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In this paper we will present a study in which we used simulated data sets to consider and

compare nonparametric and adjusted marginal maximum likelihood methods used to calibrate

pretest items, as well as recalibrate items in the operational CAT pool. CAT data matrices are

sparse because an examinee responds to a relatively small number of items over a narrow range

of ability. Logistic parameters for conventional tests are commonly fit by direct marginal

maximum likelihood fitting (MMLE) of logistic item response functions. It may be preferable to

first fit a more general family of functions to the available data (by MMLE) and then indirectly

obtain logistic parameters by fitting logistic curves to directly estimated more general functions.

Some researchers have conjectured that even in logistic simulations, the additional degrees of

freedom of a more general set of functions would make the initial model fitting program less

sensitive to errors that inevitably occur when logistic parameters estimated over a narrow ability

range are used to extrapolate to abilities far from the range.

Because CAT tests generate rather sparse test data sets, traditional calibration methods, which

can be called direct methods, – Bilog-MG (Zimowski, Muraki, Mislevy, and Bock, 2003) and

SPLITEM (Ramsay, 1996) – need some modification to get convergence to reasonable values.

Together with traditional calibration tools which use a parametric item model – parametric Item

Characteristic Curve (ICC) – we will consider a more general approach when using a calibration

algorithm to initially search for the item model (item ICC) from a rather broad class of allowable

models (nonparametric models). Then, if necessary, the other part of the calibration algorithm

fits the parametric model to the estimated nonparametric model (indirect methods). The

nonparametrc-indirect method (described below) uses Multilinear Formula Score Theory (MFS,

Levine, 2003, in press) and a suite of model fitting programs collectively called ForScore (FS).
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Brief Description of Considered Algorithms

Because the FS method is relatively new in calibration literature and is the centerpiece of this

paper , we will focus the discussion on it; for the other methods that are already known in the

psychometric world, we will describe only our modification. The direct approaches to logistic

parameterization we considered are based on Bilog-MG Version 3.0 (Bilog-MG by

M.Zimowsky, E. Muraki, R. Mislevy, D. Bock, 2002) and an MMLE logistic algorithm provided

by J.O. Ramsay ( 1996). Both programs are designed for Paper and Pencil tests complete data

matrices. We modified both programs to work-around adaptive data convergence problems.

These two direct MMLE methods serve as benchmarks for estimating the performance of FS in

this study.

We will consider unidimensional cases only, where every one of considered n

examinees/simulees is completely characterized by the value of his/her latent ability

nii ,,1, K=θ . Although FS can be easily transformed for multidimensional cases, in this paper

we will stay with unidimensional cases. We assume that every considered item mj ,,1 K=  can

be completely characterized by its ICC function mjPj ,,1,)( K=θ ; the value of that is the

probability for an examinee with ability θ  to answer the item j  right. Here ability belongs to the

finite interval ),( maxmin θθθ ∈ , (e.g., in the case of the CAT-ASVAB tests, 0.3min −=θ  and

0.3max =θ ). We consider only binary answers (right, wrong) by an examinee for any item,

although the FS method can easily handle more than one answer per item (graded response).

Thus, in the considered case, the answer by an examinee to the item j  can be characterized by
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the binary variable }1,0{∈ju , where 0 corresponds to a wrong answer to item j , and 1

corresponds to the right answer.

If an examinee gets a test that consists of items },,{ 1 kjj K , where mk ≤ , then we will assume

that answers on any two items in the test are independent events. If, as a result of the test, an

examinee with ability θ  will “generate” a vector of answers ),,(
1 kjj uuu K= , the

likelihood of the appearance of this vector is equal:

                   ))}(1()1()({),(
1
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due to assumed independence. Thus, for every binary vector u  equal to, or less than, m , we get

a smooth, real-value likelihood function. The space Κ  spanned by those functions is called the

canonical space, derived by items mj ,,1 K= . Because the number of the described-above

binary vectors u  is finite (e.g., if every considered test has a length m , then this number is

m2 ), the canonical space is finite dimensional. We can introduce scalar product in canonical

space as usual:

          νθθθθ
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where ν is the density of latent ability distribution on interval ),( maxmin θθ . As it is shown in

Caroll, Williams, and Levine (1999), this set can be extended to the closed subset in the Hilbert

space ),( maxmin
2 θθL  of all integral functions on ),( maxmin θθ . Because the canonical space Κ

is a finite dimensional linear space, it has an orthonormal basis Jlel ,,1)),({ K=θ , where J  is
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the dimension of the canonical space, such that 0)(),( >=< θθ ji ee , if ji ≠ , and

1)(),( >=< θθ ji ee , if .ji =  Any function Κ∈)(θp , can be presented in the form

,)()( ∑ ⋅=
l

ll ecp θθ where ),( maxmin θθθ ∈ . Levine and Williams (1978) show that the

orthonormal basis in Κ  can be chosen in such a way that values || lc  of the above

decomposition decrease rather rapidly with the growth of index l . Therefore, reasonable

precision can be reached in an orthonormal presentation of arbitrary function with few local

optimums in the interval ),( maxmin θθ , for 14≤l  in the case of this special orthonormal basis.

