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Abstract 

 
 The current study examined item exposure control procedures for testlet scoring of 

reading passages in the Verbal Reasoning section of the Medical College Admissions Test 

(MCAT) with four computerized adaptive testing (CAT) systems using the partial credit model.   

The first system was a traditional CAT using maximum information item selection.  The second 

employed random item selection to provide a baseline for optimal exposure rates.  The third 

implemented a variation of Lunz and  Stahl’s (1998) randomization procedure.  The fourth 

examined Luecht & Nungester’s (1998) computerized adaptive sequential testing (CAST) 

system.  Content and item type balancing were controlled with the Kingsbury and Zara (1989) 

procedure in the first three conditions and were internally controlled through panel construction 

for the CAST condition.   A series of simulated fixed length CATs were run to determine the 

optimal item selection procedure.  Results indicated that both the randomization procedure and 

CAST performed well in terms of exposure control and measurement precision, with the CAST 

system providing the best overall solution when all variables were taken into consideration.   
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An Examination of Testlet Scoring and Item Exposure Constraints in the Verbal Reasoning 

Section of the MCAT  

 Reading comprehension passages have long been a familiar item type on the landscape of 

verbal ability tests.  These items usually consist of a reading passage followed by a series of 

items about the passage.  However, these items have provided a special challenge for testing 

programs wishing to convert to item response theory (IRT) based computerized adaptive testing 

(CAT).  This stems from the fact that groups of items which refer back to the same stimuli (in 

this case the reading passage) often violate the IRT assumption of local independence which 

states that an examinee’s responses to a series of items should be statistically independent from 

one another.  When this assumption is violated, ability estimates may be inaccurate due to 

overestimation of item information. 

 Wainer and Lewis (1990) discuss three ways of dealing with conditional dependencies 

among reading passage based items.  First, the format may be altered so that only one item is 

asked per passage.  While this resolves the issue, it is inefficient in terms of the small amount of  

information acquired for the large commitment of an examinee’s time.  The second method 

suggests that the dependencies simply be ignored and items within each passage scored 

individually in a dichotomous fashion.  With such a solution, the amount of information obtained 

from each item may be overestimated, causing inaccuracy in ability estimation.  Finally, the 

approach preferred by the authors was to score all items attached to a given passage as a single 

item or “testlet” using a polytomous IRT model.  Thus, if four items were associated with a 

passage, the possible testlet score would range from 0 to 4, indicating the number of items 

answered correctly. 
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 Another issue which plagues CAT administration is the threat to validity posed by over 

exposure of the item pool’s most informative items.  In an unconstrained CAT, maximum 

information item selection is used to optimize measurement precision by administering the most 

informative item for an examinee.  However, this method of item selection often conflicts with 

the goal of maintaining test security through reducing overexposure of the most informative 

items.  Alternatively, item usage is most uniform in the case that items are selected for 

administration randomly, however, measurement precision is sacrificed.   Many different 

algorithms have been proposed to strike a balance between these two extremes. 

Controlling for item exposure 

Parshall, Davey, and Nering (1998) discuss the three often conflicting goals of item 

selection in CAT.  First, item selection must maximize measurement precision, by selecting the 

item which maximizes information or posterior precision for the examinee’s current ability level.  

Second, item selection must seek to protect the security of the item pool by limiting the degree to 

which items may be exposed.  Third, item selection, must ensure that examinees will receive a 

content balanced test.  Different approaches to the goals of item selection will produce different 

testing algorithms (Stocking & Lewis, 2000).  Attempts to address Parshall, Davey, and Nering’s 

(1998) third goal are denoted exposure control methodologies. 

Way (1998) discusses two types of exposure control strategies—randomization and 

conditional selection.  Randomization strategies randomly choose the next item for 

administration from a set of nearly optimal items rather than selecting the single most 

informative item.  Conditional selection strategies are those in which the probability of an item 

being administered is controlled conditional on a given criterion. Randomization procedures are 

usually considered to be simple to implement, but provide no guarantee that item exposure will 
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be constrained to a given level.  Conditional strategies provide a guaranteed maximum exposure 

rate, but usually require complex and time-consuming simulations prior to operational use to 

derive exposure control parameters.  In addition, these simulations may have to be rerun as test 

conditions change.  A third approach to exposure control has recently been proposed by Chang 

and Ying (1996) in which items in the pool are stratified according to their statistical properties 

(item parameter estimates) and items are constrained to be administered from certain strata. 

Randomization procedures were among the first proposed mechanisms for controlling 

item exposure.  The 5-4-3-2-1 technique (McBride & Martin, 1983; Hetter & Sympson, 1997) 

was first proposed to alter the initial ordering of items in the CAT-ASVAB.  In this procedure, 

the first item for administration is randomly chosen from the five most informative items, the 

second is chosen from the four most informative items, and so on until the fifth item when 

maximum information item selection resumes.  This procedure focuses on controlling item 

exposure at the beginning of the test when examinees are most likely to see common items due 

to the use of a common initial ability estimate.  Kingsbury and Zara (1989) proposed the 

randomesque method which randomly selects the next item to be administered from a group of 

the most informative items.  Thus, the next item to be administered may be randomly chosen 

from the 5 or 10 most informative items for a given theta estimate.  Thomasson (1998) examined 

the performance of a “choose one of three” randomization procedure whereby the next item for 

administration was chosen from the three most informative items and the two items not chosen 

were blocked from further administration.   

Rather than choose from a fixed number of items, another possibility would be to choose 

from all items within a certain distance of the target difficulty value (Lunz & Stahl, 1998).  Lunz 

and Stahl (1998) created a randomization procedure whereby all items within 0.10 logits of the 
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needed item difficulty are available for selection and the item to be administered is randomly 

chosen from among them.  This procedure, which was designed to work with the Rasch model, 

does not utilize information in item selection, but rather matches the current ability estimate 

directly to the difficulty values of the items.  The number of items which will appear in any 

selection grouping will depend on the distribution of item difficulties in the bank and within a 

given content area.   If there are no items within 0.10 logits of the required item difficulty, the 

algorithm will randomly select the item having the closest difficulty to the target. 

