BAYESIAN TAILORED TESTING

AND THE INFLUENCE OF ITEM BANK CHARACTERISTICS '

Conventional tests are generally constructed to dis-
criminate over a rather wide range of examinee ability. One
of the consequences of this approach is that a conventional
test usually contains many items which are not appropriate
for a particular level of ability. Psychometricians have long
been aware of this and in recent years they have increas-
ingly turned their attention to the possibility of program-
ming computers to design and administer tests.

Of the many computerized testing methods which have
been proposed, the Bayesian process developed by Owen
(1969) seems to be the most elegant and intuitively appeal-
ing method. It assumes locally independent binarily scored
items and a normal ogive model (Lord and Novick, 1968,
Ch. 16) in which the probability of passing a free response
item g at ability level 8 is expressed as
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If the item is not of the free response type and ¢, is the
probability of guessing correctly, the probability of passing
becomes

Py (6)=P, (8) +c, [1- Py (0)]
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The derivation of Owen’s Bayesian tailoring process has
been described several times in the literature (Owen, 1969;
Usry, 1971; Jensema, 1974a). We will briefly run through
the fundamental formulas here for the sake of complete-
ness.

Suppose N(00,002) expresses our knowledge of an ex-
aminee having ability 8. If we administer free response item
g, which has discrimination and difficulty parameters ¢ and
b, and if the examinee responds correctly, Bayes’ theorem
specifies that the information available is
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where #,(0) is defined by (1) and k is such that
o0
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The solution is
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where erf D is the error function
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The expectation of the posterior mean is
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and the variance is
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Similarly, if the examinee gives a wrong response to item g
we have
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and
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To expand this discussion a little further assume that
item g is not a free response item and that it has a probabil-
ity G, of guessing correctly. If the examinee gives a correct
response we have
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where the prime is used to signify the effect of guessing,
P, (8) is defined by (2), and we take
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If the examinee gives a wrong response the formulas in
(10), (11), and (12) hold, since our information, that the
examinee does not know the correct answer, is the same as
in the free response case.

Now assume we have n items and want to select the best
one for administration. The expected posterior variance of
0 after administration of a particular item is
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when items are of the free response type and
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when the items are affected by guessing. In (19) and (20) u
refers to the correctness of the examinee’s response and is
taken as 1 or 0. The item which leads to the smallest ex-
pected posterior variance is the most desirable one to ad-
minister. It is sufficient to select the item with the smallest
value o where

a=(a"? +0,%) (1- (erf D)*) exp (2D?)
(21)
for free response items and

1
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(22)

when guessing is present.

If we have a pool of » items and estimates of the normal
ogive model parameters for each item, we may use a
Bayesian sequential procedure to select items for adminis-
tration to a particular examinee. Let 0 and 5% (m) be an
estimate of the examinee’s ability and 1ts variance where m
indicates the number of items administered. Assume the
populatlon has ability distributed as N(0,1) and take 0(0)
and 02 (0) 3 0 and 1. Calculate o; values for all (unused)
items, 1=1,2 (n-m), using (22). (We will assume
that the items are not free-response.) The examinee is ad-
ministered the item with the sma]lest o; value. If an incor-
rect response is given, 9 and ¢* (m+1) are calculated
from (11)and (12). If the resp?onse is correct (14) and (15)
are used. This cycle is repeated until G O(m) is within some
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pre-selected limit. The selection of a G, m)value for termi-
nation is, of course, arbitrary. It is usually selected to yield
some expected level of validity according to
- )
ree= V10 (m)
(23)

The characteristics of an item bank used for tailored
testing are very important to the efficiency and accuracy of
the process. There are four basic requirements for a good
item bank. These have been mentioned in whole or part in a
number of publications (i.e. Urry, 1970, 1971, 1971b,
1974; Jensema, 1972, 1974a, 1974b; etc.) and may be sum-
marized as follows:

1) Item discrimination should be as high as possible and

should not be less than .8.

2) Item guessing probabilities should be as low as pos-

sible.

3) The item bank must consist of a sufficiently large

number of items.

4) Ttem difficulties should have a rectangular distribu-

tion.
The remainder of this paper will concentrate on demon-
strating the importance of each of these four requirements.

