

absolute difference (AAD) statistics were also calculated.  The equations to compute 

these statistics are as follows: 
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where θ is the estimate of trait level for simulee k, θ is the known trait level for 

simulee k, 

k̂ k

θ  is the mean of the known trait levels , θ is the mean of the estimated 

trait levels,  was the variance of known trait levels,  is the variance of 

estimated trait levels, and n is the total number of simulees.  
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 Item exposure rates (the probability of administering an item) were computed 

by dividing the number of times an item was administered by the total number of 

simulees.  Frequency distributions of the exposure rates, along with average and 

maximum exposure rates were examined across conditions.  The percent of items that 

were never administered was used as an index of pool utilization. 

 In order to measure test overlap, the audit trails of each simulee were 

compared to the audit trails of every other simulee.  A data file containing the number 

of items shared among the simulees as well as the difference between their known 

theta values was created to obtain an index of item overlap conditional on theta.  

Simulees were defined to have  “similar” trait levels when their known thetas differed 
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by two logits or fewer and “different” trait levels when their known thetas differed by 

more than two logits (Pastor, Chiang, Dodd, & Yockey, 1999; Davis, Pastor, Dodd, 

Chiang, & Fitzpatrick, 2000; Pastor, Dodd, & Chang, in press). 
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Chapter IV 

Results 

 This chapter first presents the results for those conditions employing the 

partial credit model.  There were only seven conditions using this model because the 

assumption of equal discrimination across items prohibited the use of the two 

exposure control procedures based on the a-Stratified design.  Results for the 

generalized partial credit and graded response models are discussed in separate 

sections following those for the partial credit model. 

Partial Credit Model 

 This section presents the results for the seven conditions using the partial 

credit model.  Descriptive statistics for the item pool, nonconvergent cases, average 

theta estimate, and average standard error for each exposure control condition are 

presented first.  In addition, values are provided for the correlation between known 

and estimated theta, bias, SDM, RMSE, SRMSD, and AAD.  These values provide an 

indication of how well each exposure control condition performed in terms of 

measurement precision.  The results of attempts to set exposure control parameters 

for the Sympson-Hetter and conditional Sympson-Hetter conditions are discussed 

next.  This provides an indication of the ease or difficulty of implementation for those 

procedures utilizing individually assigned exposure control parameters.  Finally, the 

degree of pool utilization, item exposure, and item overlap under each condition are 

presented.  These values represent the test security variables and indicate to what 
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degree an exposure control mechanism was able to control exposure and balance item 

usage.  

Descriptive Statistics 

 Table 1 lists the mean, standard deviation, minimum, and maximum values of 

the item parameter estimates for all 157 items in the pool.  The majority of items (99 

out of 157) had only two step values, therefore the information for the third and 

fourth step values is only presented for those items for which it is relevant.  A plot of 

test information for the item pool calibrated according to the partial credit model is 

presented in Figure 1. The item pool information peaks at a theta value of –0.5. 

 After all conditions had been run, a listwise deletion of 53 nonconvergent 

cases was performed.  A case was defined as nonconvergent if, once the end of the 

test had been reached, the trait estimate was greater than or equal to 4.0 or less than or 

equal to –4.0, or if maximum likelihood estimation had never been reached.  For the 

partial credit model, all 53 cases were nonconvergent due to the trait estimates being 

too extreme (θ ).  The number of nonconvergent cases for each 

condition is listed in Table 2.  The number of nonconvergent cases was fairly 

consistent across conditions (7 to 9 cases) with the exception of the randomesque-6 

and within .10 logits-6 conditions where the number of nonconvergent cases was 20 

and 19 respectively.  The remainder of the results for the partial credit model 

conditions are reported on the sample (N=947) of observations which remained after 

the nonconvergent cases had been deleted.

0.4ˆ;0.4ˆ ≥−≤ θ
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Table 1 

Mean, Standard Deviation, Minimum, and Maximum for Item Parameter Estimates 

Obtained Under the Partial Credit Model 

 

Partial Credit Model 
Item Parameter N Mean St. Dev. Min. Max. 
Step Value 1 157 -0.9639 0.7752 -2.3917 0.9522 
      
Step Value 2 157 0.1703 0.8953 -1.8446 2.7836 
      
Step Value 3 58 -1.0906 0.6738 -1.3649 1.4015 
      
Step Value 4 29 0.0053 0.7242 -1.3548 1.8538 
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Figure 1:  Test Information Function for N=157 Items Under the Partial Credit Model 
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Table 2 

Means (and Standard Deviations) for Estimated Theta and Standard Error; Number 

of Nonconvergent Cases for the Exposure Control Conditions Using the Partial 

Credit Model 

Partial Credit Model 
Exposure Control Condition Theta* Standard Nonconvergent  
 Estimate Error Cases 
No Exposure Control 0.01 0.27 9 
 (1.04) (0.04)   
     
Randomesque-3 0.01 0.28 8 
 (1.05) (0.05)   
     
Randomesque-6 -0.01 0.29 20 
 (1.03) (0.05)   
     
Within .10 Logits-3 0.01 0.28 7 
 (1.05) (0.05)   
     
Within .10 Logits-6 -0.01 0.30 19 
 (1.06) (0.05)   
     
Sympson-Hetter 0.01 0.27 9 
 (1.04) (0.04)   
     
Conditional Sympson-Hetter 0.00 0.28 8 

 (1.04) (0.05)   
*Note:   Mean and SD for Known Thetas (N=947) were   
Mean=-0.04; SD=1.00    
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 Table 2 also contains the average theta estimate and standard error for each 

condition.  The mean of the known thetas was –0.04 with a standard deviation of 

1.00.  All conditions reported relatively similar results in terms of the theta estimate, 

with values for the average theta estimate ranging from –0.01 to 0.01 and the standard 

deviation of the theta estimate ranging from 1.03 to 1.06.  As expected, the no 

exposure control condition yielded the lowest average standard error, 0.27 ,with the 

randomesque-6 and the within .10 logits-6 yielding the highest average standard 

errors of 0.29 and 0.30 respectively.  Surprisingly, the Sympson-Hetter produced an 

average standard error, 0.27, comparable to that of the no exposure control condition.   

 Table 3 presents the correlations between known and estimated theta for each 

condition as well as statistics for bias, SDM, RMSE, SRMSD, and AAD.  All 

conditions resulted in an identical correlation coefficient between known and 

estimated theta, 0.96, and were also very similar for the other statistics.  Bias and 

SDM were both functionally zero for all conditions.  RMSE was 0.29 to 0.30 for all 

conditions.  SRMSD ranged from 0.52 to 0.53 for all conditions.  Finally, AAD 

ranged from 0.22 to 0.24 for all conditions.  Any variation in the value of these 

statistics across conditions was judged too small to be reliably interpreted. 

Exposure Control Parameters 

 For the Sympson-Hetter, a target exposure rate of 0.39 was chosen after initial 

attempts to set the exposure rate to more restrictive levels (0.19 and 0.29) were 

unsuccessful.  Thirty iterations were run to ensure converge to the desired level.  The 

maximum probability of administration after the 30th iteration was 0.398.  Conditional 
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Table 3 

Correlation Coefficients between Known and Estimated Theta, Bias, RMSE, SDM, 

SRMSD, and AAD for the Exposure Control Conditions Using the Partial Credit 

Model 

 

Partial Credit Model 
Exposure Control Condition Correlation Bias SDM RMSE SRMSD AAD 
             
No Exposure Control 0.96 -0.05 0.05 0.29 0.53 0.23 
         
Randomesque-3 0.96 -0.05 0.05 0.30 0.53 0.23 
         
Randomesque-6 0.96 -0.03 0.03 0.29 0.53 0.23 
         
Within .10 Logits-3 0.96 -0.05 0.05 0.30 0.53 0.23 
         
Within .10 Logits-6 0.96 -0.03 0.03 0.30 0.53 0.24 
         
Sympson-Hetter 0.96 -0.06 0.06 0.29 0.52 0.22 
         
Conditional Sympson-Hetter 0.96 -0.04 0.04 0.29 0.53 0.23 
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maximum exposure rates of 0.39 were chosen for use with the conditional Sympson-

Hetter and 30 iterations were conducted to ensure convergence of the parameters to 

this level.  Previous research (Stocking & Lewis, 1998) has demonstrated that the 

conditional maximum probability of administrations consistently converged to values 

between 0.05 and 0.10 above the target value.  Consistent with this finding, the 

maximum probability of administration at each theta level in the current study 

converged to values slightly greater than the target (0.426-0.518).   

