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Abstract 

The information based item selection methods in administering computerized adaptive tests (CATs) 

tend to choose the item that provides maximum information at an examinee’s estimated trait level.  As 

a result, these methods can yield extremely skewed item exposure distribution in which items with 

high a values may be over-exposed while those with low a values may never be selected.  Chang and 

Ying (1999) proposed the a-stratified design (ASTR) that attempts to simultaneously control the 

exposure of high a items and improve the utilization of low a items.  The method has been 

demonstrated to be effective in improving the utilization of the entire pool without sacrificing the 

efficiency in ability estimation when it is used with certain types of item pools.  Nevertheless, the 

ASTR may result in a number of items being over-exposed in some pools where the correlation 

between the a- and b-parameters is significant.  To remedy the over exposure problem in such 

situations, Chang, Qian and Ying (1999) developed the a-stratified with b-blocking method (BASTR) 

based on ASTR.  These two stratified methods have not been tested under situations where complex 

non-statistical constraints are imposed. The Weighted Deviation Model (WDM) was proposed by 

Stocking and Swanson (1993) to deal with severely constrained item selection in CAT.  An adaptation 

of the general ideas of the WDM to ASTR and BASTR was investigated in this study.  Results indicate 

that both ASTR and BASTR can satisfy most of the non-statistical constraints.  The BASTR 

outperformed the other two methods concerned in that it effectively controlled item exposures, better 

utilized the entire pool, and substantially reduced the test-overlap rate. 
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Introduction 

The advances in modern computer technology and psychometrics have triggered the change of 

format of conventional paper-and-pencil (P&P) tests to the form of computerized adaptive testing 

(CAT) which was first developed under the item response theory models (Lord, 1970).  In CAT, 

examinees are presented with tailor-made tests.  One item is selected at a time on the basis of the 

currently available estimate of the examinee’s ability (Lord, 1980; Weiss, 1982).  One of the main 

advantages of CAT over P&P is that it enables more efficient and precise trait estimation (Owen, 1975; 

Wainer, 1990; Weiss, 1982).  It is also better because it allows more flexibility in test schedule and the 

incorporation of alternate item forms (Straetmans & Eggen, 1998).  A key issue in CAT is how to 

adaptively select the best test items from the item pool.  The traditional item selection algorithms rely 

on local item information.  This means that an item is selected if it has the maximum Fisher 

information at the current ability estimate based on the responses to previously administered items.  It 

has been noted that this information criterion would cause skew item exposure (Davey & Parshall, 

1995; McBride & Martin, 1983; Stocking & Lewis, 1995; Sympson & Hetter, 1985; Thomasson, 1995; 

van der Linden, 1998).  In particular, items with large value of discrimination parameter may be overly 

exposed while some others are never used.  This would eventually damage test security and increase 

the cost in developing and maintaining item pools. 

 It is understandable, therefore, the control of item exposure and the enhancement of pool 

efficiency are important issues in computerized adaptive testing designs (Mills & Stocking, 1996; 

Stocking & Swanson, 1998; Way, 1998).  Methods that simultaneously control maximum item 

exposure rate to improve item security and uplift exposure of under-utilized items to enhance item pool 

efficiency have been proposed by Chang and Ying (1999) and Stocking and Swanson (1998), among 

others.  In contrast to the traditional approach of looking for the most informative items at every stage 

of item-selection, Chang and Ying (1999) proposed the multi-stage a-stratified design (ASTR) that 

partitions items into several strata in an ascending order of the item discrimination parameter.  Each test 

then consists of matching numbers of stages and strata, with items of the first stage being selected from 

the first stratum and so on.  One major rationale for such a design is that at early stages, the gain in 

information by using the most informative items may not be realized because the ability estimation is 

still relatively inaccurate.  Thus items with high discrimination values should be used at later stages.  
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The stratified design was shown through simulation studies to be effective in both the reduction of test-

overlap rate and the enhancement of pool utilization when used with certain type of item pools.   

 Nevertheless, the correlation of a- and b- parameters of the items in some pools may be 

significant.  In such cases, there may not be sufficient items with low bs in the last stratum.  

Consequently, the ASTR would result in quite a number of items being over-exposed.  To tackle such 

problem, Chang, Qian and Ying (1999) developed the a-stratified with b-blocking method (BASTR) 

based on ASTR.  In BASTR, item pool is first divided into many small levels based on b parameters.  

