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Simulated computerized adaptive tests for measuring functional status
were efficient with good discriminant validity in patients with hip,
knee, or foot/ankle impairments
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Abstract

Background and Objective: To develop computerized adaptive tests (CATs) designed to assess lower extremity functional status (FS)
in people with lower extremity impairments using items from the Lower Extremity Functional Scale and compare discriminant validity
of FS measures generated using all items analyzed with a rating scale Item Response Theory model (Brr) and measures generated using
the simulated CATSs (Ocar)-

Methods: Secondary analysis of retrospective intake rehabilitation data.

Results: Unidimensionality of items was strong, and local independence of items was adequate. Differential item functioning (DIF)
affected item calibration related to body part, that is, hip, knee, or foot/ankle, but DIF did not affect item calibration for symptom acuity,
gender, age, or surgical history. Therefore, patients were separated into three body part specific groups. The rating scale model fit all three
data sets well. Three body part specific CATs were developed: each was 70% more efficient than using all LEFS items to estimate FS
measures. Orr and Ocar measures discriminated patients by symptom acuity, age, and surgical history in similar ways. Ocar measures
were as precise as Oy measures.

Conclusion: Body part-specific simulated CATs were efficient and produced precise measures of FS with good discriminant
validity. © 2005 Elsevier Inc. All rights reserved.
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1. Introduction have facilitated development of computerized adaptive
tests (CATs) [1,6]. CATs have recently emerged in the medi-
cal [7,8] and rehabilitation [9,10] fields, and development
of CAT measures of function in rehabilitation has been rec-
ommended [11-13].

CATs offer advantages compared to a computer adminis-
tered or paper and pencil outcomes instruments. CATs (1)
administer informative items, the difficulty of which are
matched to the patient’s level of ability reducing the number
of inappropriate items administered; (2) administer fewer
items, reducing respondent burden with little reduction in
precision of patient ability estimates; 3) allow the level of
measure precision to be established before testing improving
control of measurement error during testing; and (4) simplify
test revision by allowing adding and testing new items as
needed [6,14]. CATs provide an efficient alternative to tradi-
tional paper-and-pencil or computer-administered tests, and
* Corresponding author: Tel.: 804-436-9727; fax: 804-436-9328. allow outcomes data to be collected during the clinical en-
E-mail address: dsailhart@rivnet.net (D.L. Hart). counter with reduced patient and scoring burden. Therefore,

Computerized adaptive testing (CAT) has transformed the
process of estimating latent traits [1]. Latent traits or abilities
cannot be directly observed, but can be estimated by analyz-
ing a person’s performance on a set of items [2]. For the
purpose of this study of patients with lower extremity impair-
ments, the latent trait of interest is lower extremity functional
status (FS), which we operationally define as the patient’s
perception of their ability to perform functional tasks de-
scribed in the FS items. FS is of interest because many
people seek rehabilitation to improve functional deficits
caused by lower extremity impairments [3].

CAT has its origins in mental [4], educational [5], and
military [6] testing, but inexpensive, powerful computers
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CAT facilitates management of a central conflict in scale
development: good measurement precision with low
response burden [6,7] and is applicable to assessment of
outcomes, that is, change in FS in patients receiving rehabili-
tation [9,10,15,16]. Recent symposia in health outcomes
methodology and computer-based testing have emphasized
the need to improve (1) outcomes assessment for advancing
the science and practice of treatment-effectiveness evalua-
tion [17], and (2) chart a path to development of better
computer-based tests [18].

The foundation of CAT lies in Item Response Theory
(IRT) methods [19-22]. Briefly, IRT comprises a set of math-
ematical models and associated statistical procedures that
connect observed survey responses to a person’s location on
an unmeasured, underlying latent trait like FS. IRT models
produce item and latent trait estimates that do not vary
with population characteristics with respect to the underlying
trait, standard errors conditional on trait level, and trait esti-
mates linked to item content. IRT facilitates evaluation of
whether items measure the trait of interest similarly in differ-
ent subgroups of respondents, that is, differential item func-
tioning (DIF) and assesses data fit to the model [23].

This article describes development of CATs using
items from the Lower Extremity Functional Scale (LEFS), a
common paper-and-pencil outcomes instrument for patients
with lower extremity impairments receiving rehabilitation
[3]. No articles have described IRT analyses or CAT applica-
tions of the LEFS. The overall purpose of this study was to
develop CATs of the LEFS. Specific purposes were to (1)
test unidimensionality and local independence of the LEFS
items, (2) test LEFS item DIF, (3) develop CATs using
LEFS items, and (4) compare the discriminant validity of
FS measures generated using all LEFS items analyzed with
an IRT rating scale model with measures generated from
the simulated CATs.