Pool Utilization and Exposure Rates 

 Table 4 contains the frequency of observed exposure rates along with the 

average, maximum, and standard deviation of exposure rates, and the percent of pool 

not administered for each condition.  Chen, Ankenmann, & Spray (1999) state that 

the average exposure rate for any fixed length test will always be constant and 

mathematically equal to the ratio of test length to pool size.  Since test length was the 

same for all conditions studied, the observed average exposure rates, therefore, did 

not differ and were equal to 0.127 across all conditions.  The standard deviation of 

exposure rates was highest for the no exposure control condition (0.167),  

indicating the most uneven item exposure rates, and lowest for the randomesque-6 

and within .10 logits-6 conditions (0.095 and 0.096 respectively), indicating the most 

even item exposure rates.  The maximum exposure rate of any item was largest for 

the no exposure control condition with a value of 0.655 and lowest for the 

randomesque-6, within .10 logits-6, and conditional Sympson-Hetter conditions with 

values of 0.396, 0.398, and 0.395 respectively.  The percent of pool not administered  
 95



Table 4 

Pool Utilization and Exposure Rates for the Exposure Control Conditions Using the Partial Credit Model 

Partial Credit Model 
Exposure Control  No Exposure Randomesque Randomesque Within .10 Logits Within .10 Logits Sympson-Hetter Conditional 

 Condition Control  3 6 3 6   Sympson-Hetter 
Number of Items 157      157 157 157 157 157 157 
Exposure Rate               

1        0 0 0 0 0 0 0
.91-.99        0 0 0 0 0 0 0
.81-.90        0 0 0 0 0 0 0
.71-.80        0 0 0 0 0 0 0
.61-.70        2 0 0 0 0 0 0
.51-.60        4 2 0 2 0 0 0
.41-.50        12 5 0 7 0 8 0
.36-.40        3 4 2 3 1 13 3
.31-.35        5 4 8 5 8 9 10
.26-.30        5 13 7 11 10 9 14
.21-.25        13 10 18 13 19 8 18
.16-.20        9 17 27 15 25 10 18
.11-.15        11 24 29 25 28 10 17
.06-.10        7 26 27 22 27 12 26
.01-.05        28 20 26 22 26 30 28

Not Administered 58       32 13 32 13 48 23
Exposure Rate AVG 0.127       0.127 0.127 0.127 0.127 0.127 0.127
Exposure Rate SD 0.167       0.123 0.095 0.126 0.096 0.147 0.11

Exposure Rate MAX 0.655       0.503 0.396 0.535 0.398 0.434 0.395
% of Pool Not Administered 37%       20% 8% 20% 8% 31% 15%
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was greatest for the no exposure control condition where 37% of the pool was never 

used.  The percent of pool not administered was lowest for the randomesque-6 and 

within .10 logits-6 conditions where only 8% of the pool was never used.  

 For all exposure rate and pool utilization variables, the randomesque-3 and 

within .10 logits-3 procedures demonstrated improvement over the no exposure 

control condition, but did not perform as well as their 6 item group counterparts.  

While the Sympson-Hetter and conditional Sympson-Hetter controlled maximum 

exposure rates to levels close to the target value (0.434 and 0.395 respectively), the 

percent of pool not administered under each procedure (31% and 15% respectively) 

was well above the randomesque-6 and within .10 logits-6 procedures. 

Item Overlap 

 Audit trails for each simulee were compared to the audit trails of every other 

simulee resulting in 447,931 pairwise comparisons per condition. Table 5 contains the 

average item overlap for all simulees, those of different trait levels (known thetas 

differed by more than two logits), and those of similar trait levels (known thetas 

differed by two logits or fewer) for each condition.  Item overlap information in Table 

5 is presented both in terms of average number of items shared across a 20 item test 

and average percent of items shared across a 20 item test. 

 No exposure control produced the highest overall overlap rates with an 

average of 34% overlap and the randomesque-6 and within .10 logits-6 procedures 

result in the lowest overall overlap rates with an average of 20% overlap for both.  

Results for examinees of similar trait level demonstrate the same pattern with highest 
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Table 5 

Item Overlap Rates for the Exposure Control Conditions Using the Partial Credit 

Model 

Partial Credit Model 
Exposure Control Overall Different Abilities Similar Abilities 
Condition Average Overlap Average Overlap Average Overlap 
  (N=447,931) (N=69,084) (N=378,847) 
No Exposure Control 6.87 1.24 7.89 
  34% 6% 39% 
      
Randomesque-3 4.89 1.21 5.56 
  24% 6% 28% 
      
Randomesque-6 3.93 1.65 4.35 
  20% 8% 22% 
      
Within .10 Logits-3 4.99 1.30 5.66 
  25% 6% 28% 
      
Within .10 Logits-6 3.96 1.65 4.38 
  20% 8% 22% 
      
Sympson-Hetter 5.89 1.04 6.77 
  29% 5% 34% 
      
Conditional Sympson-Hetter 4.43 1.01 5.05 
  22% 5% 25% 
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overlap rates (39%) occurring with the no exposure control condition and lowest 

overlap rates (22%) occurring with the randomesque-6 and within .10 logits-6 

conditions.  Results for examinees of different trait levels show a different pattern 

with the randomesque-6 and within .10 logits-6 actually increasing overlap slightly 

(8%) from the no exposure control condition (6%).  However, these overlap rates are 

uniformly so small that too much emphasis should not be placed on them.   

 Again, the randomesque-3 and within .10 logits-3 conditions do reduce 

overlap when compared to the no exposure control condition (24% and 25% overall 

overlap respectively), but the reduction is not as great as that seen with their 6 item 

group counterparts.  The conditional Sympson-Hetter does a reasonable job of 

reducing overlap (22% overall), but the Sympson-Hetter maintains the second highest 

overlap rate of all conditions with 29% overall overlap.   

Generalized Partial Credit Model 

 This section discusses the results for the nine conditions using the generalized 

partial credit model.  Results with regard to measurement precision are presented 

first.  Descriptive statistics are given for the item pool, number of nonconvergent 

cases, average theta estimate, and average standard error.  In addition, values are 

provided for the correlation between known and estimated theta, bias, SDM, RMSE, 

SRMSD, and AAD.  This is followed by a discussion of attempts to set exposure 

control parameters for the Sympson-Hetter and conditional Sympson-Hetter 

conditions.  This speaks to the ease or difficulty of implementation of the conditional 

selection strategies.  Finally, results with regard to test security are presented in terms 
 99



of the degree of pool utilization, item exposure, and item overlap observed under each 

condition.  

Descriptive Statistics  

 Table 6 lists the mean, standard deviation, minimum, and maximum values of 

the item discrimination and step values for all 157 items in the pool.  Most of the 

items (99 out of 157) had only two step values, therefore, the information for the 

third, and fourth step values is only given for the remaining 58 and 29 items 

respectively.  The test information function for the item pool calibrated according to 

the generalized partial credit model is plotted in Figure 2. The item pool information 

peaked at a theta value of –0.6.  

 Table 7 gives the mean, standard deviation, minimum, and maximum values 

for the item discrimination parameters broken out by strata.  Due to implementation 

of the Yi and Chang (2000) CBASTR modifications to the a-Stratified design, which 

stratified the item pool by content and number of categories as well as discrimination, 

item discrimination values may overlap across strata.   Yi and Chang (2000) state that 

this overlap is acceptable so long as the average item discrimination increases across 

strata.  As can be seen from the table, while there is some degree of overlap across the 

strata, the average ‘a’-value does increase as the strata increases. 

