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Abstract

In the process of item cdibration for a CAT test, many well-established cdlibrating methods can
show ggnificant increase in biases or variability in the estimation of item parameters. This paper
introduces a cdibration agorithm based on the convexity of likelihood functions, which can be
successfully applied to data resulting from a CAT test. This package consgts of: (a) an dgorithm that
estimates examinee ability, and (b) an dgorithm that estimates the parameters for anew itemthat is
seeded into the CAT test. The precision (in the sense of biases and variability) of the new package in

estimation of item parameters is comparable with BilogM G, and in some cases exceedsiit.

Key Words: computerized adaptive testing, CAT, item cdibration, item parameters, maximization of
likelihood, log-likelihood function, precison, BilogMG, DMAP, ICCs, multi-dimensond te<,

convexity.
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Application of Direct Optimization for Item Cdibration

in Computerized Adaptive Testing

1. Introduction

The problem of item cadlibration--estimation item parameters when the model of responsesis
fixed--is very old and has been well discussed in the psychometric literature (e.g., Bock & Aitkin, 1981,
Thissen & Steinberg, 1984; Samgima, 1969; Levine, 1984). There are afew packages available which
are designed to do the job of cdlibration, for example, BilogMG (Zimowski et. d. 1996), Multilog,
(Thissen, 1988), ASCAL (Assessment System Corporation, 1988), Logist (Wingersky et. d. 1982).
However, nearly al available packages and dgorithms are designed to use results of tests given in the
paper-and-pencil mode.

Beginning from 1994, in Armed Services Vocationd Aptitude Battery (ASVAB) computerized
adaptive testing mode (CAT) was developed with seeded-item design scheme (Segall, Moreno,
Bloxom, & Hetter, 1997) which dlows relatively fast and chegp to get test results for caibrating of new
items from unbiased examinee population (see more explanations below). Unfortunately our attempts to
apply mentioned above cdibrating packages to test results from CAT ASVAB seeded item dgorithm
lead to large biases and standard errorsin item-parameter estimates which is probably due to specifics
of CAT testing data and sometimes due to specid features of CAT ASVAB testing data.

In CAT testing data, the matrix of examinee-by-item responsesis rather parse, in comparison

with the paper-and-pencil test. Though the package like BilogM G can handle some amount of missing
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data (which is making matrix of responses not fully compete comparing with case of classicd paper-
and-pencil tests) quantity of missng datain the case of CAT examslooks like excessve. The CAT tests
are rather short (at most 15 itemsin the case of CAT ASVAB) because of computerized-adaptation to
each examinee. Different items have different chance to be present to any examinee. For example, very
hard or very easy itemswill be hardly ever be exposed, 0 the missng data for those itemsis much
bigger than for other items. Also in the case of ASVAB the tested examinee population is sometimes
congderably different from a standard norma population (i. e. population with ability distribution norma
with mean zero and slandard error one) due to season and geographica changing. If not those specific
features, adjusted BilogM G (described below) is rather good, precise and practica method for
cdibrating of CAT seeded items. Therefore, the main reason which force us to develop another
practica cdibrating dgorithm was fallure of BilogMG (due to increase in biases or varidhility of
parameter estimations) in the case of not standard examinee population. BilogMG aso lost some
robustness due to increase variability of estimated parametersin the case of non one-dimensiond items
(see Appendix 4). Because this kind of features can be found not only in CAT ASVAB but another
CAT tests we think the paper can be interested for other researchersin CAT area.

Dueto dl that, we have developed an dgorithm based on likelihood optimization, whichisa
verson of Joint Likelihood Optimization and is not margind; or by Baker classfication (Baker, 1992) it
belongs to the class of Direct Maximization Apogteriori dgorithms (DMAP), which name will be used
for the dgorithm. In this paper we will describe the new agorithm and compare it with adjusted

BilogM G, the most widely used parametric cdibration package, which is margind likelihood
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optimization agorithm rather good described in the literature (for references see Zimowski et. d. 1996)
and aswe will demongrate it israther good cdibrating tool under the “standard” conditions.

The DMAP dgorithm begins by estimating examinee gposteriori distribution ability based on the
test results (Krass, 1997), which consdered to be “nuisance’” parametersin EM language (here we are
using terminology of McLachlan & Krishnan, 1997). DMAP is getting those estimate by likelihood
maximization without any assumption on the estimated 3PL parameters of the seeded item which is
andog of EM unobserved data. Getting estimation of examinee ahilities by maximizing likdihood,
DMAP estimates 3PL parameters of seeded item. Then it re-estimates examinee ability using estimated
3PL parameters of seeded item and continues this process up to convergence insde of the required
tolerance bounds. This gpproach is Smilar to gpproach of splitting cdibrating estimation problem into
two sub-problems which isused in Logist dgorithm (Wingersky et. d. 1982) and, more generaly,
described in the theory of EM agorithms. (McLachlan & Krishnan, 1997). In this pgper we will
describe estimating examinee ability by DMAP and then its estimating seeded item parameters, and we
will present some smulation results to compare the performances of the dgorithm and BilogMG.