2. Methods
2.1. Study design and setting

A secondary analysis of retrospective data collected from
patients with lower extremity impairments prior to rehabili-
tation was conducted. Focus On Therapeutic Outcomes, Inc.
(FOTO) Institutional Review Board approved the project.

2.2. Subjects

Patients (n = 1772, 48 £ 17 years, 14 to 89 years, 64%
female) with lower extremity impairments were analyzed
(Table 1). Patients, who represent a sample of convenience,
received rehabilitation in 81 outpatient clinics in 20 states
(United States) in the consecutive 24 months starting July
2002. All clinics were participating with FOTO (Knoxville,
TN) a medical rehabilitation data management company.

2.3. Data collection

The data collection process has been described [15,24].
Patients seeking rehabilitation entered demographic data and
completed self-report surveys prior to initial evaluation,
including a computer-administered LEFS survey, which was
a fixed format survey in the exact format as the original
paper-and-pencil LEFS [3]: it was not a computerized adap-
tive test. Because this is a secondary analysis of a retrospec-
tive data set, no conditions or restrictions were placed on
selection of patients who received the LEFS. Collection of
data was at the discretion of the treating therapist. Patients
were selected for this study from the FOTO database if the
patients completed a computer-administered LEFS survey
at rehabilitation intake.

2.4. Outcome Instrument

Conceived by Binkley et al. [3], the LEFS is a 20-item
patient self-report region-specific outcomes instrument.
Items represent functional activities commonly affected in
people with lower extremity impairments, like running on
uneven ground or walking between rooms. LEFS items are
scored on a five-point scale (0 to 4). LEFS scores vary from
0 (Iow) to 80 (more normal FS). The LEFS was designed to
be applicable to patients with a spectrum of lower extremity
problems including mild ankle sprains and total joint
arthroplasty. Reports of LEFS psychometric properties are
consistent with clinical practice and research applications
and stable across patient problems and age groups [3,25-27].
FS, as assessed using LEFS items, represents the “activ-
ity” dimension of the World Health Organization’s Interna-
tional Classification of Functioning, Disability, and Health
[28].

2.5. Data analyses

2.5.1. Unidimensionality and local independence

Data were analyzed to determine how well unidimension-
ality and local independence IRT assumptions were met.
Unidimensionality means items in a scale measure only one
construct [19,23]. Local independence requires that any two
items be uncorrelated when the latent trait is fixed [19].
Some have stated local independence follows automatically
from unidimensionality [19,29], but the assumption of unidi-
mensionality is violated to some degree in each practical
situation. A set of items can be unidimensional and yet
contain pairs of items that are correlated [30].

Many IRT models assume unidimensionality [19,22,23],
but because unidimensionality and local independence
cannot be strictly met [19,23], scale developers seek to
derive sets of items that are “essentially unidimensional”
[31] where one dimension is dominant, possibly in the pres-
ence of one or more minor dimensions.

We used factor analytic methods using weighted least-
square methods for factor analysis of categorical data [32]
to investigate the assumption of unidimensionality and local
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Table 1
Patient characteristics at rehabilitation intake

Body part affected

Characteristic Hip (n = 444) Knee (n = 949) Foot/ankle (n = 379)
Diagnoses (%)
Osteoarthritis 7 11 0
Internal derangement of joint 38 53 4
Effusion of joint 0 0 3
Enthesopathies® 20 0 9
Soft tissue disorders® 17 2 30
Flat foot NA NA 1
Congenital disorders 0 1
Abnormality of gait 0 6 0
Dislocation of joint 0 14 0
Fractures 3 0 10
Strains and sprains 14 13 25
Contusions 1 0 1
Other 0 0 16
Age (mean = SD, min, max in years) 54 + 17, 15, 88 47 = 17, 14, 89 45 + 15, 14, 88
Age 14 to <45 (%) 29 44 52
Age 45 to 65 (%) 45 41 39
Age >65 (%) 26 15 8
Gender (% female) 70 61 65
Acuity of symptoms (%)
Acute 13 16 10
Subacute 27 29 35
Chronic 60 54 55
Surgical history (%)
None 93 78 87
One or more 7 22 13
Exercise History (%)
At least 3x/week 34 37 41
1-2x/week 24 25 24
Seldom or never 41 38 35
Medication use (%) 57 64 56
Type of Referring Physician (%)
Primary care 60 32 41
Orthopedic surgeon 15 47 34
Physiatrist 14 1 3
Neurologist 2 0 1
Occupational medicine 2 2 1
Podiatrist 0 0 9
Other 7 18 11
Payer Source (%)
Indemnity 11 9 14
Medicaid 2 2 5
Medicare 19 15 7
Patient private pay 0 1 2
HMO 43 34 43
PPO 15 16 12
Workers’ compensation 6 14 14
Other 4 9 3

Abbreviations: SD, standard deviation; min, minimum; max, maximum.