Thus, the problem of finding a new function which fits to the given test data set can be presented

as a maximization-correspondent likelihood in a finite dimensional space, and it can be

successfully solved (Caroll et al). The above maximization will produce a generally smooth, but

nonparametric, item ICC.

In most applications, the item ICC should be presented in parametric form; for example, in the

case of CAT-ASVAB, it should be presented as a 3PL item:
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where )()( jjj baDl −⋅⋅−= θθ , and jjj cba ,,  are the item discriminating, difficulty, and

guessing indices; 7.1=D  is a scaling constant (Lord, 1980); and examinee ability

],[ maxmin θθθ∈ .

To fit a proper 3PL ICC to the chosen FS nonparametric curve Κ∈)(θp , the finalizing part of

FS uses a special part of a signal theory (Green and Swets, 1996) which connects with the
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Independent Observer Index (IOI). From the mathematical point of view, this approach is very

close to minimizing the quadratic function loss.

To compare the performance of some different approaches to the calibration problem, we chose

two traditional methods – Bilog-MG, Version 3.0, and SPLITEM. Because both of these

methods were designed for use with conventional (paper-and-pencil) tests (i. e., for nearly

totally filled test matrix data sets), they have convergence problems and implausible fit

problems with sparse CAT data sets. To get around this we used different approaches for these

methods.

In the case of Bilog-MG, we are using a better initial state for maximum likelihood optimization

than the originally designed prime state. To get this initial state, we solve the preliminary

simulated paper-and-pencil problem for the operational CAT item pool by using the CAT

estimation ability for the given set of examinees (so called theta-hat estimations). In

recalibrating the operational CAT item pool, we are using the best available estimations of those

parameters (prime estimations). (In calibrating the pretest items, we are using

)5,0,0.0,0.1( === cba  as prime parameters because for those items, as usual, there is no

available IRT information.) The solution to this paper-and-pencil problem is to use Bilog-MG in

the initial phase (mechanism of IFNAME in Global statement of Bilog-MG script). This

approach gives relatively good results, but sometimes it does not lead to convergence for all the

calibrated pretest items (especially with the CAT-ASVAB technical tests). Another major

difference between the discussed application of Bilog-MG and the use of this instrument as

reported by M. Pommerich in this session (Pommerich & Segall, 2003) relates to using Newton-
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Rafson after the proper number of EM iterations: M. Pommerich purposefully omitted this part

of the Bilog-MG algorithm.

It is quite possible to use another approach to force Bilog-MG to be more stable (e.g., to use the

construction described below in the RWlog algorithm), but we are staying with the method that

was originally used by DMDC for the calibration of the pretest items that were being considered

for the operational CAT pool. Actual calibration of pretest items should technically be done after

recalibrating the CAT item pool, because, in the case of the pretest items, we are calibrating one

item per run using the best estimations for the CAT item pool.

In the case of the SPLITEM method, we need to use the approach worked out by Levine and

Williams (1998) to achieve the needed convergence and stability. They conjectured that the

difficulty they encountered may have been due to the fact that there are few items to which both

high ability and low ability examinees respond. In a series of experimental studies they observed

that including a small number of simulated examinees responding to all of the items in the pool

greatly increased the numerical stability and accuracy of maximum likelihood estimators,

including FS. Stability and accuracy were substantially improved by adding as few as one

simulated conventional examinee per hundred adaptive examinees. When calibrating operational

items that had been previously seeded into an operational administration, RWlog (name of

SPLITEM method with simulated addition) includes one-percent simulated conventional data

along with the data for the adaptively administered items. The estimated logistic parameters used

to select and score the items for the adaptive test are used to simulate the conventional item

responses.
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Numerical Results and Conclusion

To estimate the performance of the different methods, we are using a simulation CAT test data

file that was done for unidimensional cases of 122,400 simulees with known ability distributions.

We will describe in more detail the case of normally distributed simulees, because the results for

the other cases are more or less close to those results.  The item bank of the simulation CAT is

split into four disjointed subsets, which we call CAT1, CAT2, CAT3, and CAT4. There are also

100 pretest items. A simulee gets a particular subset, for example CAT1, and a pretest item

chosen out of the 100 pretest items. The simulee’s CAT test consists of 15 items which were

selected by CAT-ASVAB’s selection mechanism (Segal, Moreno, Bloxom, and Hetter, 1997)

that uses item information estimated at the point of the current ability of the simulee and is

subjected to preliminary developed exposure-control parameters for the given CAT. We apply

the usual Owen-Bayes update algorithm to estimate this CAT test ability for a simulee. As a

result of this estimation, we also get the so-called theta-hat ( θ̂ ) or Baysian estimation of the

simulee’s true ability.

