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Computerized Classification Testing under Practical Constraints  

with a Polytomous Model 

 

Sequential probability ratio testing (SPRT) procedure was found promising for making 

mastery decisions in computerized classification testing (CCT) with tests containing 

dichotomous items (Spray & Reckase, 1996).  Lau & Wang (1998) found that SPRT could be 

applied using the generalized partial credit model.  The purposes of this study are to extend the 

SPRT procedure with the polytomous model under some practical constraints in CCT, such as 

methods to control item exposure rate and to study the effects of other variables, including item 

information algorithms, test difficulties, item pool sizes and widths of indifference region in 

SPRT. 

Mastery testing is used to classify the test takers into one of two categories: mastery (pass) 

or non-mastery (fail).  Certification or licensure testing is a good example of it.  When such tests 

are administered and scored in computer format, it is referred to as computerized classification 

testing (CCT) (Spray, Abdel-fattah, Huang, & Lau, 1997).  To implement an IRT-based CCT 

procedure, a cut-point on the ability scale (θc) must be established first.  Two types of 

classification errors are considered: if the examinee is classified as a master but in fact his/her 

ability level (θ) is below θc, a false positive error (type I error) occurs; if the examinee is 

classified as a nonmaster but in fact his/her θ is at or above θc, a false negative error (type II 

error) occurs.  The relative importance of these two types of error is situation dependent. 

In CCT, SPRT procedure was found promising for mastery classification (Spray & Reckase, 

1996, Lau, 1996, Lau & Wang, 1998).  Wald (1947) first proposed the SPRT procedure to test 

two simple hypotheses: H0: P=P0 versus H1: P=P1 with a binomial model.  Reckase (1983) 

modified the procedure and applied it to CCT with IRT models.  With SPRT, items are selected 

to maximize information at the cut-point.  Decisions are based on the ratio of the likelihood of 

the response data conditioned at two alternative points (θ0 and θ1) around the cut-point (θc) on 

the θ scale.  The interval between these θ0 and θ1 is called the indifference region.  The width of 

the indifference region can be set arbitrarily.  The decision about the examinee's status (pass or 

fail) is made based on the consideration of two simple hypotheses:    

H0: θj = θ0   versus   H1: θj = θ1 
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where θj is an unknown parameter, and θ0 and θ1 are the lower and upper limits of the 

indifference region.   

Conditioned at these two points, we have π(θ1) and π(θ0), where π(θj) = Prob (X = x | θ 

= θj), x = 0, 1 are the response data.  The product, π1(θj) π2(θj)...πn(θj) is called the likelihood 

function of the response vector.  A ratio of these two functions, L(x) = π(θ1)/π(θ0), is called a 

likelihood ratio and  

L = L(x , x ,..., x  |  , ) = ( ) ( )... ( )
( ) ( )... ( )

 1 2 n 0 1
1 1 2 1 n 1

1 0 2 0 n 0

θ θ π θ π θ π θ
π θ π θ π θ

. 

The likelihood ratio is compared to the boundaries, A and B,  

where A = (1-β) / α, and B = β / (1-α), and α and β are the error probabilities defined 

as follows: 

Prob(choosing H1 | H0 is true) = α  (false positive), and Prob(choosing H0 | H1 is true) = β  

(false negative). 

The likelihood ratio is compared to A and B to make decisions.  If L ≥ A, the H1 is accepted 

and the examinee is classified as pass.  If L ≤ B, then H0 is accepted, and the examinee is 

classified as fail.  If B < L < A, then the test continues.   

Few if any research investigates how to apply polytomous models in computerized adaptive 

test (CAT) because of the difficulty of item scoring of the extended response items.  Bennett, 

Steffen, Singley, Morley, & Jacquemin (1997) however, successfully adopted computer scoring 

of open-ended format items in CAT, which implies the feasibility of polytomous scoring in CCT 

in the future.  Lau & Wang (1998) found that SPRT procedure could be adapted with 

polytomous items in CCT.  Specifically, they found: (a) SPRT procedure with polytomous item 

pool achieved better classification accuracy than that with dichotomous item; and (b) comparing 

to partly and totally random item selection, best classification accuracy and efficiency was 

gained when items were picked based on item information at the cutting point.   