# Enthesopathies are disorders of peripheral ligamentous or muscular attachments.

b Soft tissue disorders include synovium, tendon, bursa, muscle, fascia.

independence because traditional factor analysis may overes-
timate the number of factors and underestimate the factor
loadings when analyzing skewed categorical data [33]. Pres-
ence of a dominant factor in the LEFS items was assessed
with exploratory factor analyses (EFA) of latent trait vari-
ables followed by confirmatory factor analyses (CFA) [34].

Eigenvalue analyses were conducted, and results were evalu-
ated with scree plots. Model fit was evaluated using compara-
tive fit index (CFI) [35], the Tucker-Lewis index (TLI) [36],
and the root-mean-square error of approximation (RMSEA)
[37]. The CFI and TLI measure fit of a model relative to
the null model, the CFI incorporates a correction for model
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complexity, and the TLI accounts for degrees of freedom
[38]. The RMSEA was used because it is a fit statistic that
accounts for model parsimony. The TLI and CFI range from
0 (poor fit) to 1 (good fit). Values of CFI and TLI greater
than 0.90 are indicative of good model fit; RMSEA values
less than 0.1 suggest adequate fit [37]. We also evaluated
item loadings and residual correlation between items. Analy-
ses were conducted using Mplus software (Muthén &
Muthén, Los Angeles, CA) [32].

2.5.2. IRT model selection

The Andrich [39] rating scale IRT model (RSM) was
selected because it is a latent structure model for polyto-
mous responses to a set of test items, which is the format
of the LEFS. The RSM is an extension of the Rasch model
for dichotomous responses [40] where response categories
are scored such that the total score for all items constitutes a
latent ability estimate (0) for respondents, in the present
case, an estimate of the lower extremity FS. Rasch models,
now being studied in health care [41], specify one-parameter
logistic functions, which allow items to vary in their diffi-
culty level (B) but assume items are equally discriminating
[23,40,42]. The RSM extends the dichotomous model by
assuming response categories are ordered and equidistant
across items [39]. With the RSM, response categories are as-
signed thresholds for the entire set of items in the rating scale
[43]. Thresholds are measures of 8 where the probability of
endorsing two adjacent responses is equal [39]. Item diffi-
culty (B) is estimated by a single-scale location parameter,
which represents the average difficulty (B) for each item
relative to category thresholds [23,44]. The RSM permits
estimates of FS ability (0), category thresholds, and item
difficulty (B) to be placed on the same metric, so the associa-
tion between a patient’s underlying level of the latent FS trait
and the probability of a particular item response can be
plotted using a nonlinear monotonic function, that is, item—
characteristic curve [23].

2.5.3. Development of the LEFS IRT hierarchical
structure and item fit

Hierarchical structure of a scale pertains to the ordering
or calibration of items by level of difficulty as evidenced
by patients’ responses to the items [15,45]. Item difficulty
calibrations or B parameters were estimated in logits using
RSM. Scores were linearly transformed to a range of O (Ilow)
to 100 (more normal function) representing a measure of
physical functioning, which we operationally define as an
FS scale.

IRT models are “falsifiable” models, that is, a given model
may or may not be appropriate for a particular set of data
[22]. Assessing item structure and data fit investigates the
success of the selected model in predicting or explaining
the data. Infit and outfit mean square statistics for the sample
were examined as an assessment of whether the data fit
the RSM. Mean square fit statistics measure adherence of
items to Rasch model restrictions [42]. The RSM requires

an item to have a greater probability of producing higher
ratings for persons with more ability compared to persons
with less ability. Patients with a certain functional ability
should have a higher probability of scoring higher on easier
items than more difficult items. Mean square fit statistics
are centered at 1.0, and their values increment higher with
increasing violations of expected results.

IRT models also allow assessment of item fit
[15,16,42,45,46]. The extent to which each item fits the FS
construct was assessed by item goodness-of-fit statistics [42].
Goodness-of-fit is an assessment of how well item calibra-
tions (estimated for the entire sample) fit the data with respect
to sample individuals [45]. Item infit provides information
about responses given to items near patient ability. Item
outfit is an outlier-sensitive statistic that assesses items that
are far from patient ability levels. Poor item fit was operation-
ally defined as infit or outfit <.6 or >1.4 [47]. Items with
poor fit were identified for possible deletion [15,42]. To test
interitem consistency reliability, Cronbach’s alpha values
were calculated using raw LEFS responses.