In the total CAT item pool the different subsets (CAT1,…, CAT4) have 94, 137, 137, and 137

items, correspondingly. The test data file is done in such a way that 40,000 simulees get tests

from CAT1, CAT2, or CAT3, and only 2,400 simulees get a test generated by the CAT4 item

pool. The purpose of the CAT4 item pool is to estimate the means and standard deviations of the

ability distribution of the given set of a simulee population to determine the need for any possible

change to the test scale. Therefore, in our preliminary estimation of performance of the above

methods, we will recalibrate only the CAT1, CAT2, and CAT3 item pools; thus, we have
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120,000 simulees that “use” correspondent item pools (40,000 per separate CAT subset) and a

total of 368 items in the entire CAT pool.

We are analyzing the performance of the different methods in two ways. First of all we are

estimating how well they will estimate (“recover”) the value of the 3PL parameters of the

estimated curves. This is especially important in the case of pretest items because the value of

parameter a  roughly defines the item information, and so determines if that item will be

available to be selected for an operational CAT test; the value of parameter b  provides a

preliminary estimation of item difficulty.

On the other hand, it is well known that separate item parameter changes can compensate each

other. Due to this, we estimate the closeness of the ICC curves using the Root Mean Square

Error (RMSE), which we use very similarly to what was used by F. Drasgow (Hulin, Drasgow,

and Parsons, 1983). To take into account the distribution of ability, we compute weights for the

sum of RMSE based on the theta-hat distributions of the simulee population.

                                     ∑ ⋅−=
i

iii wPPRMSE 2
21 ))()(( θθ ,

where  ,5.2;51,,0; minmin −==∆⋅+= θθθ Kiii 1.0=∆ . Here 2,1),( =jP ij θ  is the value of the

correspondent ICC at point iθ  of the chosen grid, and iw  is the weight assigned to this point. To

get those weights we build a histogram of theta-hats of the population using the above grid, and

normalize the values of the histogram such that Nw
i

i =∑ , where N  is the number of points in

our grid. In this case, we can compare our RMSE estimation with RMSE values reported by



10

other researchers. The described method of RMSE-weighting allows us to emphasize the

comparison of ICCs in the area of the ability interval that is more populated.

This estimation was used in the initial calibration of pretest items where theta-hat was the only

available estimation of examinee ability. Note, however, that it is possible to use the RSME

method, proposed by D. Segall and discussed here by him and M. Pommerich (Pommerich &

Segall, 2003), based on knowledge of true ability of the correspondent simulee. With this

approach, they take into account only those simulees with known true ability  who got this item

in their test, not the entire population of simulees. For those simulees with known true ability, the

absolute differences between the two estimated ICCs are computed and provide part in RMSE

summation. For that reason, numerical values of RMSE presented in this paper are, in general,

higher than the values of RMSE presented by Pommerich and Segall. Note that A. Nicewander

uses their method of RMSE for FS in the final paper in today’s general conclusion (Nicewander,

2003).

We will stop with more detail in the case of a normal )1,0(N  distribution of a simulee’s ability,

because the analysis of the other two cases )8.0,1(N  and )2.1,1(−N  looks analogous. It is

worth while to remark that in the case of the “shifted” distributions, )8.0,1(N , and )2.1,1(−N ,

the set of recovered parameters produced Bilog-MG, as well as by RWlog, essentially benefited

from a Stocking-Lord transformation (Stocking & Lord, 1983) which is used to put ability

estimates on a common scale. If ),( 0,00 cba  are parameter values after calibration, then the

values of the Stocking-Lord transformed parameters ),( , cba  are
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deviations of ability distributions of the correspondent simulee population.

FS does not require the application of this transformation because the FS process begins from

the estimation of the population ability distribution. More importantly, one of the FS outputs

shows the ability distribution for the given examinee population.

Results for Calibration of Pretest Items (Figures 1 and 2)

In Figure 1 we show the frequencies of absolute values for all three methods. Even though we

present results of other algorithms, remember that our major focus is on FS. These diagrams can

be used to make a rough estimation of the precision of each method in two ways. For example,

from the diagram for FS in Figure 1, it follows that for 40% of all the calibrated items, the

absolute difference between the true and estimated parameter b is not more than 0.05. On the

other hand, the frequency (chance) to get absolute values for difficulty parameters more than 0.3

is less than 0.1. In other words, the lower the correspondent curve for the upper part of the values

of absolute deviation, and the closer to the y  axes for the lower part of the values of the absolute

deviation values, the better the correspondent estimator.