The best known conditional selection procedure is the Sympson-Hetter technique 

(Sympson & Hetter, 1985) which uses the frequency with which an item is administered in a 

simulated sample of examinees to determine the rate of exposure for each item.  This iterative 

process results in each item being assigned an exposure control parameter (Ki) with a value 

between zero and one.  These parameters are then used in live testing to constrain the probability 

of administering an item.  The advantage of the Sympson-Hetter is that it allows a preset target 

exposure rate (r) to be reasonably ensured as long as the characteristics of the sample to which 

the test is given are distributed the same as those from which the parameters were derived.  Many 

new conditional selection procedures have been built on the foundation of the Sympson-Hetter—

extending and modifying it to fit different testing scenarios and to address limitations in the 

original procedure (Stocking & Lewis, 1995; Stocking & Lewis, 1998; Davey & Parshall, 1995). 

 Chang & Ying (1999) challenged the idea that maximum information item selection 

provides optimal measurement precision with their a-Stratified design which requires the item 

pool to be partitioned into different strata based on the value of the item discrimination 

parameter.  Strata are then arranged in ascending order of discrimination.  The test is divided into 

stages to match the number of strata such that a given number items are chosen from each 
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stratum, with the lowest discriminating strata used at the beginning of the test and the highest 

discriminating strata used at the end of the test.  The a-Stratified design evens out exposure rates, 

because items with low and high discrimination values have an equal likelihood of being 

selected.   

Computerized Adaptive Sequential Testing 

An alternative to implementing an exposure control procedure to modify optimal item 

selection, is to control exposure apriori by preconstructing adaptive test forms.  Computerized 

Adaptive Sequential Testing, or CAST, (Luecht & Nungester, 1998) involves the preconstruction 

of modules which contain groups of items and the arrangement of these modules into multistaged 

panels.  Modules within each stage of a panel are segregated by item difficulty such that one 

module may contain easy items, one average items, and one hard items.  As an examinee moves 

through the stages of testing, he or she is routed to a certain difficulty of module depending upon 

the current ability estimate.  Modules and panels are constructed to meet certain statistical 

specifications such as desired test information, content coverage, and item exposure level.  

CAST incorporates the adaptive nature of CAT by allowing ability routing decisions between 

stages, while providing for quality control over a fixed number of adaptive test forms or “paths” 

through the panels.  The framework for CAST harkens back to early adaptive testing procedures 

such as two stage testing (Lord, 1971b), pyramidal testing (Lord, 1974), and stradaptive testing 

(Weiss, 1974a) which used fixed branching through a structured item pool.  CAST updates these 

methodologies by incorporating the IRT concept of information as well as the item selection and 

ability estimation procedures commonly used in CAT.  

CAST allows great flexibility in assembling adaptive test forms in terms of the number of 

panels, number of stages, number of modules per stage, and number of items per module that can 
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be used.  As such, CAST can be customized to meet the needs of each particular testing program.  

CAST panel assembly is usually undertaken using automated test assembly (ATA) software 

which allows the phrasing of statistical and nonstatistical goals in terms of mathematical 

functions to be minimized or maximized.  Figure 1 presents several example panels which might 

be constructed with the CAST system.  Typically, once a particular panel structure is decided 

upon, items will be assembled into modules to create multiple panels with the same structure.   

Luecht and Nungester (1998) discuss two strategies for panel assembly—bottom up and top 

down.  With the bottom up strategy, items are assembled into modules such that each module as 

a self contained unit meets the requisite information, content, and item feature targets selected 

for the test.  With this method, modules are interchangeable and can be mixed and matched to 

create multiple overlapping panels.  The top down strategy requires only test level specifications 

of the statistical and nonstatistical targets.  Modules are assembled in such a fashion that any 

path through the panel will result in a test of appropriate precision, content, and item type, 

however, modules are not exchangeable either within or across panels. 

In operational testing, examinees are randomly assigned a panel to take.  Testing begins 

with the module in the first stage.  After all items in the first stage module have been completed, 

an examinee’s ability is estimated using one of the typical CAT estimation procedures (MLE; 

Bayes Modal; EAP) and one of the modules in the second stage is selected for administration 

according to one of the typical CAT item selection procedures (maximum information; minimum 

posterior variance).  Note that the module is the unit of test administration, so rather than item 

selection, CAST requires module selection and the module whose items as a grouped entity will 

provide the most information or the least posterior variance will be selected.  The process of 
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ability estimation and module selection repeats for each stage of testing until the last stage of 

testing is completed. 

Exposure control research with polytomous IRT models 

While, to date, less commonly used than the dichotomous models, polytomous IRT 

models allow for the scoring of items when multiple response categories are allowed, such as in 

the case of testlet scoring.  Other examples of polytomous scoring include Likert type scaling for 

attitudes, essay scoring in which different score values are awarded for different essay qualities, 

or any situation in which partial credit might be awarded to indicate differing levels of item 

performance.  In short, any time a gradient that reflects varying amounts of the trait measured is 

applied to scoring rather than a simple right/wrong approach, polytomous models would be 

appropriate.   

While the research investigating the extent that measurement precision is affected when 

using such constraints in dichotomous item pools is extensive, only recently have researchers 

begun to address the effects exposure control when using polytomous items.  The results of 

research on dichotomous items is not necessarily generalizable to the polytomous case because 

polytomously scored items yield a higher modal level of information across a larger span of the 

theta scale than dichotomously scored items (Koch & Dodd, 1989).  Therefore, it is uncertain 

whether the negative impact on measurement precision observed in the dichotomous case of 

administering suboptimal items will be observed.  In addition, polytomous item pools tend to be 

smaller than dichotomous item pools.  The size of the item pool for polytomous items will vary 

from testing program to testing program depending on the item type, the difficulty and cost of 

writing the items, and the frequency with which item pools may be rotated in or out of use.  

Although, Koch and Dodd (1989) concluded that it was possible for a polytomous CAT to 
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perform well with item pools as small as 30 items, this finding did not take into consideration the 

threat posed to the test’s validity if the item pool were to be compromised. 

 Pastor, Chiang, Dodd, and Yockey (1999), examined the performance of the Sympson-

Hetter exposure control algorithm in fairly small (60,120) item pools using the partial credit 

model  and concluded that it provided some protection against item exposure with minimal 

reduction in measurement precision.  Davis, Pastor, Dodd, Chiang, and Fitzpatrick (2000) 

replicated these results with regard to measurement precision, but concluded that difficulties 

incurred in the implementation of the Sympson-Hetter mechanism, especially problems with 

convergence of the exposure control parameters in small item pools, were not outweighed by the 

observed gains in test security. 