This study applied SPRT for polytomous items under Muraki's (1992) generalized partial 

credit model (GPCM).  Under GPCM, the probability of getting a response category h on item i 

is  
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where  h = 1, 2, …, m. 

within an item, ∑Pih(θ) = 1 and Zih(θ) = Dai(θ - bih) = Dai(θ - bi  + dh) 

where 

D is a scaling constant that puts the θ ability scale in the same metric as the normal 

ogive model (D=1.7), 

ai is a slope parameter, 

bih is an item-category parameter, 

bi is an item-location parameter, and 

dh is a category parameter. 

The computation of the likelihood ratio for polytomous items is quite similar to the 

dichotomous SPRT except that the polytomous item response model instead of the dichotomous 

response model is used to compute the conditional probability of the response data. 

Eggen (1998) compared Fisher (F) with Kullback-Leibler (K-L) information (Cover & 

Thomas, 1991) for item selection in the context of SPRT using a dichotomous item pool.  He 

concluded that the performance of the testing algorithms with K-L were sometimes better and 

never worse than that of F information-based item selection.  In theory, K-L information is more 

suitable for statistical testing because it is defined as the log of the ratio of two likelihood 

functions.  It seems to be particularly appropriate for SPRT.  This study extent this comparison 

with polytomous item pool.    

For dichotomous items, the K-L item information index is defined as: 
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Item exposure rate control is important for high stake tests like certificate testing.  In CCT, 

items are usually selected according to the maximum information at the cutting points with 

SPRT procedure because it guarantees best classification accuracy and efficiency.  However, this 

practice may cause the problem of item over exposure.  This study adopted two popular item 

exposure control methods, Sympson and Hetter method (SH) (Sympson and Hetter, 1985), and 

Randomesque method (RD) (Kingsbury & Zara, 1989). 

As it was mentioned above, the width of the indifference region in SPRT can be set 

arbitrarily.  In theory, the width of the region can affect the number of items used to make 

mastery decision.  Further, the width has an effect to K-L information algorithm, which could 

impact the testing result.  This study tried to investigate how the width of the indifference region 

affects the results. 

Test difficulty and item pool size are practical also constraints in testing and can have an 

effect on testing results.  They were included as independent variables in this study. 

Methods 

Theoretical method was used to analyze the decision criterion for the polytomous SPRT 

procedure and to derive possible alternative criterion.  Monte Carlo simulation technique was 

adopted to verify the decision criterion.  Several independent variables were manipulated which 

included:  

1. Item information algorithm: 

(1) Fisher. 

(2) Kullback-Leibler. 

2. Item exposure control methods:  

(1) Sympson and Hetter method.  (Maximum exposure rate was set at 0.25) 

(2) Randomesque method.  (For every 3 most informative items unconsidered in the pool, 

randomly select one item.) 

(3) No control.  (The items were only ranked at the cutting theta according to the item 

information.) 

3. Location of theta cut point (test difficulty): 

(1) θc = -0.8. 

(2) θc = 0.8. 
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4. Item pool size 

(1) 266 items. 

(2) 90 items (These 90 items were randomly drawn from the first pool.) 

5. Width of Indifference region in SPRT:  

(1) |θ0 - θ1| = 0.5 (i.e., θ0 = δ - 0.25, θ1 = δ + 0.25). 

(2) |θ0 - θ1| = 1.0 (i.e., θ0 = δ - 0.5, θ1 = δ + 0.5). 

 where δ is the passing criterion. 