 A listwise deletion of 191 nonconvergent cases was conducted after all 

conditions had been run.  A case was defined as nonconvergent if, once the end of the 

test had been reached, the trait estimate was greater than or equal to 4.0 or less than or 

equal to –4.0, or if maximum likelihood estimation had never been reached.  For the 
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Table 6 

Mean, Standard Deviation, Minimum, and Maximum for Item Parameter Estimates 

Obtained Under the Generalized Partial Credit Model 

 

Generalized Partial Credit Model 
Item Parameter N Mean St. Dev. Min. Max. 
Item Discrimination 157 0.9159 0.1919 0.5377 1.519 
      
Step Value 1 157 -0.9940 0.9028 -3.1316 1.5021 
      
Step Value 2 157 0.1790 0.9906 -1.8144 3.5687 
      
Step Value 3 58 -0.1949 0.7613 -1.4769 1.5110 
      
Step Value 4 29 -0.1169 0.8973 -2.3620 2.3416 
 

 

Table 7 

Mean, Standard Deviation, Minimum, and Maximum of Item Discrimination 

Parameters Across Strata for the Generalized Partial Credit Model 

Generalized Partial Credit Model 
Strata N Mean St. Dev. Min. Max. 

Stratum 1 32 0.73 0.09 0.54 0.87 
      
Stratum 2 32 0.82 0.11 0.63 0.96 
      
Stratum 3 31 0.91 0.13 0.68 1.05 
      
Stratum 4 31 0.98 0.13 0.69 1.17 
      
Stratum 5 31 1.14 0.19 0.80 1.52 
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Figure 2:  Test Information Function for N=157 items Under the Generalized Partial Credit Model
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generalized partial credit model, all 191 cases were nonconvergent due to the trait 

estimates being too extreme (θ ).  Table 8 lists the number of 

nonconvergent cases for each condition.  The number of nonconvergent cases was 

somewhat high, ranging from 34 to 47 across conditions, with the exception of the a-

Stratified and enhanced a-Stratified conditions where the number of nonconvergent 

cases was 2 and 10 respectively.  The remainder of the results for the generalized 

partial credit conditions are reported on the sample (N=809) of observations which 

remained after the nonconvergent cases had been deleted.  

0.4ˆ;0.4ˆ ≥−≤ θ

 Table 8 also provides the average theta estimate and standard error for each 

exposure control condition.  The mean of the known thetas was 0.03 with a standard 

deviation of 1.03.  All conditions reported a slightly increased average theta estimate, 

with no exposure control giving the average theta estimate closest to the known (0.05) 

and randomesque-6 and within .10 logits-6 producing average theta estimates furthest 

from the known (0.08 and 0.09 respectively).  Standard deviations of the theta 

estimates were also slightly inflated relative to the standard deviation of the known 

thetas and ranged from 1.09 to 1.12.  As expected, no exposure control yielded the 

lowest average standard error, 0.28, with the a-Stratified and enhanced a-Stratified 

yielding the highest average standard errors (0.33 for both procedures).  The 

randomesque-3, within .10 logits-3, and Sympson-Hetter all yielded average standard 

errors of 0.29, while the randomesque-6, within .10 logits-6, and conditional  
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Table 8 

Means (and Standard Deviations) for Estimated Theta and Standard Error; Number 

of Nonconvergent Cases for the Exposure Control Conditions Using the Generalized 

Partial Credit Model 

 

Generalized Partial Credit Model 
Exposure Control Theta* Standard Nonconvergent 
Condition Estimate Error Cases 
No Exposure Control 0.05 0.28 34 
  (1.10) (0.05)   
      
Randomesque-3 0.07 0.29 41 
  (1.10) (0.05)   
      
Randomesque-6 0.08 0.31 44 
  (1.09) (0.06)   
      
Within .10 Logits-3 0.07 0.29 39 
  (1.09) (0.05)   
      
Within .10 Logits-6 0.09 0.31 46 
  (1.10) (0.06)   
      
Sympson-Hetter 0.06 0.29 34 
  (1.10) (0.05)   
      
Conditional Sympson-Hetter 0.07 0.31 47 
  (1.12) (0.06)   
      
A-Stratified 0.06 0.33 2 
  (1.11) (0.06)   
      
Enhanced A-Stratified 0.07 0.33 10 
  (1.10) (0.06)   
*Note:   Mean and SD for Known Thetas (N=809) were 
Mean=0.03; SD=1.03    
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Sympson-Hetter yielded average standard errors of 0.31. Table 9 states the 

correlations between known and estimated theta for each exposure control condition 

as well as values for the bias, SDM, RMSE, SRMSD, and AAD statistics. The 

correlation between known and estimated theta was highest for no exposure control 

(0.96) and lowest for the conditional Sympson-Hetter (0.93).  Both the within .10 

logits-3 and the Sympson-Hetter conditions had correlation coefficients comparable 

to the no exposure control condition.  Bias and SDM were functionally zero across 

conditions.  No exposure control shared the lowest RMSE, SRMSD, and AAD values 

with the Sympson-Hetter (RMSE=.29; SRMSD=0.51; AAD=0.23).  Within .10 

logits-6 and the conditional Sympson-Hetter conditions had the highest RMSEs and 

SRMSDs (RMSE=0.39, 0.40 respectively; SRMSD=0.59 for both).  While both 

procedures also had high AAD values (0.26), the a-Stratified design had the highest 

value for AAD at 0.27. 

Exposure Control Parameters 

 Initial attempts were made to set the target exposure rate for the Sympson-

Hetter to more restrictive levels (0.19 and 0.29), but after 30 iterations the observed 

maximum probability of administration did not approach the desired level.  A target 

exposure rate of 0.39 was, therefore, chosen to ensure converge to the 0.40 level.  The 

maximum probability of administration after the 30th iteration with a target exposure 

rate of 0.39 was 0.404.  A target exposure rate of 0.39 was also set for the enhanced 

a-Stratified condition which yielded a maximum observed probability of 

administration of 0.399 after the 30th iteration.  For the conditional Sympson-Hetter,
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Table 9 

Correlation Coefficients between Known and Estimated Theta, Bias, RMSE, SDM, 

SRMSD, and AAD for the Exposure Control Conditions Using the Generalized 

Partial Credit Model 

Generalized Partial Credit Model 
Exposure Control Condition  Correlation Bias SDM RMSE SRMSD AAD 
             
No Exposure Control 0.96 -0.03 0.03 0.29 0.51 0.23 
         
Randomesque-3 0.95 -0.05 0.04 0.36 0.56 0.25 
         
Randomesque-6 0.95 -0.06 0.05 0.35 0.56 0.26 
         
Within .10 Logits-3 0.96 -0.04 0.04 0.30 0.52 0.24 
         
Within .10 Logits-6 0.94 -0.06 0.06 0.39 0.59 0.26 
         
Sympson-Hetter 0.96 -0.03 0.03 0.29 0.51 0.23 
         
Conditional Sympson-Hetter 0.93 -0.05 0.04 0.40 0.59 0.26 
         
A-Stratified 0.95 -0.03 0.03 0.34 0.55 0.27 
         
Enhanced A-Stratified 0.95 -0.04 0.04 0.34 0.55 0.26 
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 conditional maximum exposure rates of 0.39 were chosen and 30 iterations were 

conducted to ensure convergence of the parameters to this level.  Stocking and Lewis 

(1998) reported that the conditional maximum probability of administrations 

consistently converged to between 0.05 and 0.10 above the target value.  In the 

current study, the maximum probability of administration at each theta level 

converged to values slightly greater than the target (0.420-0.498).   