 Pastor, Dodd, and Chang (in press) examined a broader range of exposure control 

mechanisms using the generalized partial credit model.  The authors sought to evaluate the a-

Stratified design (Chang & Ying, 1996) as a more simplistic alternative to the Sympson-Hetter.  

The study compared the a-Stratified design to both the Sympson-Hetter and the enhanced a-

Stratified design (Leung, Chang, & Hau, 1999).  In addition, exposure control conditional on 

ability was examined using both the conditional Sympson-Hetter (Stocking & Lewis, 1998; 

Parshall, Davey, & Nering, 1998) and the newly proposed conditional enhanced a-Stratified 

design, which incorporated the conditional Sympson-Hetter algorithm into the a-Stratified 

design.  In contrast to the previous two studies, the results demonstrated a noticeable decrease in 

measurement precision as exposure control became more restrictive.   As in previous research, 

convergence problems were observed when establishing exposure control parameters for the 

conditions incorporating the Sympson-Hetter or conditional Sympson-Hetter.  The authors 

concluded that a more simplistic approach to exposure control such as the a-Stratified design 



  11  

would be most appropriate with low or medium stakes tests or when the item pool to test length 

ratio was small.  However, when high stakes testing necessitates tighter control of item exposure, 

the more restrictive conditional selection procedures should be considered. 

 The current research evaluates the utility of a modified Lunz and Stahl (1998) within .10 

logits randomization procedure and the CAST framework for controlling item exposure in the 

context of testlet scoring with the partial credit model, using items and passages from the Verbal 

Reasoning section of the Medical College Admissions Test (MCAT).  Zenisky, Hambleton, & 

Sirici (2000) explored the extent to which item dependencies occurred in the three passage based 

sections (Verbal Reasoning, Physical Sciences, and Biological Sciences) of the MCAT.  Their 

findings indicated that item dependencies were most severe in the Verbal Reasoning section and 

that observed differences in reliability and ability estimates between conditions in which items 

were scored dichotomously (ignoring item dependencies) and polytomously (accounting for item 

dependencies) could produce meaningful differences in examinee scores. 

The partial credit model 

The partial credit model (Masters, 1982) is an extension of the one-parameter logistic 

(Rasch) model to the case where items may be scored polytomously as would be appropriate 

when partial credit is awarded for responses.  The probability function of scoring in category x 

on item i given the examinee’s ability, θ, for the partial credit model is defined as; 
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where mi is the number of score categories minus one and bik is the difficulty parameter 

associated with score category x. 
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Method 

Overview of techniques 

 Four computerized adaptive testing systems were examined in this study. The first system 

was a traditional CAT using maximum information item selection.  The second employed 

random item selection to provide a baseline for optimal exposure rates.  The third implemented a 

variation of Lunz and  Stahl’s (1998) randomization procedure.  The fourth examined Luecht & 

Nungester’s (1998) computerized adaptive sequential testing (CAST) system.  Content and item 

type balancing were controlled with the Kingsbury and Zara (1989) procedure in the first three 

conditions and were internally controlled through panel construction for the CAST condition.   A 

series of simulated fixed length CATs were run to determine the optimal item selection 

procedure.  Conditions were compared in terms of measurement precision, exposure rates, item 

overlap, and pool utilization. 

Item pool 

 Data were obtained from 22 forms of the MCAT collected during six separate 

administrations occurring from April 1996 through April 2001.  Each form of the Verbal 

Reasoning section contained 55 multiple choice items grouped into eight passages for a total 

possible 176 passages.  Passages contained either six, seven, eight, or ten multiple choice items 

each.  Items were grouped together according to their passage identification number and the 0/1 

scores for each item were summed to create passage testlet scores ranging from zero to the 

number of items per passage.  

 Inspection of the frequency distribution of the resulting passage testlet scores, indicated a 

problem with low category frequencies for certain passages.  In other words, the number of 

individuals obtaining a given passage score was exceedingly small (in some cases zero).  In order 
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to provide a reliable parameter estimate for each step value, the IRT calibration program requires 

a minimum number of observations for each score category.  Previous experience has 

demonstrated that having ten observations per score category is sufficient to estimate the 

parameter.  Twenty-five passages had to be dropped from the item pool due to low category 

frequencies.  Another two passages were dropped due to convergence problems during 

calibration.  The remaining 149 passages comprised the item pool which was used in all CAT 

conditions.  A plot of test information for the item pool calibrated according to the partial credit 

model is presented in Figure 2.  The item pool information exhibits a slight positive skew with 

information peaking at a theta value of  –0.8. 

 Passages within the item pool were classified according to both content area and passage 

type as defined by the number of multiple choice items per passage.  Of the 149 passages, 44% 

represented the content area of Humanities, 31% represented the content area of Social Science, 

and 25% represented the content area of Natural Science.  Passage type was distributed as 

follows:  68% were six item passages, 20% were seven item passages, 7% were eight item 

passages, and 5% were ten item passages.  While, MCAT also provides target percentages for 

item type by cognitive category (i.e. comprehension, evaluation, application, and incorporation) 

in it’s test specifications for the Verbal Reasoning section, this value varied at the item level 

within a passage, making it impossible to include it in this study which treats the passage as the 

functional unit of measurement.   A good distribution of cognitive categories within the items 

associated with a passage, however, may provide sufficient balance with respect to this variable. 

Parameter Estimation 

 Passage scores were submitted to PARSCALE (Muraki & Bock, 1993) for calibration 

according to the partial credit model (Masters, 1982).  Due to limitations of the MCAT equating 
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design, no attempt to equate the passages was made.  Each form was calibrated separately and 

the resulting item parameters grouped together to create the CAT item pool, without adjustment 

to put them on the same scale.  Since this was a simulation study and the goal of item calibration 

was simply to obtain realistic item parameters for the Verbal Reasoning section of the MCAT, 

the effects of this decision were judged to be minimal.  However, this could not be advised for 

operational implementation.  The number of observations per test form ranged from 2,510 to 

14,949 depending upon the availability of data from alternate form orderings and multiple 

administrations within the obtained testing window. 