As we can see, the deviations of Bilog-MG look as good as the deviations for FS, but Bilog-MG

does not converge for 56 pretest items. In the other words, only when Bilog-MG converges, does

it produce rather good estimations.
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Table 1 provides the means and standard deviations for the estimated parameters in the case of

the pretest items.

Table 1. Pretest Items: means and standard deviations for estimated parameters.
                                                   MEAN                                                         STD

Products    delta  a  delta  b delta  c delta  a delta b delta  c
     FS    0.253     0.108    0.045     0.22    0.12     0.05
  RWlog    0.522     0.192    0.052     0.43    0.178     0.052
BilogMG    0.236     0.108    0.028     0.19    0.101     0.026

In Figure 2 we show graphs of the weighted RMSE deviations for the estimated ICCs for the

different methods. Again, Bilog-MG looks as good as FS if we do not consider the convergence

problems which FS or RWlog do not have.

Results for Recalibration of Item Pool (Figures 3 and 4)

All the figures and tables below use data aggregated from the CAT1, CAT2, and CAT3 item

pools. Figure 3 shows analogous graphs for the recalibration of the items in the CAT pool. Once

again, Bilog-MG was able to make estimations for all except 1 of the 368 calibrated items,

though its estimations are not quite as good as the other two products. Table 2 shows the means

and standard deviations for the estimated parameters in the case of the CAT pool recalibration.

Table 2. Item Pool Recalibration:  means and standard deviations for estimated
parameters.

                                                             MEAN                                                         STD
Products    delta  a  delta  b delta  c delta  a delta  b delta  c
     FS    0.104     0.056    0.03     0.103    0.074     0.042
  RWlog    0.126     0.072    0.029     0.105    0.089     0.035
Bilog-MG    0.231     0.111    0.043     0.217    0.142     0.035

Figure 4 presents graph frequencies for RMSE deviations in the CAT item pool recalibration. As

we can see, FS looks considerably better than the other two products, and RWlog is slightly
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better than Bilog-MG.. Table 3 provides the means and standard deviations for RMSE for both

cases: pretest items and items in the CAT pool.

Table 3. Pretest Items and Item Pool: means and standard deviations for RMSE for three
different methods.

 Type             Pretest Items                           Item Pool
Statistic   Mean      STD        Mean      STD
   FS       0.065        0.033         0.024       0.012
   RWlog       0.156        0.086         0.035       0.024
  BilogMG       0.064        0.032         0.085        0.073

As we can see again, Bilog-MG is has the same precision as FS in the case of the pretest item

recovery, but it can estimate only 56 pretest items out of 100.

Overall, in the case of normal-normal distributed simulees )1,0(N , FS appears more precise and

stable. The “second” place in this “competition” belongs, in our opinion, to the RWlog

algorithm, which is considerably more stable than Bilog-MG.

With simulees that have a shifted distribution to the left )2.1,1(−N , (case of “less able”

simulees) we get about the same results with FS, RWlog, and Bilog-MG. In this case, Bilog-MG,

using the same scheme of choosing the better initial state for running, cannot recalibrate the

items in the CAT pool (computer computation blew up in attempt of take logarithm of negative

number in time of internal iteration). The same thing happened when the population of simulees

was shifted to the right: case of )8.0,1(N  distribution.

In the case of a “less able”simulee population )2.1,1(−N , Bilog-MG cannot estimate 62 out of

100 pretest items. In the case of a “more able” simulee population , )8.0,1(N  RWlog makes a
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more precise estimation (recovery), especially parameter-wise than FS as in the pretest item case,

as well as in item pool recovery case. As we already mentioned, Bilog-MG was not able to

recalibrate the CAT pool and could not calibrate 14 seeded items out of 100. Thus, the winner of

this “competition” in the case of )8.0,1(N is RWlog. In all other case the winner is FS. This

phenomena was amazing, because in very many preliminary simulated and not-simulated runs

(at least in 100 cases), FS was always much more precise than RWlog. Considering this in more

detail, we found that both less-able and more-able cases )2.1,1(−N  and )8.0,1(N  are far from

reality. In all real examples and our preliminary simulations, when we try to imitate real cases,

the maximum shift of mean of ability distribution was not more than 0.5 by absolute value. The

drastic changes of ability as )8.0,1(N  or )2.1,1(−N  require a special tune up of the FS part that

is responsible for the estimation of ability distribution, which can be done, if necessary.
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Figure 1. Pretest items:  Frequencies of deviations of absolute values for three different
calibration methods.
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Figure 2. Pretest Items: Frequencies of RMSE values for three different methods.
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Figure 3.  Item Pool Recalibration: Frequencies of deviations of absolute values for three
different calibration methods.
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Figure 4.  Item Pool Recalibration:  Frequencies of RMSE values for three different methods.
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In this paper we will present a study in which we used simulated data sets to consider and

compare nonparametric and adjusted marginal maximum likelihood methods used to calibrate

pretest items, as well as recalibrate items in the operational CAT pool. CAT data matrices are

sparse because an examinee responds to a relatively small number of items over a narrow range

of ability. Logistic parameters for conventional tests are commonly fit by direct marginal

maximum likelihood fitting (MMLE) of logistic item response functions. It may be preferable to

first fit a more general family of functions to the available data (by MMLE) and then indirectly

obtain logistic parameters by fitting logistic curves to directly estimated more general functions.