DMAP dgorithm aswdl as adjusted BilogM G (adjustment is presented below) consists part of
the on-line cdibrating agorithmic package for seeded item in CAT ASVAB which ingaled in 1998 and

successfully implemented (Krass, 1998).
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2. Esimation of Examinee Ability

Let in our test theitem pool consstsof | items, with Item Characteristic Curve (ICC) P(q ),
i=1---,1 being3PLICC,i.e,

1-¢
1+exp(li(@))”

R@)=c + @

Wherel,(q) =-D»a (- b),and a,,b,c,; i =1,---,1 theitem discriminating, difficulty, and
guessing indexes, correspondingly; q isthe latent ability of an examineeand D =1.7 isascding
congtant (Lord, 1980). We assume that examinee ability q T [q,,,0,., ] , Which means that the

optimization, described below, should be done as a congtrained optimization. In CAT-ASVAB we have

assumptionq,;, =-3.0 and q,,,, = +3.0. Thistype of optimization festure cannot be done with an

“internal” agorithm type such as Newton-Raphson, which design to find zeros of second derivative of
maximized function. If the optimized function reach its maximum on the edge of the ability segment, it
second derivative generdly speaking is not equa to zero. Let our examinee get a sequence

{i,,i,,---,i, } of items generated by CAT, where k £ K , and K isthelength of the CAT-ASVAB test
(usudly 10£ K £15). CAT ASVAB test dgorithm istotaly driven by an information table based on
an item pool with arather large exposure control factor (at least 0.7 in CAT3-CAT4 which means that
next item sdlected by information table can be blocked for the examinee with 30% probakility, forcing
CAT dgorithm to present for examinee another item) (Hetter & Sympson, 1997). Due to this properties

item-response matrix for CAT test dataiis not only sparse but also somewhat chaoticaly filled, because
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idedly every examinee should havein CAT exam hisher own “unique’ sequence of items. However,
design of DMAP dgorithm is made to use the fact that the test dataiis result of a CAT exam.
CAT-ASVAB items are multiple-choice items, so the examinee produces a dichotomous

answer sequence U, ={u,,u,,---,u,} . Then, hisher likelihood function, under independence of

answers assumption after the first k items of thetest is

&
L(Ga) = 9@) O R@)" < @) 2

where Q(q ) =1- P(q) and g(q ) isthedengty of prior ability distribution in the population of

examinees. The vaue ¢, which maximizes likdihood
L (U, ,0y) = max L(T,,q) 3
ql [qmin vaax]
is consdered to be the best estimator of the examinee s ability after thefirgt k items of the test. As

usud, we assume that prior ability digtributionisnorma N(m,s ), i.e,

_ _@-m
g(Q)_S@@(p( 2>Sz

), where mand s arethe mean and SD of prior distribution.

Thefirst part of DMAP dgorithm design to find vaue of maximizing ebiliies g, ,k =1,..., K , which
gpproximate solution of (3) and giving estimates of “nuisance’ parameters — examinee ahilities.
Technica detals and description of the dgorithm is done into Appendix 1, but now we will stop on
results of this part of DMAP dgorithm gpplication.

In the current CAT-ASVAB, the Owen-Bayesian agorithm (Owen, 1975) is gpplied to

estimate ability of the examinee “on-the-fly,” and the Bayesan-Modad (Segdl, et d., 1997) dgorithm s
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gpplied to the totd test sequence to make the find tuning in ability examinee esimation. The above-
described DMAP agorithm requires alittle bit more computer time (about 1.5 more), in estimation of
particular examinee ability, but it gives more precison in the estimation in the densest part of the ability
distribution. However, the effect of computer time increasing can be felt only in the scale of big
amulation with severa thousands smulees. In the case of one examinee we lill in the area of parts of
seconds' with modern PC (described in the Appendix 1, which now is standard for CAT ASVAB).
The results of asmulation for 3,000 examinees for Arithmetic Reasoning in CAT-ASVAB
Form 1, where the Size of the item pool isequal to | =94, isshown in Figures1 and 2. In this
smulation experiment, we took 3,000 examinees with standard normd ability distribution and
“recovered’ their known “true’ ability by standard Bayesian (i. e Owen-Bayesan plus Bayesan-Modd
agorithms) methods (Figure 1) and by the DMAP dgorithm (Figure 2). To get those graphs we took
grid of equd digtant gbilities g, =0.1% - 2.5,1 =0,...,49 beginning from -2.5 to +2.5. For every

intervel [q, ,q,,,) We estimated Maximum deviation between “redl” ability of asmulee g and its

edimated ability (i (so cdled theta-hat) “recovered” ability by correspondent to the graph method. This
Maximum Deviation is denoted as Max. Dev. on graphs. In the same mode we compute Minimum
Deviation (Min. Dev. on graphs), Standard Deviation and Deviation Mean (Std Error and Mean on
graphs correspondingly).

(Figures 1 and 2 about here.)