This was a 2x2x3x3x2 crossed factorial design and these were 48 combinations of 

conditions totally.  Test length constraint (that is, the examinees must respond to a minimum 

number of items and not exceed a maximum number of items) was set minimum = 3, maximum 

= 30.   

The evaluative criteria include: (1) classification accuracy in terms of false positive and 

false negative error rates, (2) test efficient (number of items used to make mastery decision), (3) 

item exposure rate, and (4) item utilization rate.  (1 – percentage of not-used items in the item 

pool)  

Data 

Item parameters from the 1996 NAEP Science assessment were used to build the item pool.  

Combining three grades (4th, 8th and 12th) together, the assessment consists 266 polytomous 

item parameters for the study.  These item parameters across three grades were calibrated on the 

same scale.  The average item difficulty of the pool was 1.043.  Item response data were 

generated for 10,000 simulated examinees from a normal distribution (0, 1) on computer. 

Steps for Simulation 

1. Items were calibrated and ranked at the cutting theta (-0.8 or 0.8) with either Fisher or 

Kullback-Leibler information algorithm with the two item pools (266 and 90). 

2. Item selection was based on Sympson and Hetter, Randomesque method, or no exposure 

control. 

3. 10,000 simulated examinees were administrated and SPRT procedure with different 

indifference regions was adopted to make mastery decision. 

4. Test length, error and item exposure rate were recorded or computed. 
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Results 

The results are listed in Tables 1 to 5.  Tables 1 and 2 show the results of item exposure 

control with Sympson-Hetter and Randomesque methods.  Table 3 describes the result of no 

exposure control condition.  Tables 4 and 5 summarize the average error rates, average test 

lengths, and average item exposure rates and item utilization rates of each manipulated variable 

across all conditions.   

Item Information Algorithm 

Two information indexes used for item selection were Fisher and Kullback-Leibler.  

Amazingly, under different conditions, the results from either information algorithm were very 

similar.  Within each condition and across all conditions, the average type I errors, type II errors, 

total errors and test lengths were almost identical.  (See Tables 1-4.) The average type I, type II, 

total error, and test length were 0.028, 0.032, 0.061, and 9.326 for Fisher and 0.028, 0.033, 

0.061, and 9.333 for Kullback-Leibler.  Not only that, the item exposure rates and patterns for 

both Item information algorithm were again almost identical.  (See Table 5.) 

As the results of F information were very similar to those of K-L in terms of accuracy, 

efficiency, and item exposure rate, K-L could be an alternative for item information algorithm in 

computerized classification testing. 

Item Exposure Control Methods  

Two popular item exposure methods, Sympson and Hetter, and Randomesque were applied 

in this study.  Across all conditions, SH and RD methods gained similar results in accuracy and 

efficiency.  (See Table 4.) The average type I, type II, total error, and test length were 0.029, 

0.034, 0.063, and 10.254 for SH and 0.030, 0.035, 0.065, and 10.014 for RD.  Compared to the 

no exposure control condition, both methods only sacrificed a little accuracy and efficiency.   

Generally, both methods offered good control over item exposure rate.  In both cases, no 

items were exposed more than 0.5.  For SH method, about 1% of the items exposed over 0.3.  

For the RD method, about 8% of the items exposed over 0.3.  So in terms of strict item exposure 

control, SH seemed better. 

In terms of item utilization rate, on the other hand, RD was better than SH.  About 67% of 

items were used with RD method but only 44% items were used with SH methods.  (See Table 

5.) 



 7 

Location of Cutting Theta (Test Difficulty) 

In this study, test difficulty influenced the test accuracy and efficiency.  Within each 

condition and across all conditions, as the cutting level increased, the total error and item 

utilization rate decreased.  The average type I, type II, total error rate, and test length were  

0.027, 0.042, 0.069, and 11.292 for the cutting theta = -0.8 and 0.029, 0.023, 0.052, and 7.629 

for the cutting theta = 0.8.  The average number of item used for theta = -0.8 was 48% more than 

that of theta = 0.8.   