 PARSCALE employs a marginal maximum likelihood EM algorithm for parameter 

estimation that consists of two steps:  first, the provisional expected frequency and sample size 

are calculated, and second, the marginal maximum likelihood is estimated.  These steps continue 

through a series of iterations until item parameter estimates stabilize.  For the current study, a 

convergence criterion of largest change of 0.001 or a maximum of 50 iterations was used 

(parameter estimates for all forms converged with fewer than 25 iterations).  As noted above, 

two passages were discarded from the item pool due to convergence problems during calibration. 

Data generation 

 The calibrated item parameters from PARSCALE were used as input to the data 

generation program.  Item responses to the 149 passages were generated for 1000 simulees using 

conventional techniques.  A random number was drawn from a normal distribution (0,1) to 

represent the known ability for each simulee.  The probability of responding in each category 

given a simulee’s ability was then computed for each item according to the partial credit model 

(Masters, 1982).    These probabilities were then summed to create a cumulative probability of 

response ranging from 0 to 1.  A random number was drawn from a uniform distribution and 
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compared to the cumulative response probability.  The simulee was assigned the score which 

corresponded to the location in the cumulative response distribution that the random number fell 

at or below.  This procedure was repeated for all simulees and all passages. 

 

CAT simulations 

 A program originally developed by Chen, Hou, and Dodd (1998) was modified to meet 

the specifications of each CAT condition.  Experimentation with the maximum information 

condition determined that a seven passage fixed test length would provide the best option for 

meeting measurement precision and non-statistical goals.  The initial theta estimate for each 

simulee was zero in all administrations with the use of variable stepsize to estimate ability until 

responses were made into two different categories and maximum likelihood estimation 

thereafter.  Content and passage type were balanced for the three CAT conditions using the 

Kingsbury and Zara (1989) constrained CAT (CCAT) method.  According to this method, after 

each item administration, the proportion of items given in each area is computed and compared 

to the target desired proportion.  The next item administered is constrained to be chosen from the 

area with the largest discrepancy.  In the current study, target proportions for both content and 

passage type were defined to match the observed percentages of each characteristic in the item 

pool.  In the maximum information item selection condition, items were chosen to maximize the 

information at the current ability estimate, as constrained by content and passage type 

restrictions.  In the random item selection condition, items were selected at random from the pool 

subject to content and passage type constraints. 

 As originally proposed, the Lunz and Stahl (1998) within .10 logits procedure randomly 

selects the item to be administered from among all items falling within 0.10 logits of the needed 
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item difficulty.  Since, in the dichotomous case of the Rasch model, information peaks at the 

point on the ability scale where theta equals the item difficulty, selecting the next item according 

to item difficulty generally provides the same result as maximum information item selection and 

is computationally easier to implement.   Polytomous items, however, do not have a single item 

difficulty value, but rather multiple step values needed to describe the probability of obtaining a 

score in a particular category.  Therefore, modifications were needed to allow the use of the 

within .10 logits procedure in the polytomous case.   

 In the current study, the within .10 logits procedure was implemented by using maximum 

information item selection to select the two most informative passages at each of three points 

along the ability metric:  estimated theta, estimated theta minus 0.10, and estimated theta plus 

0.10.  This resulted in a group of six passages from which one was randomly selected to be 

administered.  The within .10 logits item selection procedure was conducted in combination with 

content and passage type balancing.  For some combinations of content and passage type, there 

were fewer than six passages available in the pool.  Specifically, this occurred for the eight and 

ten item passages.  In these cases, the item to be administered was randomly selected from 

among all unadministered passages which met the content and passage type requirements.  

Implications of this decision for exposure control are presented in the results and discussion 

sections. 

CAST panel construction 

 Drawing from the 149 calibrated passages in the CAT item pool, eight CAST panels were 

assembled using the top down method.  Each panel contained three stages, with one module for 

the first stage and three modules each for the second and third stages.  Passages were classified 

according to difficulty as either easy, average, or hard.  Classifications were made based on an 
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examination of the characteristics of the step value parameters for each passage.  Passages were 

assigned to modules and panels by hand, without the use of automated test assembly (ATA) 

software.  The panel structure used as well as the distribution of passages within panels by 

difficulty, content, and passage type was chosen to work within the constraints of the available 

item pool.  Had the characteristics of the pool been different or ATA software been available, 

other, more optimal, passage arrangements may have been determined.  The first stage module 

contained three passages, one at each level of difficulty.  The second and third stage modules 

were segregated by passage difficulty, with one module at each stage of easy, average, or hard 

passages.  The second and third stage modules each contained two passages, yielding a total test 

length of seven passages.  The structure of the panels used in this study is similar to that of the 

first diagram in Figure 1. 

 Panels were also constructed to meet content and passage type specifications.  The first 

stage module contained one passage from each of the three content areas.  The second stage 

modules each contained one passage each from Humanities and Natural Science.  The third stage 

modules each contained one passage each from Humanities and Social Science.  This provided 

each examinee with a test meeting the desired proportion of content coverage from each area.   

While the number of passages administered through the CAST design was consistent for all 

simulees, it was necessary to arrange passages within panels such that the total number of 

multiple choice items administered to each simulee would also be consistent.  Passage type was, 

therefore, also considered in assigning passages to panels.  The first stage module contained one 

passage each with eight and ten multiple choice items.  This allowed the pools most informative 

passages to be administered in the first stage, thereby providing for more precision in the second 

stage routing decision.  In addition, this also made the most efficient use of the small number of 
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eight and ten item passages in the pool.  The third passage administered in the first stage 

contained either six or seven multiple choice items.  This flexibility was necessary to meet the 

content and difficulty constraints with the available pool.  The second stage modules contained 

either all six item passages or one six and one seven item passage depending upon the passage 

type of the third passage in the first stage.  For example, for some panels, the first stage 

administers, a ten item, an eight item, and a seven item passage, with six item passages only in 

the second stage.  However, other panels, give a ten item, an eight item, and a six item passage in 

the first stage with a six item and a seven item passage given in the second stage. All passages in 

the third stage contained six items.  In spite of the variability in first and second stage passage 

types across panels, the resulting test length in terms of multiple choice items was the same for 

all panels. 