! Ability estimating part of DMAP can be used as “on-fly” estimator of examinee ability in CAT test.
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Aswe can see, DMAP has about the same precison (in the sense of SD or maximum—minimum
devidion) as a andard Bayesian agorithm for g £ - 1.85 but does better than the standard from
g3 - 1.05. Intheareacf aility g < - 2.00, where guessng is a decisve factor for examinees, DMAP
typicaly losesto the sandard Bayesian methods, but there is not alarge population in that ability area.
We make the same kind of smulation experiments for other avallable CAT ASVAB tests (CAT1
through CAT4) results of those smulations was quite close to the test AR CAT1 described above, so
we did not present those results here to save space. These results are shown to us that application of
DMAP for re-estimation of examinees ability increase precison of estimation, because, generdly
gpeaking, we can use estimation of examinees ability which is done by standard Owen-Bayesian method
implemented by CAT ASVAB to proceed with DMAP dgorithm. The increasing of precison of
examinee ability is essentid in the second part of DMARP, which is estimation of 3PL parameters of
seeded item.

The presented part of DMAP dgorithm is heavily using adpativeness of individua examinee item
sequencein CAT testing data. This property of item sequence is used to define from what side of ability
interva dichotomy process should began (see Appendix 1) corresponding to the current item and
response in CAT adaptive sequence. It helps to contract area of search of maximizing likelihood (3)

ability ¢, estimation, increasing speed of dgorithm convergence.

3. Egtimation of ICC parameters

10
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In this section we will demongtrate the implementation of the second part of DMAP adgorithm
which design to get 3PL ICC parameters on unknown (seeded) items, assuming that the ability of

participating examinees has already been estimated. Let set P (a,,b,,6)(q); i =1---,1 of 3PL
functions (1) present CAT pool (so called set of adaptive items), where; a, ,b., ¢, are parameters of the
itemi=1---,1.Thereisanew (I +1)-& item with unknown parameterswhich iscaled aCAT

seeded item; it is usudly given to an examinee in the second, third, or fourth (random) position of hisor

her exam. If the CAT test of thelength Kisgivento M examineeswith gbilities q,, andg(q,,) higher
estimation of prior digribution, m=1,...,M , then the joint likelihood of the response vectors can be

written as
— X L u(ij") (@-u(i™)
L= O g(qm)>o (P(a,Jm!b,T!C,T)(qm)) >(Q(ai5n!bijmici]m)(qm)) , (4)
m=1 =1

Hereijmisindexofitemwhidﬂsgiventoexa”nineenumber m=1,...,M on j=1,...,K+1 sepof
CAT test, and u(i}") isthe binary response of the examinee m on the test item i " which hefshe got in
thetest inthe j sdection of CAT dgorithm. In expression (4) we took into account that the length of
thetest isincreased to (K +1) dueto adminigtration of the seeded item. Thusif the seeded item isgiven
to examinee m inthestep j,, =234, then i;'; =1 +1, because by our agreement seeded itemis

(I +1) -th item of the CAT pool. Aswe told before, the seeded item is given to every examinee

participating in the test, due to thisreation (4) can be rewritten in the form:

11
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L=L,>O (P@@b,0)@,))"" Q@ Db, D@ N

where (2 ,b ,T) :(alﬂ,b,ﬂ,clﬂ):(a,jm 5bijm 'Cijm ) aretheitem parameters of the seeded item,

and U, =U(i ") istheresponse of m-th examinee on the seeded item in the test. Here L, isthe

joint likelihood of the test without the seeded item. Let us note that expresson (4) implied that
presentation of itemsin CAT test are independent, which is arguable (see Levine & Williams, 1988).
But due to random mechanism of administration of seeded item in CAT test independence of answer on
seeded item with respect to answer on other CAT itemsis more plausible.

From the point of view of item cdibration the seeded item is presented to the person who is
trying to get through the exam as a common examinee. Application of a seeded item does not influence
examinee ability (Krass, 1998), so we get test from the “operating” level of exams, which is different
from cdlibrating datain P& P modes. In this mode examinees very often know or suspect that the whole
exam or pat of it with seeded item in is not influence the find exam results. Thustest datausing in this
itemis not, generdly spesking, from examinee population with “origind” gptitude. This we meant when
we mention in introduction about unbiasness of test data produced by seeded item design.

To edimate item parameters for the seeded item, we must solve the problem of maximization of log-

likdihood of (5), i.e., find a solution to the problem:

InL=InL, +§ (u,AnP@,b,c)@,)+@- u,)4n1-P(a,b,c)@,) P max, ()
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Whae (a! B! E)T [a'min ! amax ]* [bmin ’bmax ] * [Cmin ! Cmax] . Uppa md IOVV bOUﬂdﬂ'i%SJCh a

a.,a . for different parameters are user-defined for a test, as the boundaries in the case of ability

esimation.
In the practical application of DMAP dgorithm for On-line cdibration parameters search area
a

[&, 1% [0 » B 1 [Crin » Crr ] Afines through the checking parameters of dl item poolsin

implemented CAT ASVAB-sfor the particular test to get upper and lower limit for every item
parameter. Typicd example of theborder: a,,, =0.1, a,, =4.0, b,,, =-4.0, b, =4.0,

Cnn = 0.0, c, =0.5. Technica detals of desgn and implementation of this part of DMAP dgorithm

are presented in the Appendix 2.