Assume that an infinitely large item bank exists and that
all items have the same discriminatory power and the same
probability of guessing correctly. The assumption of an
infinitely large item bank allows the selection of an item i
having a difficulty level exactly equal to any given estimate
of ability. When this can be done many of the formulas
may be greatly simplified since we have:

Di- (24)

and
erf D; = 0. (25)

The equations for 62(m + 1) for correct and incorrect

responses become
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where m is the number of items previously administered.
An item /’s difficulty is the point at which the probabil-

ity of knowing the correct answer is exactly .5. If guessing

is in effect the probability of responding correctly is equal
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to the probability of knowing the answer plus the probabil-
ity of guessing correctly. Then 5% m+1) may be expected
to be the sum of (26) and (27) weighted by the probabili-

ties of a correct or incorrect response:
2
+5(1-G) -—
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A little algebraic manipulation reduces this to
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Inserting appropriate values for g; and ¢; in equation
(29) and plotting the results against the number of items
administered demonstrates the influence of item discrimina-
tion and guessing probability on the tailoring process.
Figure 1 plots the expected standard error of the estimate
eﬁ\(mﬂ) by the number of items administered for five
levels of discrimination when guessing probability is zero
and an infinite number of items are available. Notice the
sharp difference in the number of items needed at different
levels of discrimination. For example, if the items have dis-
criminatory powers of 2.5 only 4 or 5 items are needed to
reach a standard error of the estimate of .30 while 17 or 18
items are needed to reach this level when item discrimina-
tion is only 1.0.

Now suppose we take item discrimination to be 1.0, a
rather low value which is easily obtained. Figure 2 plots the
expected standard error of the estimate for various guessing
values by the number of items administered. The guessing
values range from .5 (i.e. true-false items) to 0.0 (ie. free
response items.) The greater the probability of guessing, the
more items required to reach a specific standard error of
the estimate.

To give a clear example of the combined effects of dis-
crimination and guessing on the tailoring process, suppose
we have three item banks which, for convenience, are
referred to as I, II, and III. Assume Bank I items have dis-
crimination and guessing paramenters of .5 and .33. Bank
I’s parameters are 1.0 and .25 while Bank III has parameter
values of 2.0 and 20. These banks may be roughly
classified as unacceptable, fair, and excellent for tailored
testing purposes. Assuming that each bank has an infinite
number of items and plotting the expected standard error
of the estimate against the number of items administered,
the three curves in Figure 3 are obtained.

In Figure 3, notice that Bank I wouid give unacceptable
results. After 30 items the expected standard error of the
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Figure 1. Expected standard error of the estimate according to
number of items administered at five levels of item discrimination.
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Figure 2. Expected standard error of the estimate according to
number of items administered at six guessing probabilities.

86

O =i &



STANDARD ERROR OF THE ESTIMATE

DISCRIMINATION=.5
GUESSING=.33

DISCRIMINATION=1.0
GUESSING=.25

DISCRIMINATION=2.0
GUESSING=.20

llllllllllllllllllllllllllllll

lllllllllllllllllllllllllllll

1234567 89101N121314151617 181920 21222324252627282930

NUMBER OF ITEMS ADMINISTERED

Figure 3. Expected standard error of the estimate for three item
banks according to number of items administered.
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estimate is only .56 (i.e. reliability = .69, validity = .83). In
contrast an excellent item bank, such as Bank III, would
reach this level after only 3 or 4 items. The advantage of
high discrimination and low guessing probability in an item
bank is obvious.

Up to this point we have discussed the behavior of
Bayesian tailored testing when the item bank is assumed to
be of unlimited size. The obvious question which follows is
what happens when item bank sizes are within practical
limits? To answer this question, Monte-Carlo data for 200
items are generated for each of 100 “examinees” using
Urry’s (1970) “LOGIST” program. The parameters for
discrimination (1.0) and guessing (.25) were the same as for
Bank II mentioned earlier. Eight sets of 25 difficulty values
(-24, -22, ., 00, ..., 22, 2.4) were employed.
Bayesian tailored testing was simulated with this data using
50, 75, 100, 150, and 200 items in the bank. Since
difficulty had been specified in sets of 25 values, the item

TABLE 1

Validity (ref9\) Obtained With Different Size Item Banks
{Monte-Carlo Data, N=100, 4=1.0, C=.25)

banks had 2, 3, 4, 6, and 8 items at each of the 25
difficulty levels respectively.

For each of the five item banks and for each of the 100
examinees, tailoring was simulated until 30 items had been
“administered”. As each item was “administered” the new
estimate of ability was recorded. Since the data was
randomly generated, true ability (distributed as N(0,1) was
known and could be correlated with estimated ability.
Table I gives the validity (correlation between true and
estimated ability) for each item bank by the number of
items “administered”. The last column in Table I gives the
expected validities for an item bank of infinite size as
calculated from equation (32) and (23).