2.5.4. DIF

An item demonstrates DIF if patients having the same
ability but coming from different groups do not have the
same probability of selecting a given item response
[19,22,48]. Items were assessed for DIF by selecting groups
of patients by body part impaired (hip, knee, foot/ankle),
age group (young = 14 to <45, middle = 45 to 65, and older
>065 years), gender (male, female), and acuity of symptoms
(number of calendar days between date of onset of symp-
toms and date of initial evaluation, that is, acute = 21 days
or less, subacute = 22 to <90 days, chronic = 90 days or
more). There is evidence that patients with different affected
body parts respond differently to physical functioning items
[49], and age [24,50,51] and acuity [24,50,51] have been
shown to affect patient self-report of FS.

Each item was assessed for DIF using the RSM in WINS-
TEPS software [52] by comparing pairs of item calibrations
estimated for each group of patients by body part, age,
gender, and acuity using independent z-test statistics. For
DIF analyses, we anchored each person’s ability from the
overall sample to keep ability levels constant within each
subgroup contrast [53]. Because of the number of repeated
tests within each variable and sample size was large, the
significance level of .01 was adjusted by a Bonferroni correc-
tion. Number of significant (P < .01) differences in item
calibrations and the magnitude of the differences provide an
assessment of DIF [52].

2.5.5. CAT development

We developed CATs following the logic of Thissen and
Mislevy [54] using software developed specifically for this
project (CAT Development and Testing Software, version
2.1.0, FOTO, Inc., Knoxville, TN) [55]. The basic compo-
nents of the adaptive test included: selecting the starting item;
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estimating theta; assessing stopping rules; and selecting sub-
sequent items.

The adaptive test started by administering the most infor-
mative item for the scale [19], which provides a response
from which a good initial provisional estimate of FS can
be generated [54]. The computer estimated patient ability
using maximum likelihood estimation employing a Newton-
Raphson estimation technique [56]. The estimation process
makes no assumptions about the distribution of the inter-
viewees, and is Bayesian in the sense that the item difficulties
come from a source outside of the current interviewee’s data.
After each response, a provisional estimate of ability and
its standard error (SE) were calculated.

Stopping rules were assessed following each ability esti-
mate. There were two stopping rules: (1) SE for the pro-
visional ability was less than 4 out of 100 FS units, and (2)
change in provisional abilities for the last three items was
each less than 1 out of 100. The patient’s level of FS from
the adaptive test, that is, Ocar, Was estimated using responses
from all items administered.

If, after each theta estimate, no stopping rule was satisfied,
the computer selected a subsequent item to administer that
was most informative given the patient’s current provisional
ability estimate [54]. In this way, the adaptive test was de-
signed to maximize the amount of information per patient
ability given the subset of items administered and minimize
test length. After administering another item, new estimates
of FS ability and SE were generated, and stopping rules
were reassessed.

2.5.6. Simulated CAT

The computerized adaptive test was used to estimate a
measure of FS, that is, Ocar, with an SE for each patient in
the original data set where each patient had answered all
items using the computer-administered survey. The adaptive
test recorded which and how many items were used before a
stopping rule was satisfied.

2.5.7. Relative precision

Relative precision (RP) estimates [57] were used to exam-
ine how much more or less discriminating the CATs FS
measures, that is, Ocar, were compared to FS measures gener-
ated using all LEFS items, that is, Oigr. We operationally
define precision as a measure’s relative success in discrimi-
nating differences in FS across levels of selected independent
variables. Calculated in this way, precision depends upon
the degree to which measures of FS differentiate groups of
patients being compared (between-group variance) and error
(within-group variance) [57-60].

Estimates of RP were calculated for each pair of mea-
sures, that is, Orr and Ocar, per independent variable, that
is, body part, age, gender, and acuity, by computing ratios of
ANOVA F statistics: Ocar F divided by Ogy F. Measures
are more efficient relative to one another if they classify
patients with greater accuracy (less error) [57-63]. For this
study, we standardized comparisons by keeping the subject

sample constant across measures and within independent
variables.

The magnitude of the F-value from the ANOVA repre-
sents a measure of precision. If the RP ratio is equal to 1, both
methods of estimating function are equally discriminatory. If
the RP >1 the measurement method in the numerator is
superior in differentiating function compared to method in
the denominator. The greater the F-value, the greater the
amount of systematic variance a measurement method ac-
counts for and, therefore, the greater its ability to discrimi-
nate groups of patients. When the subject sample is held
constant, the greater F-value represents the most discriminat-
ing measurement method [57,58]. The ability of a measure-
ment method to discriminate differences (validity) and be
sensitive to changes (precision) in clinical outcome measures
is clinically important and relevant for future outcomes re-
search. Estimates of RP provide estimates of discriminant
validity. Confidence intervals for the RP statistics were ob-
tained using a bootstrap algorithm [64]. A total of 1,000
bootstrap samples with replacement were generated from
each independent variable comparison, and F statistics and
RP values were calculated for each resampling, which pro-
vided an estimate of the distribution for each RP. The 25th
and 975th values of the RP distribution identified the 95%
confidence interval [59,64].