Within each level, items are sorted in ascending order of a values.  Then the items with the smallest a 

values from each level are grouped into the first stratum, and the items with the second smallest a 

values grouped into the second stratum,…, and eventually the last stratum contains those items with the 

largest a values from each level. 

 In many situations, however, CAT design has to take into consideration additional constraints 

such as content balancing, item type and statistical specifications.  Various models have been proposed 

to solve such complex and sometimes conflicting requirements in test assembly (Armstrong, Jones & 

Kunce, 1998; Luecht, 1998; Stocking & Swanson, 1993, 1998; van der Linden & Reese, 1998).  One 

strategy, as advocated by Stocking and Swanson (1993) in the Weighted Deviation Model (WDM) is to 

relax test constraints as desired properties.  It can deal with many kinds of constraints and provide 

acceptable solution to those systems that may not have an optimal solution satisfying all criteria. 

 This paper reports the findings of a simulation study on an integration of WDM with the ASTR 

and BASTR.   This means that complex test constraints were imposed in all item selection stages of the 

two stratified designs.  As a result, tests administered using the enhanced stratified design had a better 

face validity.  Three item selection methods were compared in the study: (1) WDM with maximum 

information approach (MI), (2) WDM with ASTR, and (3) WDM with BASTR.  The comparison 

criteria include reliability, average bias, mean squared error, number of over-exposed items, test-

overlap rate, chi-squared statistic, number of under-utilized items and deviations from the desired 

properties. 

 

Simulation Studies 

 A series of simulation studies were conducted to investigate the performance of ASTR and 

BASTR when complex constraints were imposed.  We started the investigation with 19 non-statistical 
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constraints come from two common intrinsic item features: content area and cognitive level.   The 

sample consisted of 5,000 examinees with abilities (referred as true ability θ hereafter) randomly 

generated from N(0,1).  Each examinee received three simulated tests administered respectively by the 

three item selection methods incorporated with WDM: MI, ASTR, and BASTR. 

 In each test, information obtained by three artificial items in addition to the prescribed length was 

used to mimic prior information about the examinee.  All the three items had the same values for a ( = 

1) and c ( =  .2).  The value for b1 of the first item was randomly selected from N(0, 1).  If the first item 

was answered correctly, the second item was more difficult and the value for b2 was set at b1 + 2, 

otherwise b2 = b1 - 2.  The procedure was repeated for the third item.  The use of maximum likelihood 

estimation, as in all the three methods, was possible with the administration of these three artificial 

items. 

 

Item pool 

The item pool contained 700 upper primary mathematics items from four content areas crossed 

with three cognitive levels.  Table 1 shows the distribution of the items.  The mean estimated 

discrimination (a) value for the items was 1.02, with SD = .33, and a range of .29 to 2.63.  The mean 

estimated difficulty (b) was .16, with SD = 1.06, and a range of –3.44 to 3.40; thus there was a close 

match between the b distribution and ability distribution.  The mean estimated pseudo-guessing 

parameter (c) was .17, with SD = .008, and a range of .03 to .50.  The correlation of a- and b-

parameters was .45.   

 

Table 1:  Item Distribution across Content Areas and Cognitive Levels 

 Cog1 Cog2 Cog3 
Cnt1 52 142 40 
Cnt2 33 104 29 
Cnt3 27 93 30 
Cnt4 28 81 41 
 

Test constraints 

The test length was fixed at 32 items.  Based on the pool characteristic and subject concern, the 

following desired ranges and relative weights were imposed for the various combinations of content 

area and cognitive level as shown in Table 2. 
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Table 2:  Ranges and Weights for 19 Non-statistical Constraints 

 Lower Bound Upper Bound Weight 
Cnt1 7 13 10 
Cnt2 4 11 10 
Cnt3 3 10 10 
Cnt4 3 10 10 
Cog1 3 10 10 
Cog2 16 23 10 
Cog3 3 10 10 

Cnt1, Cog1 1 5 7 
Cnt1, Cog2 3 10 7 
Cnt1, Cog3 1 4 7 
Cnt2, Cog1 0 3 7 
Cnt2, Cog2 2 8 7 
Cnt2, Cog3 0 3 7 
Cnt3, Cog1 0 3 7 
Cnt3, Cog2 1 6 7 
Cnt3, Cog3 0 3 7 
Cnt4, Cog1 0 3 7 
Cnt4, Cog2 1 6 7 
Cnt4, Cog3 1 5 7 

 

Item selection methods 

The performance of the following three item selection methods were compared when WDM was 

incorporated to deal with complex constraints.  In the WDM, test constraints were treated as desired 

properties.  Thus, when there was no feasible solution to the system of the constraints, the objective 

function could find an item yielding the minimal deviation from the constraints.  The model here was: 