 The CAST structure chosen made use of 120 of the available 149 passages, leaving 29 

passages unused by the procedure.  Despite this excess of passages, meeting the target panel 

structure in terms of difficulty, content, and passage type was difficult with this pool.  Unused 

passages, for the most part, represented those characteristics which the pool provided in 

abundance, leaving holes in the panel structure in certain areas.  Information plots for each panel 

(shown in Figure 3) were judged to be similar enough to provide approximately equal 

measurement precision for all simulees regardless of which panel they were administered.  

CAST administration 

 Simulations for the CAST condition, were also conducted by making modifications to the 

Chen, Hou, and Dodd (1998) program.  Simulees were randomly assigned to take one of the 

eight panels.  Once a panel had been assigned, examinees were administered the three passages 

in the first stage.  Only after all three passages had been administered was ability estimated using 
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MLE, with a provision for using variable stepsize should category scores on the first three 

passages be identical.    Simulees were then routed to one of three modules in the second stage 

containing either easy, average, or hard passages.  This routing decision was made by adding 

together the information of passages within each module and selecting the module which 

provided the most information at the current ability estimate.  After simulees completed both 

passages in the second stage, ability was again estimated, and simulees were routed to a module 

in the third stage.  The third stage routing decision was made in the same way as the second stage 

routing decision with the exception that simulees could only be routed to a module of the same 

or adjacent difficulty.  For example, simulees administered the easy module in the second stage, 

could be administered either the easy or the average module in the third stage, but not the hard 

module. This concurs with the examples given by Luecht and Nungester (1998) and prevents the 

possibility of any negative psychological impact which might be expected to occur from jumping 

from easy to hard items or vice versa. 

Data analyses 

 In order to evaluate the recovery of known theta in each condition, several variables were 

used.  In addition to descriptive statistics, the Pearson product-moment (PPM) correlation 

coefficients were calculated between the known and estimated theta values.  Bias, root mean 

squared error (RMSE), standardized difference between means (SDM), standardized root mean 

squared difference (SRMSD), and average absolute difference (AAD) statistics were also 

calculated.  The equations to compute these statistics are as follows: 
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where θ is the estimate of ability for simulee k, θ is the known ability for simulee k, k̂ k θ  is the 

mean of the known abilities , θ is the mean of the estimated abilities,  was the variance of 

known abilities,  is the variance of estimated abilities, and n is the total number of simulees.  

ˆ θ
2s

θ̂
2s

 Item exposure rates (the probability of administering an item) were computed by dividing 

the number of times an item was administered by the total number of simulees. Frequency 

distributions of the exposure rates, along with average and maximum exposure rates were 

examined across conditions.  The percent of items that were never administered were used as an 

index of pool utilization. 

 In order to measure test overlap, the audit trails of each simulee were compared to the 

audit trails of every other simulee.  A data file containing the number of items shared among the 

simulees as well as the difference between their known theta values was created to obtain an 
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index of item overlap conditional on theta.  Simulees were defined to have  “similar” ability 

when their known thetas differed by two logits or fewer and “different” ability when their known 

thetas differed by more than two logits (Pastor, Chiang, Dodd, & Yockey, 1999; Davis, Pastor, 

Dodd, Chiang, & Fitzpatrick, 2000; Pastor, Dodd, & Chang, 2001). 

 

Results 

Descriptive Statistics 

 After all conditions had been run, a listwise deletion of 166 nonconvergent cases was 

performed.  A case was defined as nonconvergent if, once the end of the test had been reached, 

the ability estimate was greater than or equal to 4.0 or less than or equal to –4.0, or if maximum 

likelihood estimation had never been reached.  The number of nonconvergent cases for each 

condition is listed in Table 1.  As expected, the random item selection condition produced the 

most nonconvergent cases with 115.  The CAST condition had no nonconvergent cases.  The 

within .10 logits procedure and maximum information item selection procedure were in between 

these extremes, with within .10 logits producing slightly more nonconvergent cases (44) than the 

maximum information item selection procedure (27).  The remaining results are reported on the 

sample (N=834) of observations which remained after the nonconvergent cases had been deleted. 

 Table 1 also contains the average theta estimate and standard error for each condition.  

The mean of the known thetas was 0.09 with a standard deviation of 1.03.  The maximum 

information condition produced results which were reasonably close to these values.  The 

random item selection condition yielded an average theta estimate lower than expected with a 

higher standard deviation than for the known values.  The within .10 logits and CAST conditions 

both resulted in average theta estimates and standard deviations higher than for the known 
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values.  As expected, maximum information item selection yielded the lowest standard error 

(0.29) with random item selection yielding the highest standard error (0.36).  The within .10 

logits and CAST conditions both yielded the same standard error (0.33) which fell between these 

two extremes. 

 Table 2 presents the correlations between known and estimated theta for each condition 

as well as statistics for bias, SDM, RMSE, SRMSD, and AAD.  Random item selection produced 

the lowest correlation between known and estimated theta (0.93).  The remaining three 

conditions all yielded higher and similar values (0.95 to 0.96).  Bias was zero for maximum 

information item selection, and very slightly negative for the other three conditions (-0.02 to  

–0.04).  Results for SDM mirrored those for bias.  The RMSE, SRMSD, and AAD statistics all 

revealed the same pattern of results across conditions.  Values were lowest for maximum 

information item selection and highest for random item selection.  CAST resulted in a slightly 

higher values than did within .10 logits.   

Pool utilization and exposure rates 

 Table 3 contains the frequency of observed exposure rates along with the average, 

maximum, and standard deviation of exposure rates, and the percent of pool not administered for 

each condition.  Table 3 is partitioned into two sections.  The top portion represents the results 

when the exposure rates for the entire item pool are considered.  The bottom portion represents 

the results when the eight and ten item passages have been removed from the item pool.  This 

dual presentation is necessary to illustrate the impact of content and passage type constraints on 

exposure rates.  So few of the eight and ten item passages were available in the item pool that in 

order to fulfill the nonstatistical constraints of the test specifications, these passages were forced 

to be overexposed. 
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 Chen, Ankenmann, & Spray (1999) state that the average exposure rate for any fixed 

length test will always be constant and mathematically equal to the ratio of test length to pool 

size.  Since test length was the same for all conditions studied, the observed average exposure 

rates, therefore, did not differ across conditions with the same size item pools.  The only 

differences in average exposure rate occurred for the CAST condition, when fewer passages 

were in the item pool, forcing average exposure rates to increase slightly.  The standard deviation 

of exposure rates was highest for maximum information item selection and second highest for 

the within .10 logits procedure in both the top and bottom portions of the table.  The relative 

position of random item selection and the CAST procedure flipped from the top portion to the 

bottom portion of the table.  When all passages were included, the CAST procedure yielded a 

slightly lower standard deviation of exposure rates than did random item selection, however, 

when eight and ten item passages were removed from the analyses random item selection 

produced the lowest standard deviation of exposure rates.  This same pattern occurred for 

maximum exposure rates with maximum information yielding the highest maximums (.513 

entire pool; .474 reduced pool), within .10 logits the second highest maximums (.444 entire pool; 

.191 reduced pool), and the relative position of CAST (.165 entire pool; .165 reduced pool) and 

random item selection (.428 entire pool; .104 reduced pool) reversing when eight and ten item 

passages were removed. 