Pool Utilization and Exposure Rates 

 The frequency of observed exposure rates along with the average, maximum, 

and standard deviation of exposure rates, and the percent of pool not administered for 

each condition are presented in Table 10.  Given that test length was the same for all 

conditions studied, the observed average exposure rates did not differ was equal to the 

test length (20) divided by the item pool size (157), or 0.127 across all conditions 

(Chen, Ankenmann, & Spray, 1999).  The no exposure control condition 

demonstrated the highest standard deviation of exposure rates (0.206), signifying the 

most uneven item usage.  The lowest values for standard deviation of exposure rates 

were those for the randomesque-6, within .10 logits-6, and conditional Sympson-

Hetter conditions (0.12 for all three conditions), signifying the most even item usage.  

The maximum exposure rate of any item was largest for the no exposure control 

condition with a value of 0.878 and lowest for conditional Sympson-Hetter with a 

value  of 0.407.  The Sympson-Hetter, enhanced a-Stratified design, randomesque-6, 

and within .10 logits-6 also had relatively low maximum exposure rates (0.419, 

0.424, 0.477, and 0.482 respectively).  The randomesque-3, within .10 logits-3, and  
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Table 10 

Pool Utilization and Exposure Rates for the Exposure Control Conditions Using the Generalized Partial Credit Model 

Generalized Partial Credit Model 
 Exposure Control No Exposure Randomesque Randomesque Within .10 Within .10 Sympson Conditional A-Stratified Enhanced 

 Conditions Control  3 6 Logits-3 Logits-6  Hetter Sympson-Hetter  A-Stratified 
Number of Items 157         157 157 157 157 157 157 157 157
Exposure Rate                  

1        0 0 0 0 0 0 0 0 0
.91-.99         0 0 0 0 0 0 0 0 0
.81-.90         3 0 0 0 0 0 0 0 0
.71-.80         0 1 0 1 0 0 0 1 0
.61-.70         5 3 0 3 0 0 0 3 0
.51-.60         6 3 0 3 0 0 0 5 0
.41-.50         4 6 3 8 4 8 2 9 8
.36-.40         5 3 9 1 8 24 5 8 21
.31-.35         3 2 8 4 6 5 14 7 9
.26-.30         6 10 6 8 9 8 11 4 4
.21-.25        4 13 8 12 7 3 13 6 6
.16-.20        7 11 19 12 19 6 15 5 7
.11-.15        12 15 29 16 31 8 15 9 9
.06-.10        4 17 25 14 23 9 22 6 8
.01-.05        32 32 29 34 28 35 38 9 15

Not Administered 66         41 21 41 22 51 22 85 70
Exposure Rate AVG 0.127         0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127
Exposure Rate SD 0.206         0.161 0.12 0.162 0.12 0.158 0.12 0.188 0.158

Exposure Rate MAX 0.878         0.705 0.477 0.713 0.482 0.419 0.407 0.735 0.424
% of Pool Not Administered 42%         26% 13% 26% 14% 32% 14% 54% 45%
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a-Stratified design, on the other hand, resulted in maximum exposure rates above 

acceptable levels (0.705, 0.713, and 0.735 respectively).  

 Surprisingly, the percent of pool not administered was greater for the a-

Stratified design (54%) and enhanced a-Stratified design (45%) than for the no 

exposure control condition (42%).  This is especially troubling given that one of  the 

stated strengths of the a-Stratified design is to increase pool utilization.  Possible 

reasons for this unexpected finding are presented in the Discussion.  The percent of 

pool not administered was lowest for the randomesque-6, within .10 logits-6, and 

conditional Sympson-Hetter conditions where only 13-14% of the pool was never 

used. 

 While the randomesque-3 and within .10 logits-3 procedures did show 

improvement over the no exposure control condition, they did not perform as well as 

their 6 item group counterparts when all exposure rate and pool utilization variables 

were evaluated.  The Sympson-Hetter controlled the maximum exposure rate to a 

level close to the target value, but the percent of pool not administered under this 

procedure (32%) was well above that observed with other procedures. 

Item Overlap 

 Pairwise comparisons of examinee audit trails were made for each simulee 

with every other simulee, resulting in 326,836 pairwise comparisons per condition. 

Table 11 contains the average item overlap for all simulees, those of different trait 

levels (known thetas differed by more than two logits), and those of similar trait 

levels (known thetas differed by two logits or fewer) for each condition.  Information 
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Table 11 

Item Overlap Rates for the Exposure Control Conditions Using the Generalized 

Partial Credit Model 

Generalized Partial Credit Model 
Exposure Control Overall Different Abilities Similar Abilities 
Conditions Average Overlap Average Overlap Average Overlap 
  (N=326,836) (N=56,306) (N=270,530) 
No Exposure Control 9.18 2.43 10.58 
  46% 12% 53% 
      
Randomesque-3 6.56 2.27 7.46 
  33% 11% 37% 
      
Randomesque-6 4.78 2.39 5.27 
  24% 12% 26% 
      
Within .10 Logits-3 6.61 2.26 7.51 
  33% 11% 38% 
      
Within .10 Logits-6 4.79 2.48 5.27 
  24% 12% 26% 
      
Sympson-Hetter 6.43 1.44 7.47 
  32% 7% 37% 
      
Conditional Sympson-Hetter 4.77 1.97 5.36 
  24% 10% 27% 
      
A-Stratified 8.04 3.01 9.09 
  40% 15% 45% 
      
Enhanced A-Stratified 6.40 3.21 7.07 
  32% 16% 35% 
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regarding item overlap information is presented both in terms of average number of 

items shared across a 20 item test and average percent of items shared across a 20 

item test. 

 The highest overall overlap rate was seen with the no exposure control 

condition produced which yielded an average of 46% overlap.  The randomesque-6, 

within .10 logits-6, and conditional Sympson-Hetter procedures resulted in the lowest 

overall overlap rates, with an average of 24% overlap for all three procedures.  The a-

Stratified design yielded an unsatisfactory 40% overall overlap, with the 

randomesque-3, within .10 logits-3, Sympson-Hetter, and enhanced a-Stratified 

performing only slightly better with overall overlap rates between 32-33%.  Results 

for examinees of similar trait level demonstrated the same pattern with highest 

overlap rates (53%) occurring with the no exposure control condition and lowest 

overlap rates (26-27%) occurring with the randomesque-6, within .10 logits-6, and 

conditional Sympson-Hetter conditions.  Results for examinees of different trait 

levels show a different pattern with no exposure control, and both randomesque and 

within .10 logits procedures resulting in about 11-12% overlap.  The Sympson-Hetter 

and conditional Sympson-Hetter produce slightly lower overlap values (7% and 10% 

respectively) and the a-Stratified and enhanced a-Stratified designs yield slightly 

higher values (15% and 16% respectively).  It is unclear, however, exactly how much 

emphasis should be placed on the findings for examinees of different trait levels as 

the overlap rates are fairly small and the interest in reducing overlap lies mainly with 

examinees of similar trait level.   
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Graded Response Model 

 This section presents the results for the nine conditions employing the graded 

response model model.  Results with regard to measurement precision, ease of 

implementation, and test security are provided.  First, descriptive statistics are given 

for the item pool, nonconvergent cases, average theta estimate, and average standard 

error.  Second, the correlation between known and estimated theta, bias, SDM, 

RMSE, SRMSD, and AAD are presented.  Third is a discussion of attempts to set 

exposure control parameters for the Sympson-Hetter, enhanced a-Stratified, and 

conditional Sympson-Hetter conditions.  Finally, the degree of pool utilization, item 

exposure, and item overlap under each condition are discussed. 