These results were reasonable because the average item difficulties of the full (266 items) 

and partial size (90 items) pool were 1.043 and 0.94 respectively.  In theory, these items can 

distinguish the above average examinees better.   

Item pool size 

Item pool size was found affecting the classification accuracy and test efficiency.  Two item 

pool sizes, 266 item in the first pool and 90 items in the second.  The 90 items in the second pool 

were randomly drawn from the first item pool with similar grade proportion (27%, 37%, and 

36% from grades 4, 8, and 12 respectively.) 

Within each condition and across all conditions, the larger item pool consistently had better 

accuracy and efficiency.  (See Tables 1-4.) For the smaller pool, about 47% more items were 

needed to make the mastery decision and about 33% less classification accuracy compared with 

the larger pool.  The explanation was possibly that more good items (informative items at the 

cutting theta) could be selected and used from the larger item pool and that improved the testing 

quality. 

Width of Indifference Region in SPRT 

With the SPRT procedure, the width of indifference region can be varied.  It is kind of 

arbitrary to set up the width.  Two width adopted in this study were: |θ0 - θ1| = 0.5 or 1.0. 

The width of the indifference region was found affecting item consumption and testing 

accuracy.  The wider the region, the less items were used to make the mastery decision.  When 

the width was set at 0.5, about 84% more items were needed.  (See Table 4.)  

Generally, in this study, the error rates were smaller when the width was set at 0.5.  The 

type I, type II, and total error were 0.027, 0.030, and 0.058 with the width equal to 0.5 compared 

to 0.029, 0.035, 0.064 with the width equal to 1.0. 
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Conclusion 

Polytomous items were again found working well with SPRT procedure in CCT in this 

study.  Several variables were manipulated to investigate the impact on the accuracy, efficiency, 

item exposure and item utilization.    

With all these evaluation criteria, Fisher information was found very similar to those of 

Kullback-Leibler.  So K-L could be another option for item information algorithm in 

computerized classification testing. 

The full size pool gained better classification accuracy and significantly reduced the number 

of item used compared with the smaller pool in this study.  It is believed that more informative 

items could be utilized in the larger pool.  So it is in fact that the item quality improves the 

testing quality. 

This study explored item exposure control rates in the context of CCT with polytomous 

model.  Only two popular methods, Sympson-Hetter and Randomesque were adopted.  These 

two methods were found to produce similar results in classification accuracy and testing 

efficiency but produce different results in item exposure rate and utilization rate.  SH was better 

in strict item exposure control while RD was better in item utilization.  It is situation-dependent 

to decide which criteria, item exposure control or item utilization is more important.  The test 

users should make this decision.  There are other item exposure control methods like McBride 

and Martin method (McBride & Martin, 1983), Progression method (Revuelta, 1995), and 

Stocking & Lewis conditional multinomial method (Stocking & Lewis, 1995).  Different 

methods for exposure control with polytomous items should be investigated in the future.   

It was found that the width of the indifference region had an impact in SPRT on accuracy 

and efficiency.  In this study, when the width was double, item consumption reduced 46% with 

sacrificing about 0.6% classification accuracy.  There seems to be a trade-off between accuracy 

and efficiency by changing the width.  The test users can adjust the width to fulfil the need.  

More different widths could be set and investigated in future study.   
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Table 1.  Sympson-Hetter Exposure Control: Errors Rates, Test Length, Pass, and Fail Rates 

Cutting 
Theta 

Indifference 
Region 

Pool 
Size 

Inform 
Algorithm 

Type I 
Error 

Type II 
Error 

Total 
Error 

Test 
Length 

Pass 
Rate 

Fail 
Rate 

-0.8 0.5 266 Fisher 0.023 0.032 0.056 12.739 0.778 0.222 
0.8 0.5 266 Fisher 0.025 0.018 0.043 8.971 0.211 0.789 