Some researchers have conjectured that even in logistic simulations, the additional degrees of

freedom of a more general set of functions would make the initial model fitting program less

sensitive to errors that inevitably occur when logistic parameters estimated over a narrow ability

range are used to extrapolate to abilities far from the range.

Because CAT tests generate rather sparse test data sets, traditional calibration methods, which

can be called direct methods, – Bilog-MG (Zimowski, Muraki, Mislevy, and Bock, 2003) and

SPLITEM (Ramsay, 1996) – need some modification to get convergence to reasonable values.

Together with traditional calibration tools which use a parametric item model – parametric Item

Characteristic Curve (ICC) – we will consider a more general approach when using a calibration

algorithm to initially search for the item model (item ICC) from a rather broad class of allowable

models (nonparametric models). Then, if necessary, the other part of the calibration algorithm

fits the parametric model to the estimated nonparametric model (indirect methods). The

nonparametrc-indirect method (described below) uses Multilinear Formula Score Theory (MFS,

Levine, 2003, in press) and a suite of model fitting programs collectively called ForScore (FS).
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Brief Description of Considered Algorithms

Because the FS method is relatively new in calibration literature and is a center piece of this

paper , we will focus the discussion on it; for the other methods that are already known in the

psychometric world, we will describe only our modification. The direct approaches to logistic

parameterization we considered are based on Bilog-MG Version 3.0 (Bilog-MG by

M.Zimowsky, E. Muraki, R. Mislevy, D. Bock, 2002) and an  MMLE logistic algorithm

provided by J.O. Ramsay ( 1996). Both programs are designed for Paper and Pencil tests

complete data matrices. We modified both programs to work-around adaptive data convergence

problems. This two direct MMLE methods serve for this research  as a benchmark for estimation

performance of FS.

We will consider unidimensional cases only, where every one of considered n

examinees/simulees is completely characterized by the value of his/her latent ability

nii ,,1, K=θ . Although FS can be easily transformed for multidimensional cases, in this paper

we will stay with unidimensional cases. We assume that every considered item mj ,,1 K=  can

be completely characterized by its ICC function mjPj ,,1,)( K=θ ; the value of that is the

probability for an examinee with ability θ  to answer the item j  right. Here ability belongs to the

finite interval ),( maxmin θθθ ∈ , (e.g., in the case of the CAT-ASVAB tests, 0.3min −=θ  and

0.3max =θ ). We consider only binary answers (right, wrong) by an examinee for any item,

although the FS method can easily handle more than one answer per item (graded response).

Thus, in the considered case, the answer by an examinee to the item j  can be characterized by
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the binary variable }1,0{∈ju , where 0 corresponds to a wrong answer to item j , and 1

corresponds to the right answer.

If an examinee gets a test that consists of items },,{ 1 kjj K , where mk ≤ , then we will assume

that answers on any two items in the test are independent events. If, as a result of the test, an

examinee with ability θ  will “generate” a vector of answers ),,(
1 kjj uuu K= , the

likelihood of the appearance of this vector is equal:

                   ))}(1()1()({),(
1

θθθ
llll jj

k

l
jj PuPuul −⋅−+⋅= ∏

=

due to assumed independence. Thus, for every binary vector u  equal to, or less than, m , we get

a smooth, real-value likelihood function. The space Κ  spanned by those functions is called the

canonical space, derived by items mj ,,1 K= . Because the number of the described-above

binary vectors u  is finite (e.g., if every considered test has a length m , then this number is

m2 ), the canonical space is finite dimensional. We can introduce scalar product in canonical

space as usual:

          νθθθθ
θ

θ

dulululul ⋅⋅>=< ∫
max

min

),(),(),(),,( 22112211 ,

where ν is the density of latent ability distribution on interval ),( maxmin θθ . As it is shown in

Caroll, Williams, and Levine (1999), this set can be extended to the closed subset in the Hilbert

space ),( maxmin
2 θθL  of all integral functions on ),( maxmin θθ . Because the canonical space Κ

is a finite dimensional linear space, it has an orthonormal basis Jlel ,,1)),({ K=θ , where J  is
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the dimension of the canonical space, such that 0)(),( >=< θθ ji ee , if ji ≠ , and

1)(),( >=< θθ ji ee , if .ji =  Any function Κ∈)(θp , can be presented in the form

,)()( ∑ ⋅=
l

ll ecp θθ where ),( maxmin θθθ ∈ . Levine and Williams (1978) show that the

orthonormal basis in Κ  can be chosen in such a way that values || lc  of the above

decomposition decrease rather rapidly with the growth of index l . Therefore, reasonable

precision can be reached in an orthonormal presentation of arbitrary function with few local

optimums in the interval ),( maxmin θθ , for 14≤l  in the case of this special orthonormal basis.