Descriptive Statistics  

 Table 12 lists the mean, standard deviation, minimum, and maximum values 

of the item discrimination and category boundaries for all 157 items in the pool.  The 

bulk of items (99 out of 157) had only two category boundaries, therefore the 

information for the third and fourth category boundaries is only presented on those 

items for which it is relevant.  Figure 3 shows a plot of the test information function 

for the item pool calibrated according to the graded response model. The item pool 

information peaked at a theta value of –0.5.  The mean, standard deviation, minimum, 

and maximum values for the item discrimination parameters for each of the five strata 

are presented in Table 13.  The implementation of the CBASTR multiple 

stratification process to the a-Stratified design ( Yi & Chang, 2000), might be 

expected to cause values across strata to overlap.   As can be seen from the table, 
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Table 12 

Mean, Standard Deviation, Minimum, and Maximum for Item Parameter Estimates 

Obtained Under the Graded Response Model 

 

Graded Response Model 
Item Parameter N Mean St. Dev. Min. Max. 
Item Discrimination 157 1.2749 0.2281 0.7373 1.9168 
      
Category Boundary 1 157 -1.4924 0.8127 -3.3712 0.8071 
      
Category Boundary 2 157 0.2470 1.1211 -1.8629 4.5490 
      
Category Boundary 3 58 0.2517 0.8815 -1.1926 2.0422 
      
Category Boundary 4 29 0.6688 0.8262 -0.4889 3.3881 
 

Table 13 

Mean, Standard Deviation, Minimum, and Maximum of Item Discrimination 

Parameters Across Strata for the Graded Response Model 

Graded Response Model 
Strata N Mean St. Dev. Min. Max. 

Stratum 1 32 1.03 0.15 0.74 1.34 
      
Stratum 2 32 1.17 0.13 1.03 1.46 
      
Stratum 3 31 1.27 0.13 1.13 1.60 
      
Stratum 4 31 1.36 0.14 1.22 1.72 
      
Stratum 5 31 1.56 0.17 1.33 1.92 
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Figure 3: Test Information Function for N=157 items Under the Graded Response Model 
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while there is some degree of overlap across the strata, the average ‘a’-value does 

increase as the strata increases. 

 Twenty-nine nonconvergent cases were deleted in a listwise fashion after all 

conditions had been completed.  As with the previous two models, a case was defined 

as nonconvergent if, once the end of the test had been reached, the trait estimate was 

greater than or equal to 4.0 or less than or equal to –4.0, or if maximum likelihood 

estimation had never been reached.  All 29 cases deleted from the graded response 

model sample were nonconvergent due to the trait estimates being too extreme 

( 0θ ).  The number of nonconvergent cases for each condition is listed 

in Table 14.  The number of nonconvergent cases was uniformly low with between 1 

and 6 nonconvergent cases reported across conditions.  The remainder of the results 

for the graded response model conditions are reported on the sample (N=971) of 

observations which remained after the nonconvergent cases had been deleted.  

.4ˆ;0.4ˆ ≥−≤ θ

 The average theta estimate and standard error for each condition are also 

reported in Table 14.  The mean of the known thetas was -0.01 with a standard 

deviation of 0.95.  All conditions reported a slightly increased mean of the theta 

estimate relative to the standard deviation of the known thetas (between 0.00 and 

0.04), except for the conditional Sympson-Hetter which reported an average theta 

value of  -0.01.  Standard deviations of the theta estimates were elevated across 

conditions and ranged from 1.10 to 1.13.  As expected, no exposure control yielded  
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Table 14 

Means (and Standard Deviations) for Estimated Theta and Standard Error; Number 

of Nonconvergent Cases for the Exposure Control Conditions Using the Graded 

Response Model 

Graded Response Model 
Exposure Control Theta* Standard Nonconvergent 
Condition Estimate Error Cases 
No Exposure Control 0.00 0.30 6 
  (1.10) (0.06)   
      
Randomesque-3 0.03 0.31 2 
  (1.11) (0.07)   
      
Randomesque-6 0.02 0.32 5 
  (1.12) (0.06)   
      
Within .10 Logits-3 0.03 0.31 2 
  (1.13) (0.06)   
      
Within .10 Logits-6 0.04 0.33 4 
  (1.12) (0.06)   
      
Sympson-Hetter 0.01 0.31 4 
  (1.13) (0.07)   
      
Conditional Sympson-Hetter -0.01 0.32 1 
  (1.12) (0.06)   
      
A-Stratified 0.02 0.34 5 
  (1.10) (0.04)   
      
Enhanced A-Stratified 0.00 0.35 3 
  (1.13) (0.06)   
*Note:   Mean and SD for Known Thetas (N=971) were 
Mean=-0.01; SD=0.95    
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the lowest average standard error, 0.30, with the a-Stratified and enhanced a-Stratified 

yielding the highest average standard errors (0.34 and 0.35 respectively).  The 

randomesque-3, within .10 logits-3, and Sympson-Hetter all yielded average standard 

errors of 0.31, while the randomesque-6 and conditional Sympson-Hetter yielded 

average standard errors of 0.32.  Finally, within .10 logits-6 produced an average 

standard error of 0.33. 

 Table 15 displays values for the correlation between known and estimated 

theta, bias, SDM, RMSE, SRMSD, and AAD for each condition. The correlation 

between known and estimated theta was highest for no exposure control (0.89) and 

lowest for the within .10 logits-3 and enhanced a-Stratified conditions (0.85).  

Correlation coefficients were most comparable to the no exposure control condition  

for the randomesque-3, randomesque-6, and within .10 logits-6 conditions, where 

values ranged from 0.88-0.89.  The Sympson-Hetter, conditional Sympson-Hetter, 

and a-Stratified conditions had correlations between  0.86 and 0.87.  Bias and SDM 

were functionally zero across conditions with values ranging from 0.00 to –0.05 for 

bias and 0.00 to 0.04 for SDM.  No exposure control yielded the lowest values for 

RMSE (0.50), SRMSD (0.69), and AAD (0.31).   Within .10 logits-3, the Sympson-

Hetter, and the enhanced a-Stratified conditions  gave the highest RMSEs and 

SRMSDs (RMSE=0.59, 0.58, 0.58 respectively; SRMSD=0.74, 0.73, 0.73).  The 

AAD values were highest for the Sympson-Hetter (0.35), a-Stratified design (0.35), 

and the enhanced a-Stratified design (0.36). 

Exposure Control Parameters
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Table 15 

Correlation Coefficients between Known and Estimated Theta, Bias, RMSE, SDM, 

SRMSD, and AAD for the Exposure Control Conditions Using the Graded Response 

Model 

Graded Response Model 
Exposure Control Condition Correlation Bias SDM RMSE SRMSD AAD 
             
No Exposure Control 0.89 -0.01 0.01 0.50 0.69 0.31 
         
Randomesque-3 0.88 -0.04 0.04 0.52 0.70 0.33 
         
Randomesque-6 0.89 -0.02 0.02 0.51 0.69 0.34 
         
Within .10 Logits-3 0.85 -0.04 0.04 0.59 0.74 0.34 
         
Within .10 Logits-6 0.88 -0.05 0.04 0.53 0.70 0.33 
         
Sympson-Hetter 0.86 -0.02 0.02 0.58 0.73 0.35 
         
Conditional Sympson-Hetter 0.87 0.00 0.00 0.55 0.72 0.34 
         
A-Stratified 0.87 -0.02 0.02 0.53 0.71 0.35 
         
Enhanced A-Stratified 0.85 0.00 0.00 0.58 0.73 0.36 
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 Thirty iterations were run using target exposure rates of 0.19 and 0.29 to set 

the exposure control parameters for the Sympson-Hetter and enhanced a-Stratified 

conditions. However, the observed maximum probability of administration did not 

approach the desired level.  A target exposure rate of 0.39 was, therefore, chosen to 

ensure converge to the 0.40 level.  The maximum probability of administration after 

the 30th iteration with a target exposure rate of 0.39 was 0.399 for the Sympson-

Hetter and 0.406 for the enhanced a-Stratified design.  For the conditional Sympson-

Hetter, conditional maximum exposure rates of 0.39 were chosen and 30 iterations 

were conducted to ensure convergence of the parameters to this level.  Concurrent 

with the findings of the Stocking and Lewis (1998) study, the maximum probability 

of administration at each theta level converged to values slightly greater than the 

target (0.416-0.469).   