-0.8 0.5 90 Fisher 0.035 0.052 0.087 18.465 0.773 0.227 
0.8 0.5 90 Fisher 0.038 0.025 0.063 13.699 0.223 0.777 
          

-0.8 0.5 266 K-L 0.022 0.033 0.054 12.804 0.780 0.220 
0.8 0.5 266 K-L 0.023 0.019 0.042 8.863 0.208 0.792 

-0.8 0.5 90 K-L 0.036 0.054 0.090 18.523 0.762 0.238 
0.8 0.5 90 K-L 0.035 0.028 0.063 13.578 0.223 0.777 
          

-0.8 1.0 266 Fisher 0.024 0.037 0.062 6.818 0.772 0.228 
0.8 1.0 266 Fisher 0.031 0.027 0.058 4.759 0.220 0.780 

-0.8 1.0 90 Fisher 0.028 0.055 0.083 10.404 0.766 0.234 
0.8 1.0 90 Fisher 0.034 0.026 0.060 6.439 0.224 0.776 
          

-0.8 1.0 266 K-L 0.023 0.039 0.063 6.693 0.774 0.226 
0.8 1.0 266 K-L 0.030 0.024 0.054 4.639 0.223 0.778 

-0.8 1.0 90 K-L 0.025 0.047 0.072 10.354 0.768 0.232 
0.8 1.0 90 K-L 0.036 0.027 0.063 6.322 0.212 0.788 

 
Note:  K-L is the Kullback-Leibler information.    
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Table 2.  Randomesque Exposure Control: Errors Rates, Test Length, Pass, and Fail Rates 

Cutting 
Theta 

Indifference 
Region 

Pool 
Size 

Inform 
Algorithm 

Type I 
Error 

Type II 
Error 

Total 
Error 

Test 
Length 

Pass 
Rate 

Fail 
Rate 

-0.8 0.5 266 Fisher 0.025 0.033 0.058 12.492 0.778 0.222 
0.8 0.5 266 Fisher 0.024 0.021 0.044 8.734 0.212 0.788 

-0.8 0.5 90 Fisher 0.034 0.048 0.082 17.787 0.777 0.223 
0.8 0.5 90 Fisher 0.037 0.027 0.064 12.769 0.210 0.790 
          

-0.8 0.5 266 K-L 0.024 0.033 0.057 12.498 0.778 0.222 
0.8 0.5 266 K-L 0.021 0.019 0.041 8.709 0.210 0.790 

-0.8 0.5 90 K-L 0.033 0.050 0.083 17.835 0.761 0.239 
0.8 0.5 90 K-L 0.031 0.026 0.058 12.873 0.214 0.786 
          

-0.8 1.0 266 Fisher 0.026 0.041 0.067 6.786 0.766 0.234 
0.8 1.0 266 Fisher 0.033 0.024 0.056 4.742 0.216 0.784 

-0.8 1.0 90 Fisher 0.031 0.055 0.086 10.298 0.767 0.233 
0.8 1.0 90 Fisher 0.038 0.028 0.066 6.365 0.227 0.773 
          

-0.8 1.0 266 K-L 0.024 0.043 0.067 6.692 0.768 0.232 
0.8 1.0 266 K-L 0.029 0.023 0.051 4.852 0.213 0.787 

-0.8 1.0 90 K-L 0.031 0.059 0.091 10.419 0.760 0.240 
0.8 1.0 90 K-L 0.039 0.029 0.068 6.378 0.221 0.779 
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Table 3.  No Exposure Control: Errors Rates, Test Length, Pass, and Fail Rates 

Cutting 
Theta 

Indifference 
Region 

Pool 
Size 

Inform 
Algorithm 

Type I 
Error 

Type II 
Error 

Total 
Error 

Test 
Length 

Pass 
Rate 

Fail 
Rate 

-0.8 0.5 266 Fisher 0.022 0.028 0.050 10.803 0.779 0.221 
0.8 0.5 266 Fisher 0.020 0.016 0.037 6.194 0.215 0.785 