Aswe mentioned in Introduction the both parts of described DMAP agorithm united like in usud EM
type agorithm through successive iterative process. Edimation of examinee abilities, then estimation of
parameter of seeded item. Re-estimation of examinee abilities, using newly estimated seeded item as

addition to CAT test data, and so on up to reaching needed bound of tolerance.

4. Comparing precison DMAP and BilogMG

Comparing the performance of the DMAP dgorithm with the BilogMG dgorithm is done
through a set of smulations arrange to recover vaues of known parameters of seeded items. But first
the BilogM G package must be adjusted to get a reasonable performance. As we have explained, the
matrix of reponsesfor a CAT test israther sparse. Furthermore, items with low information are used

very rarely, and items with high information are used too often this together with randomness providing

13
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by CAT exposure control mechanism resulting in very non-uniform filling of the response matrix. Due to
that gpplication of BilogMG very often leads to a non-convergence runs which finish by exhausting
number of permitted iterations cycle or reasonable limit for computer time. In this case BilogMG
provides “recovered” parameterstoo far from redlity. To avoid this inconsstency, we run BilogMG in
two stages. Firgt, we smulate a paper-and-pencil test for our set of M examinees on items that belong
to the CAT-ASVAB item poal. In this part of amulation we are using ability estimation done by CAT
ASVAB and smulate response on a particular item with help of 3PL-modd (1). Then we run BilogMG
and save the result of item pool estimation with help of the BilogMG “SAVE" gatement. After that, we
run BilogMG for the data obtained from the smulated CAT-ASVAB test, with the seeded item
included, using the preliminary estimation through the “IFNAME" subcommand in the “GLOBAL”
gatement in BilogM G. With this gpproach, BilogMG aways converges and provides a rather
reasonable and stable estimation for the population of examinees with normd distributed abilities and
with one-dimensiond item, where item dimensondity was estimated by preliminary factor andyss for
the correspondent test using “TESTFACT” package (Wilson, Wood, Gibbons, 1991). After much
experimentation, we are decided to use 30 quadrature points in the margind estimations for BilogMG.
The firgt stage in BilogM G running process provides estimation of item parameters of adaptive item set
aswell as of ability distribution of participating examinees. Moreover, other attempt to input in BilogMG
information of item parameters of adaptive items (CAT item poal), for example, usng prior mechanism,

does not improve it performance?.

2 Performance of BilogMG in the “normal” cases was so good that we keep it in our calibrating package.

14
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To compare performances of dgorithmsin the“normd” dtuation, i.e. when smulees ability
satisfy standard normal distribution and dl tested itemsis one dimensiond (see the remark above), we
use three typically representative items from the item pool for AR: an “easy” item
(a,b,c) =(1.17,- 1.63,0.13) ,a“normd” or “average’ item (a,b,c) = (1.3,0.12,0.15) , and a“hard’
item (a,b,c) =(1.23,1.63,0.07) . (The above classfication is done based on item difficulties). All three

items are rather informative in their areas of difficulty. Then, for each item we run the CAT-ASVAB test
smulation twenty times for thesst of M examinees, changing random seeds each time to generate
different response matrixes. In every run we use DMAP and adjusted BilogM G to re-estimate item
parameters for the above-described items. We found that both packages in those experiments show no
biases in parameter estimations, the mgjor differences are in the Size of variability of those estimations.

Firgt of al, we run our smulation for a different number of examinees with sandard normal
distribution of their abilities, changing examinee number as. M 1 {300, 500, 750, 1000, 1500, 2000} . In
this experiment, we try to identify the number of examinees needed to provide estimation of parameters
with stisfactory varigbility. In Table 1 we show estimation of SD for three parametersin our
experimen.

(Table 1 about here.)
These reaults are graphicaly shown in the Figure 3.

(Figure 3 about here.)

Let us note that even seeded item design for collecting data for calibration processis rdatively
cheap, it requires some time to get enough data. For this reason number of examinees (sample Sze)

more than 2000 per one cdibrating item looks like unreasonable big. Usually we have to cdibrate few

15
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hundred items per test for next generation of CAT ASVAB, and it take at least three - four month to
collect 1500 answers per item. In Smulation studies we goes beyond sample size 2000, and found that
variability of estimation of item parameter do not significantly change comparing with sizes 1500, 2000.
Aswe can see, DMAP requires at least 750 examinees per test to get variancesin a and b
parameters comparable with BilogMG, and BilogMG is dways better in the estimating of parameter C.
However, the last advantage (more precise estimation of parameter ¢) disappearsif we measure
weighted average distances between “true’ 1CCs of studied items and 1CCs built with estimated 3-PL

parameters. Here, under weighted distance between two ICCs curves, we mean

D:\/é} w, X(P(a,b,0)@;) - P(é',k?,'é)(q,-))z ,

where (3, b, ) isthe etimation of “true’ parameters (a, b, ¢) by some package in a particular

smulation experiment; q;, j =1,...,50 are equidistant pointsin ability domain [- 3.0, 3.0] , and weights

.
are normaly digributed, i. e. WijT N(0); é w; =1, where W isascding coefficient. In Table 2

=1
and Figure 4 we show that, from the point of view of distances between ICC curves, both agorithms
perform more or less equaly.