3. Results
3.1. Unidimensionality and local independence

EFA of the 1,772 patients with complete scores on all 20
LEFS items produced a scree plot analysis that supported
one dominant factor (first three eigenvalues = 13.1, 1.7,0.7)
with the first three factors explaining 66, 9, and 4% of data
variance. In CFA, a three-factor model fit better than a one-
factor model, but the correlations between the three factors
were high (>0.62) suggesting one dominant factor. Fit sta-
tistics from the one- to three-factor models were CFI = 0.93,
0.94,0.94, TLI = 0.98, 0.98,0.99, and RMSEA = 0.22, 0.18,
0.16, for one-, two-, and three-factor models, respectively.

These statistics represent mixed results regarding fit for
the model. Although the percentage of item variance ac-
counted for was high, the magnitude of coefficients was
strong, and the CFI and TLI indices were acceptable, the
RMSEA was not. Plus, the number of residuals greater than
absolute value of .10 was higher than desired suggesting
possible local dependence between items related to item pairs
(i.e., items assessing similar tasks). Assessment of factor
loadings and residual correlations suggested the item rolling
in bed did not load well on the dominant factor and nega-
tively correlated with several other items and was deleted.

The 19-item set was reanalyzed producing similar (Table
2) results (first three eigenvalues = 12.7, 1.5, 0.70, with
the first three factors explaining 67, 8, and 4% of data
variance, and fit statistics from a one- to three-factor models
were CFI = 0.94, 0.95, 0.96, TLI = 0.98, 0.99, 0.99, and
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RMSEA = 0.21, 0.17, 0.14 for one-, two-, and three-factor
models, respectively). Assessment of residual correlations
suggested the item running on uneven ground negatively
correlated with other items, that is, running on even ground.
However, deleting the item running on uneven ground pro-
vided a negligible change in CFI, TLI, and RMSEA statistics.
Because the percentage of item variance accounted for
was high, the magnitude of coefficients was strong, and the
CFI and TLI indices were acceptable, we believe the 19-
item set represents a unidimensional pool with acceptable
local independence.

3.2. LEFS IRT hierarchical structure and data fit

Findings supported the 19-item LEFS data fit the RSM
well (mean square infit .99 and outfit 1.02 statistics, person
reliability .95 and separation 4.25, root-mean-square error
2.90 and Cronbach’s o .96). However, one item (sitting for
1 hr) had infit and outfit statistics >2 and was deleted. Sub-
sequent RSM analyses supported the 18-item LEFS data fit
the RSM as well as the 19-item LEFS (mean square infit .98
and outfit 1.01 statistics, person reliability .95 and separation
4.34, root-mean-square error 2.97, and Cronbach’s o .96).
The 18-item LEFS scale was used for subsequent analyses
because the items represented a unidimensional scale, all
items had adequate fit, and person separation was good.

3.3. DIF

Because the sample size was large, many DIF z-test statis-
tics were significant (P < .01), but differences in item cali-
brations were small, thatis, <2 out of 100 FS units. Therefore,

Table 2
Factor loadings for 19-item set®

Three-factor solution One-factor
Item name Factor 1  Factor 2 Factor 3  solution
Working 0.614 0.823
Bathing 0.769 0.799
Walking between rooms  0.641 0.802
Shoes 0.803 0.722
Squatting 0.518 0.757
Lifting 0.837 0.815
Light activities 0.831 0.864
Heavy activities 0.689 0.857
Car 0.868 0.783
Stairs 0.434 0.815
Standing 0.364 0.811
Sitting 0.687 0.518
Hobby 0.511 0.719
Run even 0.861 0.939
Run uneven 0.908 0.956
Turning 0.945 0.962
Hopping 0.855 0.899
Walking blocks 0.717 0.938
Walking a mile 0.662 0.930
Factor correlations
Factor 2 0.651
Factor 3 0.619 0.588

* Factor loadings from confirmatory factor analyses.

we decided to consider pairs of item calibrations with differ-
ences in difficulty levels =5 out of 100 FS units with signifi-
cant (P < .01) Bonferonni adjusted r-test statistics as
clinically important DIF. Of the 18 LEFS items, 4, 1, 0, 0,
and 1 items displayed clinically important DIF in at least
one pair of item calibration comparisons per level of body
part, age, gender, and symptom acuity, respectively. We be-
lieve these results represent clinically important DIF by body
part, but negligible DIF by age, gender, or acuity.