-0.8 0.5 90 Fisher 0.028 0.036 0.064 13.856 0.785 0.215 
0.8 0.5 90 Fisher 0.024 0.022 0.047 8.777 0.213 0.787 
          

-0.8 0.5 266 K-L 0.023 0.028 0.051 10.576 0.776 0.224 
0.8 0.5 266 K-L 0.023 0.017 0.040 6.539 0.218 0.782 

-0.8 0.5 90 K-L 0.027 0.036 0.063 13.730 0.776 0.224 
0.8 0.5 90 K-L 0.025 0.021 0.046 8.780 0.216 0.784 
          

-0.8 1.0 266 Fisher 0.025 0.036 0.061 5.552 0.777 0.223 
0.8 1.0 266 Fisher 0.023 0.019 0.042 3.977 0.214 0.786 

-0.8 1.0 90 Fisher 0.027 0.042 0.069 7.893 0.773 0.227 
0.8 1.0 90 Fisher 0.027 0.024 0.051 4.503 0.211 0.789 
          

-0.8 1.0 266 K-L 0.024 0.039 0.063 5.702 0.772 0.228 
0.8 1.0 266 K-L 0.026 0.021 0.048 4.015 0.217 0.783 

-0.8 1.0 90 K-L 0.026 0.045 0.071 8.000 0.770 0.230 
0.8 1.0 90 K-L 0.029 0.026 0.055 4.622 0.211 0.789 
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Table 4.  Average Error Rates and Test Length of The Independent Variables 

Independent Variable Type I Error Type II Error Total Error  Test Length 

Item Information Algorithm     
Fisher 0.028 0.032 0.061 9.326 
K-L 0.028 0.033 0.061 9.333 
     

Exposure Control Method     
SH 0.029 0.034 0.063 10.254 
RD 0.030 0.035 0.065 10.014 
No Control 0.025 0.029 0.054 7.720 
     

Cutting Theta      
θc = -.8 0.027 0.042 0.069 11.292 
θc =  .8 0.029 0.023 0.052 7.629 
     

Pool Size     
266 0.025 0.028 0.053 7.715 
90 0.032 0.037 0.069 11.366 

     
Indifference Region Width     

0.5 0.027 0.030 0.058 12.108 
1.0 0.029 0.035 0.064 6.573 

 
Note:  K-L is the Kullback-Leibler information.  SH is Sympson and Hetter item exposure 
control method.  RD is Randomesque item exposure control method. 
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Table 5.  Average Item Exposure Rates of The Independent Variables 

Independent Variable r=0 0<r<.1 .1≤r<.2 .2≤r<.3 .3≤r<.4 .4≤r<.5 r≥.5 

Item Information Algorithm        
Fisher 0.558 0.183 0.089 0.120 0.033 0.005 0.013 
K-L 0.557 0.181 0.092 0.120 0.032 0.005 0.012 
        

Exposure Control Method        
SH 0.564 0.101 0.041 0.284 0.005 0.005 0.000 
RD 0.331 0.371 0.178 0.043 0.078 0.000 0.000 
No Control 0.777 0.074 0.053 0.034 0.014 0.010 0.038 
        

Cutting Theta         
θc = -.8 0.544 0.132 0.114 0.148 0.038 0.009 0.016 
θc =  .8 0.571 0.233 0.067 0.092 0.027 0.001 0.009 
        

Pool Size        
266 0.786 0.121 0.032 0.041 0.014 0.001 0.005 
90 0.328 0.243 0.150 0.199 0.051 0.009 0.020 

        
Indifference Region Width        

0.5 0.532 0.111 0.121 0.171 0.041 0.008 0.016 
1.0 0.583 0.253 0.060 0.069 0.024 0.002 0.009 
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