Pool Utilization and Exposure Rates 

 Table 16 contains the frequency of observed exposure rates along with the 

average, maximum, and standard deviation of exposure rates, and the percent of pool 

not administered for each condition.  The observed average exposure rate for all 

conditions was 0.127 as dictated by the relationship between test length and pool size 

(Chen, Ankenmann, & Spray, 1999).  The standard deviation of exposure rates was 

highest for the no exposure control condition (0.232), indicating the most uneven item 

exposure rates, and lowest for the randomesque-6, within .10 logits-6, and conditional 

Sympson-Hetter conditions (0.13 for all three conditions), indicating the most even 

item exposure rates.  The maximum exposure rate of any item was largest for the no  
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Table 16 

Pool Utilization and Exposure Rates for the Exposure Control Conditions Using the Graded Response Model 

Graded Response Model 
 Exposure Control No Exposure Randomesque Randomesque Within .10 Within .10 Sympson Conditional A-Stratified Enhanced 

 Condition Control  3 6 Logits-3 Logits-6 Hetter Sympson-Hetter  A-Stratified 
Number of Items 157         157 157 157 157 157 157 157 157
Exposure Rate                  

1       0 0 0 0 0 0 0 0 0
.91-.99         2 0 0 0 0 0 0 0 0
.81-.90         2 0 0 0 0 0 0 2 0
.71-.80         5 1 0 1 0 0 0 2 0
.61-.70         5 5 0 4 0 0 0 4 0
.51-.60         4 4 0 5 0 0 0 6 0
.41-.50         4 5 9 6 9 10 0 8 7
.36-.40         2 2 8 3 7 23 14 5 24
.31-.35         2 5 5 2 5 4 13 2 3
.26-.30         0 7 4 6 4 6 12 1 3
.21-.25        4 11 6 13 6 2 6 4 8
.16-.20        7 7 19 7 21 5 10 8 10
.11-.15        7 11 24 12 26 11 14 12 11
.06-.10        12 20 22 18 19 15 24 9 10
.01-.05        28 43 42 45 43 35 40 7 17

Not Administered 73         36 18 35 17 46 24 87 64
Exposure Rate AVG 0.127         0.127 0.127 0.127 0.127 0.127 0.127 0.127 0.127
Exposure Rate SD 0.232         0.173 0.13 0.173 0.129 0.158 0.13 0.208 0.154

Exposure Rate MAX 0.935         0.733 0.494 0.735 0.496 0.422 0.395 0.896 0.421
% of Pool Not Administered 46%         23% 11% 22% 11% 29% 15% 55% 41%
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exposure control condition with a value of 0.935 and lowest for conditional Sympson-

Hetter with a value of 0.395.  The Sympson-Hetter, enhanced a-Stratified design, 

randomesque-6, and within .10 logits-6 also had relatively low maximum exposure 

rates (0.422, 0.421, 0.494, and 0.496 respectively).  The randomesque-3, within .10 

logits-3, and a-Stratified design, on the other hand, resulted in maximum exposure 

rates above acceptable levels (0.733, 0.735, and 0.896 respectively). 

 As observed with the generalized partial credit model, the percent of pool not 

administered was actually greater for the a-Stratified design (55%) than for the no 

exposure control condition (46%), and only slightly better for the enhanced a-

Stratified design (41%).  This finding further underscores the concern expressed 

previously with regard to the postulated versus observed impact of the a-Stratified 

design on pool utilization.  The percent of pool not administered was lowest for the 

randomesque-6, within .10 logits-6, and conditional Sympson-Hetter conditions with 

11% of the pool not used in the first two conditions and 15% remaining unused in the 

third condition. 

 In terms of test security, the randomesque-3 and within .10 logits-3 

procedures demonstrated improvement over the no exposure control condition, but 

did not perform as well as their 6 item group variants.  While the Sympson-Hetter 

controlled the maximum exposure rate to a level close to the target value, the percent 

of pool not administered under this procedure (29%) was well above that observed 

with other procedures. 

Item Overlap 
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 Audit trails for each simulee were compared to the audit trails of every other 

simulee resulting in a pairwise fashion resulting in 470,935 comparisons per 

condition.  Table 17 contains the average item overlap for all simulees, those of 

different trait levels (known thetas differed by more than two logits), and those of 

similar trait levels (known thetas differed by two logits or fewer) for each condition.  

Item overlap information is presented both in terms of the average percent of items 

shared across a 20 item test and the average number of items shared across a 20 item 

test.  No exposure control produced the highest overall overlap rates with an 

average of 55% overlap and the randomesque-6, within .10 logits-6, and conditional 

Sympson-Hetter procedures resulted in the lowest overall overlap rates with an 

average of 26% overlap.  The a-Stratified design yielded an unsatisfactory 46% 

overall overlap, with the randomesque-3 and within .10 logits-3 performing only 

slightly better with overall overlap rates between 36%.  The Sympson-Hetter and 

enhanced a-Stratified conditions resulted in overlap rates between 31 and 32%.  

Results both for examinees of similar and different trait levels demonstrate the same 

pattern with highest overlap rates (59% similar; 30% different) occurring with the no 

exposure control condition and lowest overlap rates (27% similar; 17% different) 

occurring with the randomesque-6, within .10 logits-6, and conditional Sympson-

Hetter conditions.   

Additional Analyses 

 Inspection of the results for the graded response model revealed some 

peculiarities that merited additional investigation.  Primary to these observations were 
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Table 17 

Item Overlap Rates for the Exposure Control Conditions Using the Graded Response 

Model 

 

Graded Response Model 
Exposure Control Overall Different Abilities Similar Abilities 
Conditions Average Overlap Average Overlap Average Overlap 
  (N=470,935) (N=64,788) (N=406,147) 
No Exposure Control 10.93 5.90 11.74 
  55% 30% 59% 
      
Randomesque-3 7.22 4.18 7.70 
  36% 21% 39% 
      
Randomesque-6 5.19 3.48 5.46 
  26% 17% 27% 
      
Within .10 Logits-3 7.22 4.12 7.71 
  36% 21% 39% 
      
Within .10 Logits-6 5.13 3.40 5.41 
  26% 17% 27% 
      
Sympson-Hetter 6.43 3.63 6.88 
  32% 18% 34% 
      
Conditional Sympson-Hetter 5.18 3.34 5.48 
  26% 17% 27% 
      
A-Stratified 9.30 5.45 9.91 
  46% 27% 50% 
      
Enhanced A-Stratified 6.24 4.30 6.55 
  31% 21% 33% 
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the worse than expected results for all measurement precision variables.  Correlations 

between known and estimated theta were lower than expected (0.85-0.89) and values 

for RMSE (0.50-0.58), SRMSD (0.69-0.74), and AAD (0.31-0.36) were higher than 

expected across the board.  In addition, the ordering of certain procedures in terms of 

measurement precision was counterintuitive.  The within .10 logits-3 procedure 

yielded worse results than the within .10 logits-6 procedure.  This was not consistent 

with the findings in the partial credit and generalized partial credit models.  Further, it 

simply did not make sense as we would expect the smaller item group size to provide 

results closer to the no exposure control condition. 

 A scatterplot of the relationship between known and estimated thetas for the 

no exposure control condition (r=0.89) is provided in Figure 4.  It can be clearly seen 

that there are a handful of cases which fall far from the main cluster of points.  

Examination of these cases revealed unacceptably high standard errors associated 

with the simulees’ final theta estimate.  In addition, the theta estimates for these cases 

tended to be extreme.  It was, therefore, surmised that these cases represented 

aberrant response strings which were not well estimated by the model, and were 

suppressing the correlation value.   

 Previous research has also demonstrated that the graded response model does 

have difficulty in estimating ability when using MLE, producing in one study, 

correlations between known and estimated theta in the range of 0.91 to 0.93 (Hou, 

Chen, Dodd, & Fitzpatrick, 1996).  Further, Chen (1996) concluded that “…MLE 

yields less satisfactory results than does EAP in the CAT based on a difference 
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Figure 4:  Known vs. Estimated Theta for Graded Response Model No Exposure Control Condition 
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model...”  The fact that the current study records correlation values even smaller than 

those previously observed can be explained by the implementation of a content 

balancing mechanism in all conditions which decreased measurement precision over 

the optimal.  Therefore it appears that findings with the graded response model in the 

current study are consistent with previous research with regard to the expected level 

of measurement precision under MLE. 