Results of DIF by body part appear clinically logical. For
example, patients with knee or hip impairments perceived
walking to be easier than patients with foot or ankle impair-
ments for walking between rooms, walking two blocks,
walking a mile, and running on uneven ground. The item
by body part with the largest DIF was squatting. Patients
with knee impairments perceived squatting as more difficult
compared to patients with foot or ankle impairments
(squatting item difficulty 55.3[0.3] for patients with knee
impairments compared to 45.7[0.5], B[SE], for patients with
foot/ankle impairments [r = 9.6, df = 809, P < .01]). Be-
cause of the DIF by body part results, patients were grouped
body part, items were recalibrated separately by body part
affected, three separate CATs were developed, and RP was
tested separately by body part.

3.4. CAT development and simulation

The FS scales for patients with hip, knee, or foot/ankle
impairments are displayed in Table 3. CATs were generated
for each scale. The CATs used on average 6 (SD = 2.3,
median = 5, minimum = 4, maximum = 17), 6 (SD = 14,
median = 5, minimum = 4, maximum = 15), or 6
(SD = 1.4, median = 5, minimum = 4, maximum = 15)
items before a stopping rule was satisfied (hip, knee, foot/
ankle CATs, respectively). FS measures, that is, Ot and
OcaT, correlated well for all CATs (r = 0.968, 0.965, 0.968
for hip, knee, or foot/ankle CATs, respectively). Frequency
counts of items used in the CATs varied across body part
specific CATs (frequency reports available upon request)
reflecting differing items and information per abilities tables
per body part, but each of the CATs used all items.

3.5. RP

Neither Ocar nor Ogrr measures of FS discriminated pa-
tients by gender regardless of body part affected, and neither
Ocat nor Ory measures of FS discriminated patients by age
for patients with foot/ankle impairments (Table 4). All other
Ocar and Ot measures discriminated groups of patients in
clinically logical and similar ways for the other independent
variables. RP 95% CIs supported similar discriminating abil-
ities of Ocar and Ory measures.

4. Discussion

Results (1) support body part specific, that is, hip, knee, foot/
ankle, CATs can be generated from LEFS items; (2) measures
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Item characteristics of the three body part specific scales

Hip (n = 444) Knee (n = 949) Foot/ankle (n = 379)
Item Calibration (SE) Infit/outfit Calibration (SE) Infit/outfit Calibration (SE) Infit/outfit
Turning 60.5(0.5) 0.99/0.85 64.0(0.4) 0.89/0.63 64.6(0.6) 0.94/0.69
Run uneven 60.8(0.5) 0.84/0.74 63.6(0.4) 0.83/0.65 66.0(0.6) 0.72/0.56
Run even 58.9(0.5) 0.89/0.83 61.2(0.4) 0.90/0.77 62.3(0.6) 0.93/0.81
Hopping 57.2(0.5) 1.02/0.90 60.9(0.4) 1.06/1.20 62.2(0.6) 1.11/1.45
Squatting 49.5(0.5) 1.09/1.10 55.3(0.4) 1.42/1.39 45.8(0.6) 1.32/1.31
Walking a mile 52.1(0.5) 0.96/0.90 52.4(0.3) 0.91/0.80 56.7(0.5) 0.86/0.79
Hobby 51.8(0.5) 1.20/1.40 51.6(0.4) 1.34/1.46 53.5(0.6) 1.27/1.30
Standing 50.6(0.5) 1.05/1.18 50.2(0.3) 0.99/0.95 52.9(0.5) 1.07/1.12
Heavy activities 52.2(0.5) 0.77/0.74 50.1(0.3) 0.80/0.78 47.8(0.5) 0.80/0.76
Stairs 46.6(0.5) 0.88/0.87 48.7(0.3) 1.01/1.05 46.9(0.5) 0.92/0.99
Working 47.3(0.5) 0.72/0.83 45.5(0.3) 0.83/0.88 47.4(0.5) 0.85/0.89
Walking blocks 43.5(0.5) 0.97/0.88 44.3(0.3) 0.90/0.83 48.5(0.5) 0.87/0.83
Lifting 44.5(0.5) 1.00/1.00 38.8(0.4) 1.23/1.16 36.3(0.6) 1.25/1.09
Car 41.1(0.5) 1.11/1.41 37.7(0.3) 0.87/1.02 34.8(0.6) 0.80/0.95
Bathing 39.4(0.6) 1.18/1.18 36.7(0.4) 1.17/1.15 35.2(0.6) 0.95/1.42
Light activities 39.6(0.5) 0.68/0.65 36.3(0.3) 0.66/0.69 37.0(0.6) 0.67/0.73
Shoes 38.7(0.6) 1.32/1.40 34.0(0.4) 1.16/1.39 34.4(0.7) 1.37/1.43
Walking between rooms 32.2(0.6) 1.02/1.23 30.4(0.4) 0.81/0.82 36.4(0.6) 1.02/1.34
Scale
Mean(SD) 51(13) 45(13) 50(13)
Infit 0.99 0.98 0.98
Outfit 1.01 0.98 1.07
Reliability 0.94 0.95 0.95
Separation 4.14 4.59 4.25
RMSE 3.18 2.84 2.94
95% MDC 8.81 7.87 8.15
Cronbach 0.96 0.96 0.96