Thus, the problem of finding a new function which fits to the given test data set can be presented

as a maximization-correspondent likelihood in a finite dimensional space, and it can be

successfully solved (Caroll et al). The above maximization will produce a generally smooth, but

nonparametric, item ICC.

In most applications, the item ICC should be presented in parametric form; for example, in the

case of CAT-ASVAB, it should be presented as a 3PL item:

                        
))(exp(1

1
)(

θ
θ

j

j
jj l

c
cp

+

−
+= ,

where )()( jjj baDl −⋅⋅−= θθ , and jjj cba ,,  are the item discriminating, difficulty, and

guessing indices; 7.1=D  is a scaling constant (Lord, 1980); and examinee ability

],[ maxmin θθθ∈ .

To fit a proper 3PL ICC to the chosen FS nonparametric curve Κ∈)(θp , the finalizing part of

FS uses a special part of a signal theory (Green and Swets, 1996) which connects with the
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Independent Observer Index (IOI). From the mathematical point of view, this approach is very

close to minimizing the quadratic function loss.

To compare the performance of some different approaches to the calibration problem, we chose

two traditional methods – Bilog-MG, Version 3.0, and SPLITEM. Because both of these

methods were designed for use with conventional (paper-and-pencil) tests (i. e., for nearly

totally filled test matrix data sets), they have convergence problems and implausible fit

problems with sparse CAT data sets. To get around this we used different approaches for these

methods.

In the case of Bilog-MG, we are using a better initial state for maximum likelihood optimization

than the originally designed prime state. To get this initial state, we solve the preliminary

simulated paper-and-pencil problem for the operational CAT item pool by using the CAT

estimation ability for the given set of examinees (so called theta-hat estimations). In

recalibrating the operational CAT item pool, we are using the best available estimations of those

parameters (prime estimations). (In calibrating the pretest items, we are using

)5,0,0.0,0.1( === cba  as prime parameters because for those items, as usual, there is no

available IRT information.) The solution to this paper-and-pencil problem is to use Bilog-MG in

the initial phase (mechanism of IFNAME in Global statement of Bilog-MG script). Another

major difference between the discussed application of Bilog-MG and usage of this instrument as

reported by Mary Pommerich in this session consists of using Newton-Rafson after proper

number of EM iteration.  Mary is totally eliminated this part of Bilog_mg algorithm. This
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approach gives relatively good results, but sometimes it does not lead to convergence for all the

calibrated pretest items (especially with the CAT-ASVAB technical tests).

It is quite possible to use another approach to force Bilog-MG to be more stable (e.g., to use the

construction described below in the RWlog algorithm), but we are staying with the method that

was originally used by DMDC for the calibration of the pretest items that were being considered

for the operational CAT pool. Actual calibration of pretest items should technically be done after

recalibrating the CAT item pool, because, in the case of the pretest items, we are calibrating one

item per run using the best estimations for the CAT item pool.

In the case of the SPLITEM method, we need to use the approach worked out by Levine and

Williams (1998) to achieve the needed convergence and stability. They conjectured that the

difficulty they encountered may have been due to the fact that there are few items to which both

high ability and low ability examinees respond. In a series of experimental studies they observed

that including a small number of simulated examinees responding to all of the items in the pool

greatly increased the numerical stability and accuracy of maximum likelihood estimators,

including FS. Stability and accuracy were substantially improved by adding as few as one

simulated conventional examinee per hundred adaptive examinees. When calibrating operational

items that had been previously seeded into an operational administration, RWlog (name of

SPLITEM method with simulated addition) includes one-percent simulated conventional data

along with the data for the adaptively administered items. The estimated logistic parameters used

to select and score the items for the adaptive test are used to simulate the conventional item

responses.
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Numerical Results and Conclusion

To estimate the performance of the different methods, we are using a simulation CAT test data

file that was done for unidimensional cases of 122,400 simulees with known ability distributions.

We will describe in more detail the case of normally distributed simulees, because the results for

the other cases are more or less close to those results.  The item bank of the simulation CAT is

split into four disjointed subsets, which we call CAT1, CAT2, CAT3, and CAT4. There are also

100 pretest items. A simulee gets a particular subset, for example CAT1, and a pretest item

chosen out of the 100 pretest items. The simulee’s CAT test consists of 15 items which were

selected by CAT-ASVAB’s selection mechanism (Segal, Moreno, Bloxom, and Hetter, 1997)

that uses item information estimated at the point of the current ability of the simulee and is

subjected to preliminary developed exposure-control parameters for the given CAT. We apply

the usual Owen-Bayes update algorithm to estimate this CAT test ability for a simulee. As a

result of this estimation, we also get the so-called theta-hat ( θ̂ ) or Baysian estimation of the

simulee’s true ability.