 The percent of pool not administered was highest for maximum information item 

selection (62% entire pool; 66% reduced pool) and second highest, though greatly reduced, for 

the within .10 logits procedure (18% entire pool; 21% reduced pool).  Random item selection 

administered all items in the pool and the CAST procedure administered all items from the 

reduced (N=120) pool. 
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Item Overlap 

 Audit trails for each simulee were compared to the audit trails of every other simulee 

resulting in 347,361 pairwise comparisons per conditions.  Table 4 contains the average item 

overlap for all simulees, those of different abilities (known thetas differed by more than two 

logits), and those of similar abilities (known thetas differed by two logits or fewer) for each 

condition.  Table 4 is also partitioned into two sections, with the top portion representing the 

results for the entire item pool and the bottom portion representing the results when the eight and 

ten item passages have been removed from the item pool.  Maximum information item selection 

produces the highest overall overlap rates with an average of 26% overlap in the entire pool and 

17% overlap in the reduced pool.  While, the relative position of random item selection and the 

CAST procedure alternate in the top and bottom portions of the table, CAST consistently results 

in lower overlap rates than the within .10 logits procedure (9% and 5% for CAST vs. 13% and 

6% for within .10 logits).  Results for examinees of similar ability demonstrate the same pattern 

with highest overlap rates occurring with maximum information item selection (30% overlap 

entire pool; 20% overlap reduced pool) and overlap rates for CAST (10% overlap entire pool; 

6% overlap reduced pool) lower than overlap rates for within .10 logits (14% overlap entire pool; 

7% overlap reduced pool).  Results for examinees of different abilities produce a different 

pattern, but the overlap rates are uniformly so small (6-10% for entire pool; 2-4% for reduced 

pool) that comparison of conditions is not warranted. 

CAST implementation 

 Table 5 contains the frequency with which different paths through the panels were taken.  

As can be seen by the row totals, distribution of simulees across each of the eight panels was 

relatively even, with any variability attributable to the removal of nonconvergent cases from the 
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sample.  However, distribution of simulees across paths within the panels was skewed toward the 

extremes with more than 50% of the simulees being routed to the hard modules and almost 20% 

of the simulees being routed to the easy modules in both the second and third stages.  Figures 4 

and 5 present plots of the module level information at the second and third stages for panels 5 

and 8.  As can be seen in the figures, the average difficulty modules were only the most 

informative over a very limited range of the theta scale, and, in certain cases (such as stage 2 of 

panels 5 and 8), the average difficulty modules never provided the most information.  The 

information plots presented here are typical of the plots observed for the remainder of the panels.  

Therefore, the bias seen in Table 5 toward the extremes can be explained by the relatively small 

amounts of information provided by the average difficulty modules compared to the easy and 

hard difficulty modules.   

Discussion 

Item Pool 

 While having an item pool of sufficient size to estimate ability and minimize item 

exposure is important, Stocking and Lewis (2000) emphasize the need for the available item pool 

to adequately reflect test specifications for content, item type, and other nonstatistical properties.  

Their research has demonstrated that item pools which do not have a sufficient number of items 

to match these specifications make the use of conditional exposure control strategies such as the 

Sympson-Hetter difficult, if not impossible, to implement because of problems in obtaining 

convergence of the exposure control parameters.  Since practical and economic issues often 

make expansion of an item pool infeasible, alternatives to the conditional exposure control 

strategies must be sought.  The procedures examined in this study provide two reasonable 

alternatives for controlling exposure with a less than optimal item pool.  The result of doing so, 
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however, is evidenced by the higher exposure rates of the passage types in short supply, as seen 

in the top portions of Tables 3 and 4. 

 In the current study, test specifications were set equal to the proportion of item type 

occurring in the calibrated pool in an attempt to avoid the mismatched situation described above.  

However, so few passages were given in each test that the rounding of the target proportions to 

whole passage units, forced a discrepancy between target proportions and observed proportions, 

and consequently a mismatch with the available pool.  For example, the target number of ten 

item passages to be administered in an examinee’s test was 5%.  Since the test length was 7 

passages, this translated to roughly one-third of a passage.  Operationally, this was rounded to 

one whole passage, or 14% of the test.  Because the item pool contained only 5% ten item 

passages, those 5% were forced to be overexposed.  It is, therefore, recommended for future 

research and operational use that test length be considered when determining test specifications 

and item pool makeup, such that the target proportion of item type to be administered and the 

available percentage of that item type in the pool result in whole number units.  Given the current 

test specifications, it is recommended that the item pool be supplemented with additional eight 

and ten item passages. 

 Calibration problems with low category frequencies, forced the removal of many 

passages from the item pool.  However, these problems occurred disproportionately with the 

eight and ten item passages.  Of the 27 passages discarded from the item pool, 22 were eight or 

ten item passages.  The presence of additional categories clearly requires an increase in the 

sample size required for calibration, however, this alone cannot account for the problem, as the 

sample sizes for most forms were judged to be sufficient.  An alternative explanation may stem 

from the testlet scoring procedures themselves.  Unlike true polytomously scored items in which 
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a single item is assigned a score along a continuum indicating quality or number of steps 

successfully completed, testlet scores are derived by summing the correct or incorrect response 

strings to a series of related items.  During test administration, each item is completed 

independently.  The probability of answering all items incorrectly, thus receiving a score of zero, 

is quite small due to the accumulated effects of guessing across the set of items.  The more items 

that are included in a set, the more likely that an examinee will answer at least one item 

correctly.  Since most of the observed low category frequencies occurred for the 0 and 1 score 

categories, this explanation seems likely.  One possible solution to this dilemma may be found in 

the work of Wilson and Masters (1993) in which a method for calibrating polytomous items with 

low category frequencies is discussed. 