(Table 2 and Figure 4 about here).

Thisis because the influence of guessing parameter is strong where the dengity of the examinee
population is smal. From this smulation experiment, we see that the performance of both packagesis

about thesamefor M =1,500, and variability of item parametersis minima and sabilizing. Based on

16
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that, we will assume that cdlibration of a seeded item requires at least 1500 examinee answers per item
in“red” on-line caibration with CAT-ASVAB.

In the case of the CAT-ASVAB, very often we have violation of normality in examinee ability
distribution due to seasona and geographical location differences. To smulate this Stuation we consider
two types of atificid populaions. In the first type, we mix 750 examinees with norma-norma ability
digtribution with 750 examinees with ability digtribution N (- 0.8, 1.0) . After mixing, we get not-norma
ability distributed population of examinees with mean of ability equal -0.4 and SD equd » 1.15. We
cdl this population “less able” (to the test). In the same mode, we make an “more able’ population with
mean +0.4 and the same SE» 1.15. In both cases, we apply previoudy described smulation for the
same three items of CAT-ASVAB Form 1 AR. We find the variances of estimation of 3-PL parameters
are about the same as for the norma case (described above); the main differences are in biases of
parameter estimations. Those biases are shown in Figure 5.

(Figure 5 about here.)

Aswe can see, BilogM G begins to be sgnificantly biased in estimation of difficulty parameters,
overestimates them for the “less able” population, and underestimates for the “more able’ population.
As areault, the average weighted distance between estimated ICCs and “true’ |CCs significantly
increases for BilogMG (Figure 6). On the other hand, the biasincreases for DMAP are not significant
with respect to the norma case. Let us note thet in red life we can only assume of existence of “more”
or “less’ able group of examineesin the particular Site of test taking. Due to that we can not apply a
different test group design provided by BilogMG.

(Figure 6 about here.)

17
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The difference in precison (biases) of estimation of b parameters between DMAP and
BilogM G can be explained by the heavy dependence in BilogM G architecture on assumption of
normdlity of prior ability ditribution. DMAP being averson of joint likelihood maximization method is
not depend on the examinee ability distribution. We found another case of differencesin precison of
parameter estimations — case of not one-dimensiond test. In this case variability of estimation of a and
b by DMAP were considerably lesser than variability provided by BilogMG estimation. However, both
agorithms do not have a mechanism to compensate not one dimengondity effect, and improving by
DMAP estimation may be connected with not much reliance on assumption of type of prior ability

digribution. Result of experiments for multidimensgond is given in Appendix 4.

18
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5. Conclusion

We have demonstrated that the above described DM AP dgorithm has about the same precision
asthe BilogMG dgorithm in cdibrating items from the CAT-ASVAB seeded design. More than thet, in
“goecid” circumstances, such as the abosence of normdlity in prior distribution of examinee ahility or the
multi-dimengondity in item content, BilogM G losesits precison, but DMAP does not. Thisis because
BilogMG isamargind agorithm, with normality, to some extent, built in by the application of
computation joint distribution through quadrature points. The other “weak” part of BilogMG isthe
goplication of only the Newton-Raphson agorithm as the main engine for loca sub-optimization. Aswe
have dready mentioned, thistool will not pursue congtrained optimization. However, from the point of
view of maximization of joint likelihood, BilogMG and DMAP use different types of heuridtics, so thelr
solutionsin different initia circumstances can be better or worse, depending on many “internd”

conditions.

19
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Appendix 1

DMAP Algorithm Ability Eimation.

Typicdly, we begin from sandard normd prior N(0,1) andthentune n and s to get faster

convergence for this particular examinee (of course, we are not trying to change the scae of whole
population &t that moment). If we begin from N (0,1) , to get the maximizing ¢, we consider log-

likelihood which has its derivative dueto (1) as:

& U 1-u

d _ ~ , _
Eﬁmmqu»—ﬂ a‘P@)1.Pmﬂd @%—q+aR©)

where

i (1- ) >exp(l(q)) XD =
T @+exp(l @))) {1+ 6 exp(l @)))
i - D )al

i @+ exp(,@))’

; foru =1

R@) =i ()

foru =0

To find azero of log-likeihood derivative, in the case when the log-likelihood maximum is

reached insde of domain segment [q;,,,0 ] » WE Must solve the “fixed-point” problem for function

S
a R@) ,i.e, find asolution of the equation:

i=1

k
a=a R@) @©

Solution of thistype of equation is heavily sudied in computationd mathemeatics literature (Blum, 1972;

Ramsay, 1975), but the fastest solution can be reached in the case of monotone functions R, (q) which