   Minimize 
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where  equaled to 1 if item i had property j and 0 otherwise;  was the weight assigned to 

constraint j;  was the weight assigned to the information constraint;  and U  were the lower 

bound and upper bound of constraint j;  and d represented deficit from the lower bound and 

surplus from upper bound respectively;  and represented excess from lower bound and deficit 

from upper bound respectively;  equaled to 1 if ith item was included in the test, or 0 otherwise. 

ija jw

θw jL j

jLd

jLe

jU

jUe

ix

The heuristic for item selection using WDM was also adopted:   

(i) For every item not already in the test, compute the deviation for each of the constraints if the item 

were added to the test; 

(ii) Sum the weighted deviations across all constraints; 

(iii) Select the item with the smallest weighted sum of deviations (p. 281). 

 

Method 1 (MI):   

1.   The content area and cognitive level of each item were indexed.  

2.   The optimal function of Equation 1 was used. 

3.   Test constraints and maximum information were treated as desired properties as stated in 

Equations 2 to 4.   

4.   The bounds and weights for the 19 non-statistical constraints were set as stated in Table 2.  The 

lower bound for information was set at 100.0 which was practically unreachable in the study.  

The weight for information was assigned the value of 15.0 that was used by Stocking and 

Swanson (1993) and was found here to have yielded very small mean squared error.    

5.   Items were selected by following the three steps of the heuristic mentioned above. 

 

Method 2 (ASTR):     

1. The content area and cognitive level of each item were indexed.  

2. Test constraints were mathematically formulated as Equations 2 and 3.   

3. The item pool was partitioned into 4 strata according to the ascending order of the a-parameter 

values of the items.  Each test was divided into 4 stages.  In the first stage, items were 
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administered from the first stratum.  In the second stage, the next group of items were 

administered from the second stratum,…, and the last group of items from the 4-th stratum. 

4. At individual item selection level in each stage, five unadministered items with difficulty 

parameter closest to the currently estimated theta were chosen.  For each of them, the absolute 

difference between the b value and the current ability estimate was computed.  The weight for 

such absolute difference was set at 20.0.  Then the total weighted deviations were summed up as 

if the item had been added to the test.  The item with the smallest weighted sum of deviations 

was administered. 

 

Method 3 (BASTR):     

In this method, the procedures for item administration were similar to those in Method 2 (ASTR), 

but the item pool was partitioned into 4 strata as follows.  First the pool was divided into 175 different 

levels based on the b-parameters so that the four items in each level had similar b values.  Within each 

level, the items were sorted according to the ascending order of a-parameters.  Items with the lowest a 

values from each level were assigned to the first stratum whilst items with highest a values were 

assigned to the last stratum.  As a result, each stratum then had similar distribution of the b-parameters 

but the average value of the a-parameters increased across the strata. 

 

Measure of performance 

Reliability:  Irrespective of the item selection design, CAT should always provide reasonable reliability.  

Otherwise, test results cannot be used for inference or decision.  Therefore, reliability was an 

evaluation criterion for the performance of the three selection methods.  In this study, 5,000 true 

abilities were generated and their respective estimates were obtained according to the selection 

methods employed.  Thus reliability here was interpreted as the correlation ratio of the estimated scores 

on the true scores (Lord, 1980, p. 52).  The higher the reliability, the better the item selection method 

would be. 

 

Bias:  Accuracy is another important criterion, which in this study was measured by the bias and mean 

squared error.  Let θ , i = 1,…, 5000 be the true abilities of the 5000 examinees and θ  be the i î
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respective estimators from the CAT.  Then the bias was computed as 

 

Bias = ∑
=

−
5000

1
)ˆ(

5000
1

i
ii θθ          (7) 

 

The smaller the bias, the better the item selection method would be. 

 

Mean squared error:  Using the same notations of true ability and the estimator, mean 

squared error was computed as 

MSE = ∑
=

−
5000

1

2)ˆ(
5000

1
i

ii θθ          (8) 

The smaller the MSE, the better the item selection method would be. 

 

Number of over-exposed items:  The exposure rate of an item is defined as the ratio of the number of 

times the item is administered to examinees over the total number of examinees taking the test.  If an 

item has a high exposure rate, then it has a greater risk of being known to prospective examinees, 

which in turn would cause test security and validity problems.  Since one of the main concerns of this 

paper was to compare the three item selection methods in item exposure control, the number of overly 

exposed items was certainly one of the key evaluation criteria.  Here an item was considered as overly 

exposed if its exposure rate was greater than .2, a commonly used cut-off value.  The smaller the 

number of over-exposed items, the better the item selection method would be. 