Random item selection 

 Random selection of items for administration was presented in this study only as a means 

of providing a baseline comparison to gauge optimal exposure rates.  In other words, this method 

of item selection would not be recommended for operational implementation.  However, the 

results from this condition do highlight an interesting phenomenon.  Even with items being 

chosen for administration completely at random, with no reference whatsoever to ability, the 

correlation between known and estimated theta only dropped to 0.93 and the standard error was 

only 0.36.  The condition provided the worst results in terms of measurement precision among 

the four studied conditions, but the results were not that far below those of the optimal condition.  

Two possible explanations are posited.  One possibility might be that these results stem from the 

compensatory nature of polytomously scored items.  These items yield a higher modal level of 

information across a larger span of the theta scale than dichotomously scored items, making 

negligible the impact on measurement precision of substituting of one item for another.  Another  
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possibility is that results may differ for Rasch and non-Rasch models due to the influence, or 

lack thereof, of item discrimination on information, and thus, maximum information item 

selection.  Way (1998) discusses the differential impact of the underlying measurement model on 

CAT performance, citing research that demonstrates that Rasch based CATs for dichotomously 

scored items tend to be robust to modifications in the item pool and item selection algorithms 

which may cause the administration of sub-optimal items (Haynie & Way, 1994; Way, Zara, & 

Leahy, 1996).  In a Rasch model, when all items are assumed to be of equal discrimination, the 

substitution of one item for another may make less of an impact on ability estimation than in the 

case where items vary in terms of discrimination because they are all equally informative, only 

differing in their location along the difficulty scale.  Further research is necessary to delineate 

between these possible explanations. 

Within .10 logits and CAST 

 Bergstrom and Lunz (1999) demonstrated the utility of the within .10 logits procedure 

with dichotomously scored items from the ASCP CAT with a 900 item bank, concluding that the 

maximum exposure rate was less than 30% for most items, with only a few items near the pass 

point and in short supply content areas being administered with higher frequency.  Results of the 

current study reflect the same pattern, with exposure rates being controlled to below 20% except 

for a couple of items where overexposure was necessary in order to meet nonstatistical 

constraints.  These findings suggest that while maximum exposure rates still cannot be 

guaranteed as with a conditional selection strategy, with careful development and 

supplementation of the item pool exposure rates can be held to acceptable levels.  The procedure 

is simple to implement, controls exposure relatively well, and can be used with less than optimal 

item pools.  
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 The performance of the CAST procedure was better than anticipated, given that panels 

were constructed without the aid of automated test assembly software.  While overall 

information was comparable across panels, module level information functions point to the 

nonuniform distribution of information across difficulty levels within stages which caused a bias 

towards the extremes in module selection.  The fact that ability was recovered as accurately as it 

was, with no nonconvergent cases, and that item exposure and overlap rates remained low even 

in the face of this bias, is testimony to the robust nature of the CAST system.  It is anticipated 

that results for the CAST method would even improve with a larger, more targeted item pool and 

the use of ATA software. 

 In comparing the two viable solutions for controlling exposure presented in the current 

study, it should first be stated that both methods performed well and provided a good measure of 

control over exposure and overlap rates with an acceptably low decrease in measurement 

precision.  Either procedure can be recommended for use with a similar item pool size and test 

structure to the one used here.  However, there were differences in how the procedures 

performed, and while these differences were not completely consistent in pointing to a superior 

procedure across dependent measures, the weight of evidence suggests that the CAST system 

may provide the best overall solution.  CAST outperformed the within .10 logits procedure in 

terms of exposure and overlap rates and pool utilization.  Differences in the maximum exposure 

rates between the two procedures were most exaggerated when the entire pool was considered 

for analysis.  While this difference was largely mitigated by the exclusion of the eight and ten 

item passages, CAST remained superior.  The same pattern emerged when the two procedures 

were compared on overlap rates, with CAST outperforming within .10 logits by 4% when the 

entire pool was considered and by a smaller 1% when the eight and ten item passages were 
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removed.   The most stunning result, however, in terms of test security was in regard to pool 

utilization.  While, the within .10 logits procedure did reduce the percent of pool not 

administered by 44-45% over maximum information item selection, the CAST procedure 

consistently administered all available passages.   

 In terms of the descriptive statistics, results were mixed with the CAST system providing 

superior values for bias and SDM and the within .10 logits procedure yielding better 

performance for RMSE, SRMSD, and AAD statistics.  The correlation between known and 

estimated theta was marginally higher for within .10 logits than for CAST, but this difference is 

too small to be of practical significance.  Estimated theta values for CAST were slightly closer to 

those of the known thetas, but again the difference was small.  Results for the two procedures in 

terms of standard error were identical.  The most notable result, however, was that the CAST 

system produced no nonconvergent cases, whereas the within .10 logits procedure produced 44. 

 CAST yielded overall superior performance for test security, especially in terms of pool 

utilization.  While the within .10 logits procedure did have identical or superior values for some 

descriptive measures, differences in favor of the procedure were small relative to the CAST 

statistics.  Finally, CAST demonstrated it’s superiority in it’s ability to estimate theta values for 

all 1000 simulees in the original sample.  

Conclusions 

 Testlet scoring of passage based items provides a clear advantage over dichotomous 

scoring when conditional item dependencies are found.  However, this advantage does not come 

without the cost of the added complexity of using polytomous IRT models and calibration 

difficulties due to low category frequencies when large numbers of items are associated with a  

passage.  It is, therefore, recommended that testlet scoring only be considered when strong 
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conditional dependencies have been found among the passage based items, as was the case with 

the Verbal Reasoning section of the MCAT.   