 To further verify this explanation, it was decided to run the graded response 

model conditions with a longer test length to see if better measurement precision 

could be obtained if more items were administered.  Figure 5 presents a scatterplot of 

the relationship between known and estimated thetas for the no exposure control 

condition with a test length of 35 items.  The correlation at 35 items increased 

substantially to 0.95 and visual inspection of the plot demonstrates that the aberrant 

cases seen with the 20 item test length have greatly improved.  The precision of five 

cases which exhibited the largest standard error was compared between the 20 item 

and 35 item tests.  With the 20 item test, these five cases had an average standard 

error of 0.78.  With the 35 item test, the average standard error dropped to 0.22.  

Clearly, then, the graded response model requires more items to reliably estimate 

ability when MLE is used. 

 With regard to the counterintuitive ordering of the within .10 logits procedures 

on the measurement precision variables, it is believed that the presence of the aberrant 

cases in the sample from the 20 item test created noise which caused these 

unexpected results.  Using a 35 item test length eliminated this phenomenon, resulting 
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Figure 5:  Known vs. Estimated Theta for Graded Response Model No Exposure Control Condition 
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in a correlation coefficient of 0.95 for the within .10 logits-3 and 0.94 for the within 

.10 logits-6. 
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Chapter V 

Discussion 

 The results of this study will be grouped and discussed by the type of 

exposure control procedure employed in the current study.  The three categories of 

methods are randomization procedures, conditional selection procedures, and 

stratification procedures. 

Randomization Procedures 

 The randomization procedures, represented in this study by the randomesque 

and within .10 logits methods were easy to implement and required only a minimum 

of additional programming over that needed to run the CAT.  One of the driving 

questions of this study was whether or not these randomization procedures could be 

as effective (or more so) for protecting test security as the conditional selection 

strategies such as the Sympson-Hetter.   The answer to this question seems to be 

overwhelmingly positive.  In all three models studied, the randomesque-6 and within 

.10  logits-6 procedures provided relatively good control over exposure and overlap 

rates and the highest degree of pool utilization of any procedures examined in the 

current study. 

 A second question posed by this study was to address what impact item group 

size would have on the effectiveness of the randomization procedures for controlling 

exposure.  It is evident from the results that item group size does have strong 

implications for the ability of these procedures to control exposure, with an item 

group size of 6 providing superior test security to an item group size of 3 for both the 
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randomesque and within .10 logits procedures.  Maximum exposure rates for the 3 

item group variations were on the order of 0.10-0.15 larger than for the 6 item group 

variations for the partial credit model and on the order of 0.20-0.25 larger for the 

generalized partial credit and graded response models.  Overlap rates for the 3 item 

group variations were 4-5% larger for the partial credit model and 9-10% larger for 

the generalized partial credit and graded response models than for the 6 item group 

variations.  Finally, the percent of pool not administered was twice as large for the 3 

item group variations as for the 6 item group variations. 

 While these procedures were quite effective for improving test security, a 

corresponding decrease in measurement precision was observed.  The average 

standard error increased between 0.02 and 0.03 with the use of either the 

randomesque-6 or within .10 logits-6 procedures across all three models.  Further, the 

correlation between known and estimated theta decreased and the RMSE increased 

for both the generalized partial credit and graded response models.   

 In distinguishing between the two randomization procedures presented in this 

study, it appears that the randomesque procedure may have a very slight edge over 

the within .10 logits procedure both in terms of its effectiveness in controlling 

exposure and in terms of its impact on measurement precision with the generalized 

partial credit and graded response models.  However, these differences are extremely 

small and both procedures performed very well. 

Conditional Selection Procedures 
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 The Sympson-Hetter and conditional Sympson-Hetter both proved to be 

challenging and time-consuming to implement in the current study.  The simulations 

to set the exposure control parameters took between 4 and 6 hours to run for the 

Sympson-Hetter and between 8 and 12 hours to run for the conditional Sympson-

Hetter depending on the exact processor speed of the computer (ranged from Pentium 

II 266Mhz to Athelon T-Bird 1Ghz).  The simulations had to be run multiple times 

when convergence of the parameters to the initial target exposure rates was not 

achieved.  In addition, the programming requirements for these procedures were 

substantial. 

 The performance of the Sympson-Hetter with regard to test security was 

disappointing given the amount of effort required.  In all three models, the maximum 

observed exposure rate for the Sympson-Hetter condition was slightly above, but 

close to the target value (0.434 partial credit, 0.419 generalized partial credit, 0.422 

graded response).  Overlap rates and percent of pool not administered, while reduced 

over the no exposure control condition, were still high relative to other options.  The 

Sympson-Hetter appears to be good at one thing—holding down the maximum 

exposure rate.  Reductions in overlap and percent of pool not administered are almost 

byproducts of this main effort and are not explicit goals of the procedure.   

 Measurement precision for the Sympson-Hetter remained relatively high, 

however, with no measurable differences over the no exposure control condition with 

the partial credit model and only slight decreases in measurement precision with the 

generalized partial credit and graded response models.  The rather lenient target 
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exposure rates used in the current study might provide at least some explanation for 

this.  Had more restrictive levels of exposure control been possible, it is anticipated 

that measurement precision would have suffered more of an impact.   

 The conditional Sympson-Hetter faired somewhat better than its unconditional 

counterpart.  The global maximum exposure rate was controlled to levels below those 

seen with the Sympson-Hetter in spite of the fact that the procedure only guarantees 

conditional target exposure rates.  The conditional Sympson-Hetter has been  

criticized for the fact that its lack of global exposure control can allow global 

exposure rates to exceed acceptable levels, however, that did not appear to be the case 

in the current study.  Further, the conditional Sympson-Hetter did a much better job 

of controlling overlap rates than the Sympson-Hetter, providing overlap rates 

equivalent to or just slightly above those seen with the randomesque-6 and within .10 

logits-6 procedures.  The effect of controlling exposure conditional on trait level is 

especially visible when looking at overlap rates among simulees of similar trait level.  

This is where the strength of the conditional Sympson-Hetter lies.  Finally, pool 

utilization is much improved with the use of the conditional Sympson-Hetter yielding 

rates equivalent to or just slightly above those seen with the randomesque-6 and 

within .10 logits-6 procedures. 

 The tradeoff for this level of test security came in the form of lower 

measurement precision.  This impact was most noticeable with the generalized partial 

credit and graded response models, where the average standard error increased from 

0.28 to 0.31 for the generalized partial credit model and from 0.30 to 0.32 for the 
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graded response model, the correlation between known and estimated theta dropped 

from 0.96 to 0.93 (generalized partial credit model) and from 0.89 to 0.87 (graded 

response model), and the RMSE increased from 0.29 to 0.40 (generalized partial 

credit model) and from 0.50 to 0.55 (graded response model), over the no exposure 

control conditions.   The partial credit model showed a negligible impact with an 

increase in average standard error from 0.27 to 0.28  relative to the no exposure 

control condition and no changes in other values.   

 Despite the favorable results for controlling exposure, the conditional 

Sympson-Hetter cannot be fully endorsed due to the inability to implement the 

procedure in its complete and intended fashion.  Attempts were made to set the Ki 

values of 20 items at each theta level equal to 1.0 to ensure that there would always 

be at least as many items available for administration as the maximum test length. 