In the total CAT item pool the different subsets (CAT1,…, CAT4) have 94, 137, 137, and 137

items, correspondingly. The test data file is done in such a way that 40,000 simulees get tests

from CAT1, CAT2, or CAT3, and only 2,400 simulees get a test generated by the CAT4 item

pool. The purpose of the CAT4 item pool is to estimate the means and standard deviations of the

ability distribution of the given set of a simulee population to determine the need for any possible

change to the test scale. Therefore, in our preliminary estimation of performance of the above

methods, we will recalibrate only the CAT1, CAT2, and CAT3 item pools; thus, we have
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120,000 simulees that “use” correspondent item pools (40,000 per separate CAT subset) and a

total of 368 items in the entire CAT pool.

We are analyzing the performance of the different methods in two ways. First of all we are

estimating how well they will estimate (“recover”) the value of the 3PL parameters of the

estimated curves. This is especially important in the case of pretest items because the value of

parameter a  roughly defines the item information, and so determines if that item will be

available to be selected for an operational CAT test; the value of parameter b  provides a

preliminary estimation of item difficulty.

On the other hand, it is well known that separate item parameter changes can compensate each

other. Due to this, we estimate the closeness of the ICC curves using the Root Mean Square

Error (RMSE), which we use very similarly to what was used by F. Drasgow (Hulin, Drasgow,

and Parsons, 1983). To take into account the distribution of ability, we compute weights for the

sum of RMSE based on the theta-hat distributions of the simulee population.

                                     ∑ ⋅−=
i

iii wPPRMSE 2
21 ))()(( θθ ,

where  ,5.2;51,,0; minmin −==∆⋅+= θθθ Kiii 1.0=∆ . Here 2,1),( =jP ij θ  is the value of the

correspondent ICC at point iθ  of the chosen grid, and iw  is the weight assigned to this point. To

get those weights we build a histogram of theta-hats of the population using the above grid, and

normalize the values of the histogram such that Nw
i

i =∑ , where N  is the number of points in

our grid. In this case, we can compare our RMSE estimation with RMSE values reported by
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other researchers. The described method of RMSE-weighting allows us to emphasize the

comparison of ICCs in the area of the ability interval that is more populated.

This estimation was used in the initial calibration of pretest items where theta-hat is the only

available estimation of examinee ability. However, in this presented simulation comparison it is

possible to use the RSME method proposed by D. Segal and discussed here by him and M.

Pommerich (Pommerich and Segall, 2003) based on knowledge of true ability of the

correspondent simulee. In they approach for the given item they take in account not all

population of examinees but only those examinee who got this item in their test. For those

examinees with the known true ability absolute differences between two estimated ICC

computed and providing its part in RMSE summation. For this reason numerical values of

RMSE presented in they papers in general more hiher than the values of RMSE presentedby

Segal and Pommerich. A. Nicewander using they method of RMSE for FS in the final paper in

today’s general conclusion (Nicewander, 2003).

We will stop with more detail in the case of a normal )1,0(N  distribution of a simulee’s ability,

because the analysis of the other two cases )8.0,1(N  and )2.1,1(−N  looks analogous. It is

worth while to remark that in the case of the “shifted” distributions, )8.0,1(N , and )2.1,1(−N ,

the set of recovered parameters produced Bilog-MG, as well as by RWlog, essentially benefited

from a Stocking-Lord transformation (Stocking & Lord, 1983) which is used to put ability

estimates on a common scale. If ),( 0,00 cba  are parameter values after calibration, then the

values of the Stocking-Lord transformed parameters ),( , cba  are
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θθ , where )ˆ(),ˆ( θθ STE  are the means and standard

deviations of ability distributions of the correspondent simulee population.

FS does not require the application of this transformation because the FS process begins from

the estimation of the population ability distribution. More importantly, one of the FS outputs

shows the ability distribution for the given examinee population.
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Results for Calibration of Pretest Items (Figures 1 and 2)

Even  we presented results of other algorithms here our major focus is FS. In Figure 1 we show

the frequencies of absolute values for all three methods. These diagrams can be used to make a

rough estimation of the precision of each method in two ways. For example, from the diagram

for FS in Figure 1, it follows that for 40% of all the calibrated items, the absolute difference

between the true and estimated parameter b is not more than 0.05. On the other hand, the

frequency (chance) to get absolute values for difficulty parameters more than 0.3 is less than 0.1.

In other words, the lower the correspondent curve for the upper part of the values of absolute

deviation, and the closer to the y  axes for the lower part of the values of the absolute deviation

values, the better the correspondent estimator.