The Monte-Carlo data above represents items which are
passable but not especially good for tailored testing. To see
how item bank size would influence validity when the bank
was composed of excellent items, the Monte-Carlo data
tailoring simulation was repeated with higher discrimination

TABLE 2

Validity (reé\) Obtained With Different Item Bank Sizes
(Monte-Carlo Data, N=100, 4=2.0, C=.2)

ITEMS IN BANK

ITEMS IN BANK

Items
Adminis- 50 75 100 150 200 o*
tered - - - - -
1 53 53 53 53 .53 44
2 .59 .59 .59 .59 .59 .57
3 .65 .65 .65 .65 .65 .66
4 72 72 72 72 72 72
5 78 .78 78 .78 .78 .76
6 .81 .80 .80 .80 .80 .79
7 .83 .82 .82 .82 .82 81
8 .84 .84 .84 .84 .84 .83
9 .85 .85 .84 .84 .84 .85
10 .86 .86 .86 .85 .85 .86
i1 .86 .87 .88 .87 .87 .87
12 .87 .87 .89 .87 .87 .88
13 .89 .89 .89 .87 .88 .89
14 90 91 90 .88 .88 .90
15 91 91 91 .90 .90 91
16 91 92 .92 91 91 91
17 92 92 .92 92 91 92
18 92 .92 93 .92 92 .92
19 .92 .92 93 92 92 93
20 93 93 93 .93 93 .93
21 93 93 .93 93 .93 .93
22 93 94 94 94 93 .94
23 93 .94 .94 94 .94 .94
24 93 .94 94 94 94 94
25 93 .94 95 94 .94 94
26 94 95 .95 .94 .94 95
27 94 95 95 .94 .95 .95
28 94 95 95 .95 .95 95
29 .94 95 95 .95 95 95
30 94 95 95 95 95 .95

Items
Adminis-
tred S0 75 100 150 200 =%
1 .66 .66 .66 .66 .66 .58
2 75 .75 a5 5 a5 .74
3 .84 .84 .84 .84 .84 .82
4 .89 .89 .89 .89 .89 .86
5 92 .92 92 92 92 .90
6 93 .93 93 93 .93 91
7 94 94 .94 .94 94 93
8 95 95 .95 .95 .95 .94
9 .96 95 95 .95 95 .95
10 96 .96 .96 96 96 .96
11 .97 .96 .96 .96 .96 .96
12 .97 .96 .96 .96 97 .96
13 97 97 97 .97 97 97
14 .97 97 97 97 .97 97
15 97 97 .98 97 .98 97
16 97 .98 98 .98 .98 .98
17 .97 .98 .98 .98 .98 .98
18 98 .98 .98 .98 .98 .98
19 .98 .98 .98 .98 .98 98
20 .98 .98 .98 .98 .98 .98
21 98 .98 98 .98 .98 .98
22 98 .98 .99 .98 .98 .98
23 98 .98 99 .98 .98 .98
24 .98 98 99 .98 .98 .98
25 .98 98 .99 .99 .99 .98
26 98 .98 .99 .99 .99 .99
27 .98 .98 .99 .99 .99 .99
28 .98 .98 .99 .99 .99 .99
29 98 98 .99 .99 .99 .99
30 .98 98 .99 .99 .99 .99

*Expected validities calculated from equations (32) and (23) for an
imaginary bank having an infinite number of items.

*Expected validities calculated from equations (32) and (23) for an
imaginary bank having an infinite number of items.



(2.0) and lower guessing (.20) parameter values. These
configurations correspond to Bank III mentioned earlier.
The results of the simulated tailoring with this new data are
given in Table 2.

For practical application it is apparent that a very large
number of items is not a critical item bank characteristic if
the bank is good in other respects. In both Table 1 and
Table 2 the Monte-Carlo data validities obtained for the five
banks closely match each other and they also paralle] the
validities to be expected from a corresponding item bank of
infinite size. However, it must be remembered that this was
Monte-Carlo data and the tailoring simulation used known
parameter values for discrimination, difficulty, and
guessing. With real data involving imprecise parameter
estimates and a possible non-uniform distribution of
difficulty, it would be wise to be a bit cautious if a bank
had, say, fewer than 75 items. In connection with this,
there are some practical problems which arise if an item
bank is too large. A large bank has more items available for
administration, but the storage requirements and the
increased computer processing needed for item selection
also slow things down while adding to overall computer
costs. (Some good cost-efficiency studies are needed on
this?)

The last item bank requirement is uniform distribution
of difficulty. The exact results of violating this rule are
difficult to predict, since they would necessarily depend on
the actual distribution of item difficulty, the discrimination
and guessing parameter values, the number of items in the
bank, and the criteria used to terminate the tailoring
process. The essential point to remember is that the
Bayesian tailoring procedure attempts to select for
administration the item which will yield the most
information. If, at a particular level of difficulty, there are
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no items available, the Bayesian process will be forced to
select an item which is not appropriate and which will yield
less than an optimal amount of information.

To summarize, this paper has outlined a Bayesian
approach to item selection for tailored testing. Four basic
requirements of a good item bank for this process have
been discussed. If these requirements are met, Bayesian
tailored testing will yield excellent results. The key to the
process lies in careful construction of item banks. If
attention is given to this, the Bayesian tailoring process
gives us a fundamental tool for practical application of
latent trait mental test theory.
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