20
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we have here, a least in the area of solution of (8). From (7) it followsthet, inthecaseof u, =1, we

have R(q) >0,and R(q) ® 0 if g ® +¥ .Thefunction R (q) isuni-moda and reaching

maximum at the point g, =b, - ;i.e q, ishigenough, if ¢, issmall enough. In the other

In(+/3c,)
Dxa,

words, if ¢, issmdl enough thefunction R (q) ismonotoneincreasing in the area of solution. On the
other hand, inthecaseof u, =0, thefunction R(q) <0,and R(q)® 0ifg® - ¥ ,and

R(q)® -D»a, ifg® +¥ .Thefunction R (q) ismonoctone increasing in this case with point of

k
inflectionon g, =b, + [')”3 . Out of thisfollows, that 0 > a R (@) for g =0, ad
xa. j:l

k
qg<a R (@) for g =0, if 0, islageenough and d,;, issmal enoughand for k =1 (i. e
=1

a the beginning of the CAT exam) equation (8) has unique solution. Therefore, depending on whether
the answer isright or wrong, the firgt solution of (8), which defines the DMAP estimation of examinee
ability after thefirgt item administered by CAT, can be found by dichotomy, or bisection, from the “right
gde’ if the answer is correct, or “left 9de’ in the opposite case. Under right Sde, we mean beginning the

process of checking if the inequaity

k
o @ R (@) ©
i=1
: . - dlog(L(w a)) . .
holds. From (9) it follows that in the case, when (9) holds, the derivative of dq isnegativein

al our domains, so the maximizing latent &bility g, =q,,,; in this case the process can be continued to

21
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k
the next item. If the above inequality is not true, we check the left Sde condition g, , 2 é R(@.,,) to

i=1l
see if maximization is reached on the right border of the domain. After checking borders we are sure

thet at least one solution of (8) isingde the segment [q,;,, ., ] » @d it can be found by the following

diChOtomy prOCE$: Ld CTmin = qmin and cha( :qmax ddine q~ = q~rn'n + 05)(q~max - q~min) . If

k
q <a R @).theng,, =q adq,, =q inthecaseof oppositeineguality. The process

j=1

continues until q~max - q~rnin >d, where d isagiven precison of computation. The agorithm
1
convergencerateis Hn , whereis n isthe number of iterations, i. e. Sze of the areawhere solution of

1
(8) islocated contracted as S when processis continue, which provides rather big speed of

convergence. On our standard IBM compatible Pentium PC with speed 166 MHZ it usudly take lesser
than a second to get a solution of (8).

Asitisshown by Samgima (1973), the log-likdlihood function (2) is not, generdly speaking,
unimoda 0 (8) can have more than one solution, but the second solution is usudly out of the border of
the “normd” domain. Our dgorithm is designed to hunt for more than one solution of (8) checking the
ggn of difference between left and right sdes of (8) on rather tight net of ability vaues. However, after
more than 1,000,000 applications of the dgorithm to the smulated or red life test Stuation, we were not
able to find a second solution of (8) in the consdered domain [-3.0, +3.0].

From the properties of (7) it follows, independently of the first answer, if the answer on the

second item is correct, the root of the equation (8) will be moved to the right, and it can be found by
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dichotomy beginning from the right Sde. If the answer on the second item in the sequence iswrong, the
root of (8) will be moved to the left, and it can be found by dichotomy from the left Sde. This
phenomenon is dueto the property R (q) >0 in the case of acorrect answer, and R, (q ) <0 inthe
case of awrong answer. This phenomenon reduces the domain of searching of maximizing likelihood
ability while the test is developing adaptively. Let us note that this phenomena corresponds to the
goplication of CAT exam to an examinee.

In Figure 9, we present the case of atest where the firgt item is answered correctly and the
second wrongly. The darker curve corresponds to the function R,(q) for the first correct answer, and
the lighter curve corresponds to the summation R (q) + R,(q) for the firgt two items when the first was
answered correctly and the second wrongly. Theintersection of the straight line and the graph of the

function R (q) + R,(q) givesthe DMAP estimation of theta for the test length of two.

(Figure 9 about here.)
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Appendix 2
DMAP Algorithm Parameter Estimation.
We areinterested in constrained maximization on the given parallelepiped-domain:
(@,b,o)1 [a,,,a,.]* [0 0 ] * [Crin» Cra ] - The DMAP dgorithm described below will check
the border of this domain paralelepiped before going to the interna point. But if we assume the

maximizing solution in (6) is reached on an ingde point of the domain, we must find a solution of

equdities.
fInL,_ -~ fInL - TInL -
Ta (4,b,c) = T D (a,b,6) = e (a,b,c) =0. (10)
Then, from (10), we will have:
finL o u 1-u W _ = _
= _m _m ,b,
e 25Eb o) T rabogy) el

However, from definition (1), the function %(a,b, c)(q ) does not depend on c. Using this fact, we

have:

inL_¥ u,

2 a 2 h + 1_ - 2
¢ w2 P°(&Db,0)@,) - P@,b,c)a,))

)P (2,5,5)(@,))? < 0.
ic

24

From this we can state that for fixed parameters (@, b) , thefunction In L(@, b,€) isconvex on ¢, and

finL

therefore the function (a,b,€) ismonotone, decreasing on ¢ . Asin the case of estimation of

ability, if In L(@,b,€) isnot reaching maximum on the border of the segment [¢

'min ’ max

24

|5 IISmaximum



CAT ltem Cdlibration

finL
fic

is reached in the root of the function (a,b, ) which can befound by adichotomy process.