Item calibrations scaled 0 to 100 with higher values representing better lower extremity function. Items sorted by item calibrations for patients with

knee impairments.

Abbreviations: SE, standard error; reliability, person reliability; separation, person separation; RMSE, root-mean-square error; mean(SD), average person
measures (standard deviation); 95% MDC, 95% minimal detectable change; Cronbach, Cronbach’s alpha.

of lower extremity FS generated using these CATs can
discriminate known groups of patients in clinically logical
ways; (3) Ocar measures were similar to Ot measures in
their discriminating abilities, but (4) because Ocar measures
were estimated using on average six LEFS items, the
CATs were 67% more efficient compared to using 18 unidi-
mensional LEFS items and 70% more efficient compared
to using all 20 original LEFS items. This represents a clear
superiority for the body part-specific LEFS CATs when re-
spondent burden is of concern.

Although most factor analytic results supported the IRT
assumption of unidimensionality for 19 LEFS items,
RMSEA values were disappointing, and there were more
negative residuals than desired. These results can be inter-
preted to mean the LEFS items represent an essentially
unidimensional scale [31] with adequate local independence
of items, but the potential exists for some dependence of
items. The practical significance of these results may be to
underestimate the SE of Ocar and end the CATs too soon
[30]. Our study design did not permit testing these possibilit-
ies. However, RP estimates were as expected, that is, Ocar
measures were similar to Orr measures in their discriminat-
ing ability, which may imply negligible underestimated
Ocar SE.

The finding that FS items displayed DIF by body part
was not unexpected psychometrically [49] or clinically. Our
findings and others [49,65-67] suggest DIF will commonly
affect calibration of FS or activities of daily living items. In
most instances, it is reasonable to expect DIF in FS items,
particularly by body part affected [49], because it is clinically
appropriate for patients with different impairments to per-
ceive the level of difficulty differently per item during the
performance of a functional task depending on the body
part affected. For example, in our analyses, people with
hip impairments considered lifting an object like a bag of
groceries from the floor to be more difficult compared to
people with foot or ankle impairments (t = —11.1, df = 809,
P < .01). It could be hypothesized that people with hip
impairments could not shift their body weight away from
their hip during the lift as well as people with foot or ankle
impairments. Future studies should examine the relation
between clinical correlates and psychometric DIF results as
well as the practical implications of DIF when present.

Our DIF analysis results and those of others [49,65—
67] were different than those reported by Haley et al. [53]. In
their Physical & Movement domain of their Activity Mea-
sure for Postacute Care, only one item, “reaching overhead
while standing,” demonstrated DIF across diagnostic groups.
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Table 4
Relative precision results
F-statistics
Body part Variable  Ogr OcaT dr* ORT Ocar RP (95% CI)
Hip (n = 444) Acuity Acute Subacute  Chronic ~ Acute Subacute  Chronic
44(2) 49(1) 53(1) 45(2) 49(1) 53(1) 2/441 8.02% 8.77* 1.1(0.8,1.5)
Age Young  Middle Older Young  Middle Older
56(1) 51(1) 44(1) 56(1) 51(1) 45(1) 2/438 22.70% 19.36* 0.9(0.7,1.0)
Gender Male Female Male Female
49(1) 51(1) 50(1) 52(1) 1/439 1.50 0.96 NA
Knee (n = 949) Acuity Acute Subacute  Chronic ~ Acute Subacute  Chronic
43(1) 47(1) 46(1) 42(1) 46(1) 45(1) 2/946 4.29% 4.44%* 1.0(0.6,1.6)
Age Young  Middle Older Young  Middle Older
47(1) 45(1) 42(1) 46(1) 45(1) 42(1) 2/942 6.75% 6.09* 0.9(0.7,1.2)
Gender Male Female Male Female
46(1) 45(1) 46(1) 44(1) 1/942 2.47 2.41 NA
Foot/ankle (n = 379)  Acuity Acute Subacute  Chronic ~ Acute Subacute  Chronic
47(2) 49(1) 53(1) 48(2) 49(1) 53(1) 2/376 4.11% 3.44% 0.8(0.5,1.2)
Age Young  Middle Older Young  Middle Older
S1(1) 50(1) 51(3) 52(1) 50(1) 51(3) 2/372 0.09 0.24 NA
Gender Male Female Male Female
52(1) 50(1) 52(1) 51(1) 1/374 1.97 0.73 NA