However, exposure control parameters for the conditional Sympson-Hetter would not 

converge with this operation in place.  Therefore, this step was omitted in order to 

allow for convergence of the exposure control parameters.  Because this step was 

omitted, it is possible that for a given simulee there might have been an insufficient 

number of items available to administer a full test and testing would have stopped 

prematurely.  In the particular sample of 1000 simulees used for this study, this 

possibility did not occur, therefore, results have been presented to allow comparison 

of the conditional Sympson-Hetter to other procedures.   However, operational 

implementation of this procedure would most likely involve a much larger volume of 

examinees which increases the opportunity for such an occurrence. 
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Stratification Procedures 

 The poor performance of the a-Stratified and enhanced a-Stratified designs in 

this study is surprising and merits further consideration.  The concept of the a-

Stratified design is essentially very simple—stratify the item pool according to item 

discrimination parameters and limit item selection at various stages of testing to 

certain strata.  This should, in theory, boost pool utilization by ensuring that those 

items with lower discrimination values which would otherwise be overlooked have a 

better chance to be administered.  However, when there are content and item type 

constraints to consider, such as the content area affiliation and number of categories 

used in the current study, modification to the procedure is necessary which both 

increases its complexity and may nullify the benefits of a-stratification.  

 The maximum exposure rate with the a-Stratified design was high for both the 

generalized partial credit and graded response models.  This, by itself, is not 

unexpected, as other researchers (Chang & Ying, 1999; Parshall, Hogarty, & 

Kromrey, 1999) have found similar results and there is no mechanism in the 

procedure by which to directly control the maximum exposure rate.  However, what 

is surprising are the extremely high values for percent of pool not administered.  This 

variable should be the strength of the a-Stratified design, but, in fact, the current study 

shows that pool utilization actually goes down in comparison to the maximum 

exposure condition when the a-Stratified design is used.  It is hypothesized that this 

results from overlap in discrimination values across strata due to the multiple 

stratification of the item pool necessary to meet content and item type constraints.   
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 Tables 7 and 13 show that while the average a-values do increase across 

strata, the overlap of item discrimination values across strata is substantial.  With the 

generalized partial credit model (Table 7), the minimum discrimination value of an 

item in stratum 4 (0.69) is not substantially different from discrimination values seen 

in stratum 1 (0.54 to 0.87).  In contrast, with the unmodified a-Stratified design, there 

would be no overlap across strata.  With such extensive overlap amongst strata, the 

effect of stratification is largely nullified, and therefore the advantages of the a-

Stratified design are lost.  These findings suggest that, it is not only important that the 

average a-value increase across strata as suggested by Yi and Chang (2000) and 

Leung (2001), but also that the overlap across strata be minimized to maintain the 

benefits of stratification.  Further research is necessary to make specific 

recommendations as to the allowable amount of overlap across strata. 

Differences Across Models 

 While the design of the current study does not allow direct variable by 

variable comparisons to be made across the three models, certain general trends do 

emerge.  First it is interesting to note that while there were some differences in the 

performance of the procedures across the models, the randomesque-6 and within .10 

logits-6 stood out as the apparent best options in all three cases.  Secondly, item 

group size of the randomization procedures did have a strong impact on test security 

with the larger item group size providing better exposure control in all three cases.  

Third, the relative rankings of the other procedures was maintained across the models.   
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 Areas of differential performance did appear in the results which seemed to 

support the Rasch vs. non-Rasch dichotomy discussed in the Statement of Problem.  

Exposure rates, overlap rates, and percent of pool not administered were, on the 

whole, lowest when the partial credit model was used.   Additionally, the 

implementation of the various exposure control strategies had the least (almost 

negligible) impact on measurement precision with the partial credit model.  

Conversely, the impact on measurement precision was much more pronounced with 

both the generalized partial credit and graded response models.  This concurs with the 

findings of previous studies of exposure control with polytomous models (Pastor et 

al., 1999; Davis et al., 2000, Pastor, Dodd, & Chang, in press; Davis & Dodd, 2001) 

and seems to support the extension of Way’s (1998) Rasch vs. non-Rasch dichotomy 

to the polytomous case. 

 No obvious differences were observed between the graded response and 

generalized partial credit models with regard to the performance of the exposure 

control mechanisms or their impact on measurement precision except for the 

difficulties with trait level estimation using the graded response model previously 

discussed in the Additional Analyses section of the Results.  Therefore, nothing in the 

current study yields evidence that there might be differences between the difference 

and divide-by-total models with regard to exposure control. 

Conclusions and Directions for Future Research 

 The results of this study for all three models provide strong support for the use 

of randomization procedures with sufficient item group sizes to control test security 
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with polytomous item pools.  The randomesque-6 and within .10 logits-6 procedures 

proved themselves to be simple to implement and provided substantial reductions in 

exposure rates and item overlap as well as substantial increases in pool utilization 

over the no exposure control condition.  Further, when compared head to head with 

other options for controlling exposure, they demonstrated comparable or better 

performance on almost all measures of test security.  On those measures where 

performance was somewhat less than other procedures, this small cost in performance 

has to be weighed against the expense of added complexity that would be necessary 

to adopt the competitive option.   Only the conditional Sympson-Hetter was 

competitive to the randomization procedures.  While it did produce slightly lower 

maximum exposure rates and some comparable pool utilization and overlap rates, the 

conditional Sympson-Hetter is the single most complex procedure examined in the 

current study and was not able to be implemented in its complete and intended form.  

Further, at least for the generalized partial credit and graded response models, the 

negative impact on measurement precision seemed to be somewhat greater for the 

conditional Sympson-Hetter than for the randomesque-6 or within .10 logits-6 

procedures.  The results of the current study, therefore, indicate that the 

randomesque-6 and within .10 logits-6 procedures provide the best all around options 

for controlling test security when ease of implementation and impact to measurement 

precision are considered. 

 Having made these statements, however, it is important to point out that none 

of the procedures examined was able to control exposure rates to levels traditionally 
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acceptable with dichotomous item pools (0.20) or to levels previously used with 

polytomous models (0.30) with the test structure used in the current study.  A 

maximum observed exposure rate of approximately 0.40 was the lowest rate which 

could be obtained with any of the procedures across all three models.  This suggests 

that the size and structure of the item pool with regard to content and item 

characteristics plays a large role in determining the ability of test developers to 

control item exposure.   Also, it is important to recognize that in order to make these 

gains in test security, some measurement precision was sacrificed in the generalized 

partial credit and graded response models.  As Parshall, Davey, and Nering (1998) 

have suggested, there seems to be an unavoidable tradeoff which occurs between 

exposure control and measurement precision.  None of the procedures examined in 

the current study demonstrated the ability to defy this relationship, and, therefore, a 

balance between these goals is the best which could be obtained. 

 Future research needs to be conducted to determine how different pool sizes 

and characteristics would affect the utility of the various exposure control 

mechanisms.  The item pool size and characteristics examined in the current study 

were selected because they represented a realistic test structure that might be used by 

a large scale testing program.  However, it is quite clear that the content and item type 

constraints imposed by this structure severely affected the ability of certain 

procedures to control test security because there were very few items available for 

certain combinations of content and item type.  While having an item pool of 

sufficient size to estimate ability and minimize item exposure is important, Stocking 
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and Lewis (2000) emphasized the need for the available item pool to adequately 

reflect test specifications for content, item type, and other nonstatistical properties.  

Their research has demonstrated that item pools which do not have a sufficient 

number of items to match these specifications make the use of conditional exposure 

control strategies difficult, if not impossible, to implement because of problems in 

obtaining the convergence of the exposure control parameters.  The small nature of 

polytomous item pools can amplify this issue.  However, since practical and 

economic constraints often make expansion of an item pool infeasible, it is important 

to identify appropriate options for controlling exposure with a less than optimal item 

pool. 

 This research has identified two strategies which seem to be useful for 

controlling exposure in small polytomous item pools—the randomesque and within 

.10 logits procedures.  However, the results have also shown that the item group size 

from which the next item to be administered is randomly chosen has a significant 

impact on their effectiveness.  Future research should provide a more detailed study 

of the item group size variable both by itself and in relation to the size of the pool to 

attempt to develop a set of recommendations for implementing the procedures.  

Finally, other randomization procedures such as Revuelta and Ponsoda’s (1998) 

progressive and restricted no exposure control procedures should be examined with 

polytomous item pools to determine whether they can offer similar benefits for 

exposure control.  
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