Bdow, we describe in more detail how thiswork could be donein that case.
Let'sintroduce afunction F,, =1+exp(d:a>(q ,- b)); m=1---, M, then

1 P(a,b,c) 1 o c-1 .
T(q m) :F— ,and P(a,b,C)(q ) :1+F—.After some agebrawe will have:

m m

ﬂlnL_&"( Up, 1-um)_2>" up,
& F +c-1 1-¢c  S,F +C-1 1-C

(11)

where N isthetotal number of wrong answers on the seeded iteminthetest. If N =0, i.e, thereare

nowronganswvers, u, =1, m=1.--,M for c=1 (caseof “perfect guesang’), we will have

InL & 1 . . . InL
ﬂﬂ . = é_ — >0, which, due to monotone decreasing nature of function ‘ﬂﬂr:: , means that
m=1 m
TinL

Tc >0 fordl ¢, and sothelog-likdihood function In L is monotone, increasing function and

reaching maximum on theright end € =1.1f N >0 sothereisexaminee m, suchthat Uy, = 0,

InL . : . L
then ‘ﬂﬂ_nc® -¥ when ¢c® 1 and behavior of thefunction In L depends on the behavior 1n

theleftend c=0.If ¢c=0;then

qnL ¥ 1 y m g u,
—au,*>——-N=gu,*>—-M=g—-M 12
ﬂc mazbl Fm_l n?—.l I:m':l' ?:.l m ( )

25
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M
where P, = P(a,b,t)(q ,,) . From (12) it follows; if é l;)—m M <0, thenthelikeihood function is

m=1 M

M
monotone, decreasing and reaching maximum on theleft end © = 0. If é Un M 3 0, wewill have

m=1 m

finL
fic

oneroot for function (a,b,t) which can befound by dichotomy. Thisroot T = c(a,b) will

provide the searched likelihood maximum for fixed parameters a, b . Utilizing this, weimplement a
search through the dense net of points (éj,lgj), j=1---,N,where (q; ,BJ.)T A" B, computing the
likelihood L(a, ,b;,c(@; ,b,)) and getting approximate maximization, for which the precision depends
on the dengity of the net. This search ensures that we did not miss *“essentia” for maximization regions of
parameter space. The scope of search can be considerably decreased if we use a convexity of the
function L(a,b,c(a,b)) on b forfixed al [a,, ,a,,, ] (provided in the Appendix 3) under some
gpproximation. Again, after more than 1,000,000 experiments, we can Sate thet this gpproximation is

holding in our case, i.e, thefunction L(@,b,c(a, b)) isconvexon b .

26



CAT ltem Cdlibration 27

Appendix 3

Convexity by Other Parameters

Aswe show, for fixed (a,b) thelog-likdlihood function In L(a,b,c) isconvex on ¢ and
reaches its maximum ingde the prescribed segment [C,;,, C,., ] OF Onits border. We now consider the
case when thefunction In L(a,b,c) reachesitsmaximumon ¢ ingde the above domain-segment. In
thiscasethereisafunction ¢ =c(a,b) such that

finL(abc(ab) o
c 0 '

(13)
Because dl congdered functions are anaytica under some regularity conditions (Kantorovich, 1968),
thefunction ¢ =c(a,b) isaso andyticd, so it has al the derivatives. Let us present our 3PL function in

the form:

P(a,b,c)@) =c+(1- ¢)F(ab)@), (14)

where F%(a, b)(J) :% ,1.e, F%(a, b)(J) iIsa2PL ICC in the consdered case (Here

[ (a,b,q) =D xax(q - b)). Using (14) we can rewrite identity (13) in the form:

M N N
finL(a,b,c(a,b)) o Up, 1-up,
& A (sapcemey - TrEbcemay) L F(ab)dn))® 0. s

m=1

Then for the derivative of In L(a,b, c(a,b)) with respect to b we have:

27
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fin L(a b c(a b)) — 1- Uy TP(ab C(a b))(Gm)
a ( P(a,b C(a D)am) T P(a,va(a,b))(qm)) X
m=1

>< 1 P(ab C(a b))(qm))

M
inL(abc(ab) — & _ U +
b’ a: ((P(a,b,C(a,b))(qm))z (1-P(a, bC(a b))(dn))? 7)

m=1

- Un 1 Up 12P(a.b.c(a.0)(qm)
+ a (P(a,b,c(a,b))(qm) T P(a,b,c(a,b))(qm)) X 102
m=1

The firgt sum in this expression has a negative vaue. To work with the second sum, let us consider the

, . T’P(ab.c(ab)(@) , o
expression for the second derivative b2 . Taking a derivative of (14) we have:

TPlabelable) = T@h) 1 - P (a,b)(q)) - (L- c(a b)) XD xaxP,(a,b)(@) XL P,(a,b)@))

o

From this expresson we get:

Telabe(eold) = (1 P, (a,b)(@)) L2 + 250 xR (a,b)(@)(L- Py(a.b)(@)) ¥ +

+2X(1- c(a,b)) XD xa)* xR, (a,b)(@)(1 - 2R, (a,b)@). (16)
Our approximation assumption isthat ((1- P,(a,b)(q)) >> B, (a,b)(q) x1- P,(a,b)(q)) which means
that probabilities product is congderably less that probability by itsdf. This assumption looks like alittle
bit too heavy but it works in practica computations just fine. In our opinion this assumption is rather
close to the one of neglecting terms with higher powersin a Tailor presentation of a function comparing

with the term of first and may be zero power. Applying this assumption to (16) will lead to

ﬂZP(a,b,C(a,b))(Q) 5 “c(ab) >(]_ P (a b)(q ))

b? b?
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which, together with identity (15), will get us to the conclusion that under this gpproximation

T°L(ab.c(ab)) _ . . .
2 is negetive, so thefunction L(a,b,c(a,b)) isconvex on b for fixed a. The sametype

of consderation can be given about convexity of L(a,b,c(a,b)) with respect to a for fixed b under

the same gpproximation assumption.

29
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Appendix 4

Case of Not-One-Dimensiona Test

Inthe CAT-ASVAB test is one essentialy not one-dimensiond by its content , Generd Science, which
congsts of three subtests: Physica Science, Biologica Science, and Chemicd Science. Statigtically non
one-dimengondity of GStest was shown dso by factor-anayss results (Zimowski & Bock, 1987). To
amulate the gpplication of this test, we assume that every smulee has three gbilities for every subtest,
which are norma-normal distributed but highly correlated with a coefficient of correlaion equd 0.8.
Thus, the matrix of correlation for Generd Science ahilitiesin this population looks like

@0 08 080

R:go.s 10 08: Wewould like to get athree-dimensiond ability vector cT = (qZ,th,d;) such that
&8 08 10p

every component of it will have anorma digtribution with mean O, and the correlation matrix between
componentswill beequal R . To do this, we make a Cholesky decomposition of R, i.e, presentitin
theform R = A™ A where AT matrix transposesto matrix A, the square root of R and

A=Q* diag(‘/I . ) where Q isathree-dimensond orthogona metrix. Inourcase | =1 ,=02

|-O:

1

and| ,=26,and Q=6+ 5 &°
1

. Then, if vector q =(q ,,9 ,,0 ;) consistsof three

2

0 -5 &

(SRR

independent identically distributed components belonging to N(0,1) , vector  =q * AT = (q,.0 ,.0,)

will have the desired multi-dimensiond digribution (Bickd & Doksum, 1977). Thus, if asmulee getsa
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Physcd Scienceitem, we use q~l ability to get the response for that item; if item is Biologicd, we use
q,; and if it is Chemical, we use q.

In this three-dimensiond Stuation, we choose for smulation three representative items for each
science: one“essy” item b <- 14, one“normd” item - 0.3<b <- 03, andone“hard’ item b >17
(altogether we choose nine items for the Generad Science test). This design was made with purpose to
eiminate effect of “difficulty” on variability of parameter esimations. As before, we run the smulation
twenty times, changing random seeds and using 1,500 smuleesin every run. Our results show that both
packages are not sgnificantly biased in parameter estimation, but there are increases in variance
estimation, compared with a one-dimensiona test. These increases are shown inthe Figure 7.

(Figure 7 about here.)

Aswe can ¢, the largest and mogt Sgnificant increase isin the variances of estimating difficulty
parameters by BilogMG. Further, with BilogM G, we have a Sgnificant increase in weighted distance
between the estimated and “true’ 1CCs, especidly for “normd” items (Figure 8). On the other hand, the
increase in the variances of estimating difficulty parameters by DMAP is not sgnificant relative to the
normal case.

(Figure 8 about here.)
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Table1l. Variancesof 3PL parametersin the“Norma” smulation

A-parameter B-parameter C-parameter
BLG DrAR BLG DrAR BLG DrAR
20000 00378 0.022 0023 00154 00007 0004
15000 0.0231 00395 0023 00122 00004 00043
10000 00308 00428 00237 00169 00005 0.0051
700 003420 00428 0025 00262 00005 00067
000 0O0OBR2 00923 00318 00245 00003 00072
300, 002420 024620 00423 00419 00005 0.0071
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Table2. Average distances between ICCs

BLG DhIAP
2000 0.0221 00125
1500 0.0227 0.01%
1000 0.0235 0.0247
F50 0.0254 00252
200 0.0322 0.0282
300 0.039% 00416
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FIGURE 1

Reaults of AR smulation after Sandard Bayesian implementation.
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FIGURE 2.

Results of AR smulation after DMAP implementation.
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Weighted I CCs differences in the case of not “Norma” population.
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Increases of variancesin three-dimensond case.
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FIGURE 9.

The case of atest of length two, where the first item was answered correctly and the second wrongly.