 

Number of under-utilized items:  Items with very low exposure rate are rarely used.  If there are too 

many items with low exposure rates, then the item pool is not well utilized, which challenges directly 

the cost effectiveness of the item pool and the appropriateness of the item selection method.   

Wightman (1998) explicitly argued that efficient usage of the available items in the pool would be an 

important evaluation criterion of CAT assemblies.  In this study, an item was considered as under-

utilized if its exposure rate was below .02.  The smaller the number of under-utilized items, the better 

the item selection method would be. 

 

Scaled chi-squared statistic:  Chang and Ying (1999) proposed that a uniform exposure rate 
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distribution should be the most desirable in order to have a maximum item pool utilization.  If the pool 

size is N and test length is L, then the optimum uniform exposure rate is L/N.  They introduced a scaled 

chi-square to measure the overall item pool usage efficiency: 

 

∑
=

−
=

N

j

j

NL
NLer

1

2
2

/
)/(

χ           (9)  

where  represents the observed exposure rate for the jth item. jer

Equation 9 reflects the discrepancy between the observed and the ideal exposure rates.  The 

smaller the , the better the pool utilization and hence the item selection method would be. 2χ

 

Test-overlap rate:  The test-overlap rate is another important summary index in measuring item 

exposure control (Mills & Stocking, 1996; Way, 1998).  Test-overlap rate is indicated by the proportion 

of items shared by pairs of examinees, averaged across all possible pairwise combinations.  Way (1998) 

argued that such an index, not being calculated on an individual item basis, provides a global picture of 

how often sets of items are administered.  The higher the test-overlap rate, the bigger the damage to the 

test validity due to information sharing among examinees who take the test at different times.  He also 

stressed that this index is critical in determining the size and composition of item pools that are needed 

for a particular CAT.  If the test length is L and there are P examinees, the test-overlap rate here was 

computed by:  (i) first counting the number of common items for each of the P(P-1)/2 pairs of 

examinees, (ii) adding up all the counts in the P(P-1)/2 pairs, and (iii) dividing the total count by LP(P-

1)/2.   The smaller the overlap rate, the better the item selection method would be.  Chang and Zhang 

(1999) and Chen, Ankenmann and Spray (1999) separately found that the lower bound for the expected 

test-overlap rate is L/N, the ratio of the test length to the pool size.  This lower bound serves as a 

baseline for comparison among item selection methods in controlling test overlap. 

 

Deviations from desired ranges:  As the desired ranges were recommended by the experts of the 

relevant fields, it was anticipated that the CATs by all selection methods should have fallen within these 

ranges as far as possible.  The less the deviations from the desired ranges of the non-statistical 

constraints, the higher the face validity and thus the better the item selection method would be.  

9 



Complex Constraints in Stratified CAT    

 

Results 

 The results of the study are summarized in Table 3.  The three item selection methods were 

virtually unbiased as they all yielded biases close to zero.  They had high and comparable reliabilities 

from .93 to .96.  In terms of measurement efficiency, the MI was the best as it provided the smallest 

MSE of .42, and BASTR was relatively less efficient whilst ASTR was in between these two methods.  

However, the efficiency of MI in trait estimation was at the expense of item and test security.  It over-

exposed 63 items and yielded unacceptably high exposure rates up to .63.  Besides, its test overlap-rate 

of .265 was much higher than the safe standard of .15 prescribed by Way (1998), meaning that in 

average about 8 to 9 items in a 32-item test were identical among any two randomly selected 

examinees.  On the contrary, the BASTR offered the best control on item and test security.  It over-

exposed no item and it yielded the maximum item exposure rate of .16 that was below the cut-off value 

of .2 and far below the .63 in MI.  In addition, the BASTR provided the smallest test-overlap rate of 

.057, meaning that in average about 1 to 2 items were identical in any two 32-item tests.  The 

performance of the ASTR was in between that of the MI and BASTR.  It over-exposed 15 items with a 

maximum exposure rate of .33 and yielded a small test-overlap rate of .081.   

 In terms of pool utilization, the BASTR was the best as it yielded the smallest Scaled  of 9.9.  