 Two methods for controlling item exposure when testlet scoring is used were proposed in 

the current research.  Both the within .10 logits and CAST procedures performed well in terms of 

test security and measurement precision and are both certainly preferable to the no exposure 

control alternative.  When all variables are considered, however, the CAST system appears to be 

the more flexible and robust option.  In addition to providing, superior results in terms of test 

security, CAST has the advantage of apriori construction of test forms, enabling test developers 

to execute a higher level of quality control of the measurement and content related properties of 

each test form.  While one particular CAST structure was examined in the current study, many 

other structures are possible.  Further research should examine the impact of CAST structure on 

measurement and test security variables. 
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TABLE 1 
Means (and Standard Deviations) for Estimated Theta and Standard Error 

(N=834) 
 
 
 
 
 

  Theta* Standard 
Passage Selection Condition Estimate Error 
Maximum Information 0.09 0.29 
  (1.09) (0.06) 
    
Random 0.01 0.36 
  (1.14) (0.12) 
    
Within .10 Logits 0.13 0.33 
  (1.11) (0.08) 
    
CAST 0.11 0.33 
  (1.11) (0.08) 
*Note:   Mean and SD for Known Thetas were 
Mean=0.09; SD=1.03   
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TABLE 2 
Correlation Coefficients Between Known and Estimated Theta, Bias, Standardized Difference 
Between Means (SDM), Root Mean Squared Error (RMSE), Standardized Root Mean Squared 
Difference (SRMSD), and Average Absolute Difference (AAD) Statistics for Each of the Four 

Passage Selection Conditions (N=834) 
 

 

  Correlation Bias SDM RMSE SRMSD AAD 
Passage Selection Condition             
Maximum Information 0.96 0.00 0.00 0.31 0.52 0.24 
         
Random 0.93 -0.04 0.04 0.41 0.59 0.30 
         
Within .10 Logits 0.96 -0.04 0.04 0.33 0.54 0.25 
         
CAST 0.95 -0.02 0.02 0.35 0.56 0.27 



TABLE 3 
Pool Utilization and Exposure Rates for the Four Passage Selection Conditions 

 
All Passages Included 

  Maximum Random Within CAST* 
  Information   .10 Logits   

Number of Passages 149 149 149 120 
Exposure Rate         

1 0 0 0 0 
.91-.99 0 0 0 0 
.81-.90 0 0 0 0 
.71-.80 0 0 0 0 
.61-.70 0 0 0 0 
.51-.60 1 0 0 0 
.41-.50 3 2 1 0 
.36-.40 2 0 1 0 
.31-.35 0 0 0 0 
.26-.30 3 0 0 0 
.21-.25 1 0 0 0 
.16-.20 5 1 7 3 
.11-.15 6 6 11 15 
.06-.10 14 21 25 34 
.01-.05 21 119 77 68 

Not Administered 93 0 27 0 
Exposure Rate AVG 0.047 0.047 0.047 0.058 
Exposure Rate SD 0.101 0.052 0.063 0.044 

Exposure Rate MAX 0.513 0.428 0.444 0.165 
% of Pool Not Administered 62% 0% 18% 0% 

8 and 10 Item Passages Removed From Analyses 
  Maximum Random Within CAST* 
  Information   .10 Logits   

Number of Passages 131 131 131 104 
Exposure Rate      

1 0 0 0 0 
.91-.99 0 0 0 0 
.81-.90 0 0 0 0 
.71-.80 0 0 0 0 
.61-.70 0 0 0 0 
.51-.60 0 0 0 0 
.41-.50 2 0 0 0 
.36-.40 2 0 0 0 
.31-.35 0 0 0 0 
.26-.30 2 0 0 0 
.21-.25 1 0 0 0 
.16-.20 5 0 5 1 
.11-.15 3 1 7 5 
.06-.10 10 19 23 30 
.01-.05 20 111 69 69 

Not Administered 86 0 27 0 
Exposure Rate AVG 0.038 0.038 0.038 0.048 
Exposure Rate SD 0.088 0.019 0.042 0.036 

Exposure Rate MAX 0.474 0.104 0.191 0.165 
% of Pool Not Administered 66% 0% 21% 0% 

*Note:  CAST panel construction did not use the entire available item bank 

 



TABLE 4 
Item Overlap for the Four Passage Selection Conditions 

 
 
 

All Passages Included 
  Overall Different Abilities Similar Abilities 
  Average Overlap Average Overlap Average Overlap 
  (N=347,361) (N=59,471) (N=287,890) 
Maximum Information 1.84 0.49 2.12 
(149 Paragraphs) 26% 7% 30% 
      
Random 0.72 0.71 0.72 
(149 Paragraphs) 10% 10% 10% 
      
Within .10 Logits 0.90 0.63 0.96 
(149 Paragraphs) 13% 9% 14% 
      
CAST 0.63 0.45 0.67 
(120 Paragraphs) 9% 6% 10% 

8 and 10 Passages Items Removed from Analyses 
  Overall Different Abilities Similar Abilities 
  Average Overlap Average Overlap Average Overlap 
  (N=347,361) (N=59,471) (N=287,890) 
Maximum Information 1.20 0.26 1.40 
(131 Paragraphs) 17% 4% 20% 
      
Random 0.23 0.23 0.23 
(131 Paragraphs) 3% 3% 3% 
      
Within .10 Logits 0.42 0.15 0.47 
(131 Paragraphs) 6% 2% 7% 
      
CAST 0.36 0.18 0.40 
(104 Paragraphs) 5% 3% 6% 
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TABLE 5 
Frequency of CAST Panel and Module Usage 

(N=834) 
 
 
 
 

  Stage2 Difficulty   
  Easy Easy Average Average Average Hard Hard   
  Stage3 Difficulty   

Panel Easy Average Easy Average Hard Average Hard Totals 
1 13 10 1 12 0 8 61 105 
2 23 0 9 0 16 7 60 115 
3 19 2 7 15 4 3 60 110 
4 21 6 1 16 19 10 36 109 
5 19 10 0 0 2 3 45 79 
6 17 4 1 14 1 16 54 107 
7 33 4 1 1 1 4 57 101 
8 16 2 0 1 19 21 49 108 

Totals 161 38 20 59 62 72 422 834 
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FIGURE 1 
Three Possible Panel Structures Using CAST 
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FIGURE 2 
Test Information Function for the MCAT Verbal Reasoning Item Pool for 149 Passages 

Calibrated According to the Partial Credit Model 
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FIGURE 3 
Panel Information Functions 
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FIGURE 4 
Module Level Information Plots for Panel 5 
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FIGURE 5 

Module Level Information Plots for Panel 8 
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