As we can see, the deviations of Bilog-MG look as good as the deviations for FS, but Bilog-MG

does not converge for 56 pretest items. In the other words, only when Bilog-MG converges, does

it produce rather good estimations.

Table 1 provides the means and standard deviations for the estimated parameters in the case of

the pretest items.

Table 1. Pretest Items: means and standard deviations for estimated parameters.
                                                   MEAN                                                         STD

Products    delta  a  delta  b delta  c delta  a delta b delta  c
     FS    0.253     0.108    0.045     0.22    0.12     0.05
  RWlog    0.522     0.192    0.052     0.43    0.178     0.052
BilogMG    0.236     0.108    0.028     0.19    0.101     0.026
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In Figure 2 we show graphs of the weighted RMSE deviations for the estimated ICCs for the

different methods. Again, Bilog-MG looks as good as FS if we do not consider the convergence

problems which FS or RWlog do not have.

Results for Recalibration of Item Pool (Figures 3 and 4)

All the figures and tables below use data aggregated from the CAT1, CAT2, and CAT3 item

pools. Figure 3 shows analogous graphs for the recalibration of the items in the CAT pool. Once

again, Bilog-MG was able to make estimations for all except 1 of the 368 calibrated items,

though its estimations are not quite as good as the other two products. Table 2 shows the means

and standard deviations for the estimated parameters in the case of the CAT pool recalibration.

Table 2. Item Pool Recalibration:  means and standard deviations for estimated
parameters.
                                                             MEAN                                                         STD

Products    delta  a  delta  b delta  c delta  a delta  b delta  c
     FS    0.104     0.056    0.03     0.103    0.074     0.042
  RWlog    0.126     0.072    0.029     0.105    0.089     0.035
Bilog-MG    0.231     0.111    0.043     0.217    0.142     0.035

Figure 4 presents graph frequencies for RMSE deviations in the CAT item pool recalibration. As

we can see, FS looks considerably better than the other two products, and RWlog is slightly

better than Bilog-MG.. Table 3 provides the means and standard deviations for RMSE for both

cases: pretest items and items in the CAT pool.

Table 3. Pretest Items and Item Pool: means and standard deviations for RMSE for three
different methods.

 Type             Pretest Items                           Item Pool
Statistic   Mean      STD        Mean      STD
   FS       0.065        0.033         0.024       0.012
   RWlog       0.156        0.086         0.035       0.024
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  BilogMG       0.064        0.032         0.085        0.073

As we can see again, Bilog-MG is has the same precision as FS in the case of the pretest item

recovery, but it can estimate only 56 pretest items out of 100.

Overall, in the case of normal-normal distributed simulees )1,0(N , FS appears more precise and

stable. The “second” place in this “competition” belongs, in our opinion, to the RWlog

algorithm, which is considerably more stable than Bilog-MG.

With simulees that have a shifted distribution to the left )2.1,1(−N , (case of “less able”

simulees) we get about the same results with FS, RWlog, and Bilog-MG. In this case, Bilog-MG,

using the same scheme of choosing the better initial state for running, cannot recalibrate the

items in the CAT pool (computer computation blew up in attempt of take logarithm of negative

number in time of internal iteration). The same thing happened when the population of simulees

was shifted to the right: case of )8.0,1(N  distribution.

In the case of a “less able”simulee population )2.1,1(−N , Bilog-MG cannot estimate 62 out of

100 pretest items. In the case of a “more able” simulee population , )8.0,1(N  RWlog makes a

more precise estimation (recovery), especially parameter-wise than FS as in the pretest item case,

as well as in item pool recovery case. As we already mentioned, Bilog-MG was not able to

recalibrate the CAT pool and could not calibrate 14 seeded items out of 100. Thus, the winner of

this “competition” in the case of )8.0,1(N is RWlog. In all other case the winner is FS. This

phenomena was amazing, because in very many preliminary simulated and not-simulated runs

(at least in 100 cases), FS was always much more precise than RWlog. Considering this in more
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detail, we found that both less-able and more-able cases )2.1,1(−N  and )8.0,1(N  are far from

reality. In all real examples and our preliminary simulations, when we try to imitate real cases,

the maximum shift of mean of ability distribution was not more than 0.5 by absolute value. The

drastic changes of ability as )8.0,1(N  or )2.1,1(−N  require a special tune up of the FS part that

is responsible for the estimation of ability distribution, which can be done, if necessary.
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Figure 1. Pretest items:  Frequencies of deviations of absolute values for three different
calibration methods.
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Figure 2. Pretest Items: Frequencies of RMSE values for three different methods.
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Figure 3.  Item Pool Recalibration: Frequencies of deviations of absolute values for three
different calibration methods.
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Figure 4.  Item Pool Recalibration:  Frequencies of RMSE values for three different methods.
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