Abbreviations: Oy, person measures estimated using Rating Scale model and all items; B¢, person measures estimated using computerized adaptive

tests; RP, relative precision; 95% CI, 95% confidence interval; NA, not applicable because at least one F-statistics was not significant.

* Degrees of freedom for ANOVA for main effect/error.
* F-statistics is significant (P < .05).

Both studies used similar DIF analytic techniques, assessed
physical activities, and used five response categories per
item. However, the current sample and Haley et al.’s sample
were quite different, which may explain the differences in
DIF results. In our study, patients were younger, had specific
orthopedic conditions, and all were able to be treated in
outpatient clinics, while the patients in the Haley et al sample
were older, many did not have specific orthopedic conditions,
and were treated in a variety of postacute care settings, in-
cluding inpatient rehabilitation facilities, transitional care
units, ambulatory care facilities, and at home. Further testing
is needed to describe possible biomechanical and clinical
factors as well as psychometric techniques that may affect
item DIF.

Identification and management of between groups DIF
is evolving with no clear generally accepted method. In
this study we used a simple comparison of item calibrations
because the RSM assumes item discrimination is the same
across all items [39]. However, an important psychometric
issue is how much difference in item calibrations needs to
be present to provide a practical impact on the measure of
FS. We made a decision to consider five or more FS units out
of 100 to be clinically important, but there are no standards
governing this decision. Future analyses should examine
this cut point.

The management of between groups DIF is also evolving.
Some statistically control for the effects of DIF using struc-
tural equation modeling [65] or item calibration adjustment
[67,68], while deletion or revision of items with DIF [66] or
separating items into different unidimensional scales [30]
have also been recommended. Here, we separated patients

into three separate samples and generated CATs separately
for each group. Future studies need to assess the practical
impact of various methods of DIF management.

Improved efficiency, that is, 70% reduction in test length,
of the LEFS CATs compared to the original 20 item LEFS
is meaningful for patients because of reduced respondent
burden for data entry. When improved efficiency of CATs
is associated with equal or minimal reduction in measure
precision, as in this sample, CATSs are recommended, particu-
larly if patient fatigue, age, or medical comorbidities may
negatively influence validity of data collection if data collec-
tion is burdensome. However, it is common for 6car mea-
sures to have the same or more error than O measures,
which is evident in the RP lower 95% CI bounds. Those
interested in using CATs have to balance reduced patient
burden with the possibility of increased measure error before
deciding to use a computerized adaptive test.

4.1. Limitations

The Rasch model selected assumes all items are equally
discriminating [39]. According to other studies [69,70],
items used to assess function commonly differ in their dis-
criminating ability [19,22,23]. Future studies should evaluate
whether other IRT models fit LEFS data better, and if they
do, assessment of practical implications of differences in
model fit for CAT measure RP and discriminant validity
are recommended.

Eighteen LEFS items represent a small item bank for
testing functional abilities of patients with lower extremity
impairments, and 18 items are fewer than the item bank of
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25 polytomous items previously found to be adequate for a
rating scale model CAT [43]. However, the LEFS CATs used
four to six items to estimate a patient’s FS before a stopping
rule was satisfied for 87% of the patients with foot/ankle or
knee impairments and 73% of patients with hip impairments.
Only 6, 3, and 2% of patients with hip, knee and foot/ankle
impairments, respectively, required more than 10 items
before a stopping rule was satisfied. Therefore, 18 LEFS
items appear to be enough to estimate a precise, that is,
limited SE, measure of FS in these patients given the stop-
ping rules of a SE <4 out of 100 or a B¢y that was stable
(i.e., change over the last three items was <1 out of 100).
In the current medical/business environment, less burden
means more efficiency and less cost, including outcomes
data collection [41,71].

There were a limited number of comparisons for between
group DIF testing. Becuase results of DIF testing suggested
DIF by body part, testing of DIF across more patient demo-
graphic variables is warranted. Further, there are a number
of approaches to the analysis of DIF [67,68,72], and future
research should compare the results obtained here with
those based on other DIF statistics.
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