The F ratios of FBASTR,MI and FASTR,MI  were 9.9/155.2 (i.e. .06) and 31.6/155.2 ( .20), meaning that there 

was 94% reduction of skewness of exposure distribution in BASTR relative to MI and 80% reduction 

in ASTR relative to MI respectively.  The BASTR provided the smallest number of under-utilized item 

of 98 that was far below than the figures of 513 and 201 offered by MI and ASTR respectively.  In fact, 

it utilized every single item in the pool as reflected by the smallest exposure rate of .0004.   

2χ

 The MI offered a better face validity as it had the smallest number (192) out of 5,000 CATs with 

only a single deviation beyond the 38 bounds associated with the 19 non-statistical constraints.   There 

were quite a number of CATs from BASTR and ASTR with one to three deviations beyond the bounds.  

Although the maximum total deviation of 3 may be acceptable by the general public, the ASTR and 

BASTR need to be improved in order to provide a better face validity.    

 

Table 3:  Summary Statistics for Three CAT Methods 

 MI ASTR BASTR 
Bias .001 .014 -.004 
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MSE .042 .067 .076 
Reliability .96 .94 .93 
Scaled  2χ 155.2 31.6 9.9 

N(exp<.02) 513 201 98 
N(exp>.2) 63 15 0 
Min exp .0000 .0000 .0004 
Max exp .63 .33 .16 
Overlap Rate .265 .081 .057 

Deviations from Non-
statistical Constraints 

   

N(1 dev) 192 765 1123 
N(2 dev) 0 352 323 
N(3 dev) 0 196 91 
N(4 or above) 0 0 0 
 

 Figure 1 shows the item exposure distributions for the three selection methods.  The curve for MI 

is flat over halfway through and then rises rapidly.  It is very clear that more than 60% of the pool in 

MI was never touched while about 10% was over-exposed, showing that this method repetitively 

selected those more informative items in order to maintain its efficiency in trait measurement.   Both 

the item security and the cost effectiveness of development and maintenance of such a pool in MI are in 

doubt.  In contrast, the curve for BASTR rises steadily all the way through with a minimum of .0004 

and a maximum of .016 (refer to Table 3), showing that the entire pool was well utilized and the item 

exposures were under control.  The curve for ASTR is close to but below that of BASTR for most of 

the way and then rises a bit rapidly near the end, showing that ASTR well utilized most items but some 

measure on exposure control was needed. 

 

 

Figure 1:  Item Exposure Distributions for Three CAT Methods 
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Item Exposure Distributions
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Note: the Cumulative Percentage was computed as the proportion of the number of items 
concerned divided by the pool size. 
 

Discussion 

The ASTR was developed in an attempt to remedy the problems associated with the information-

based item selection methods: extremely skewed item exposure distribution and high test-overlap rate.  

Based on this method, BASTR has been proposed in order to tackle the situations in which the 

correlation between a- and b- parameters is significant.  The main objective of this study was to 

investigate whether these two stratified methods could be applied to testing programs where complex 

constraints are imposed.  An integration of WDM with these two methods was proposed.  

Results indicate that both ASTR and BASTR, when integrated with WDM, can meet most of the 

test constraints.  These two methods were relatively less efficient in trait estimation than MI, but they 

offered better item and test security measure as well as better utilization of the item pool.  The general 

problems of (i) over exposure, (ii) high test-overlap rate, and (iii) extremely skewed exposure 

distribution, associated with information-based selection methods were found in MI as it repetitively 

used some more informative items.  As the ASTR and BASTR used different strategy in item selection, 

the last two problems did not exist with these methods.  Besides, the problem of over exposure was 

much smaller in ASTR and was not seen in BASTR in which each stratum had a wide range of b-

parameters.   Though the face validity of CATs by ASTR and BASTR was much improved by 

integrating with WDM, some more thoughts on pool partition and item selection are needed for better 
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results.   

There are limitations on the generalization of the findings from the present study.  Firstly, the 38 

bounds associated with the 19 non-statistical constraints in this study were based on two common 

intrinsic item features: content area and cognitive level.  Sometimes, test programs have to deal with 

very complicated requirements when other constraints such as item overlaps and item sets are added.  

Further research includes the investigation of the performance of ASTR and BASTR in such 

complicated situations.  Secondly, the correlation between the a- and b- parameters of the items was 

quite high.  The performances of these three item selection methods may vary with the value of 

correlation as well as other factors such as test length, pool size and item distributions across intrinsic 

item features.  In fact, the results have shown that each item selection method studied has its own 

merits and shortcomings.  None of them is superior in all aspects.  Thus, the choice on item selection 

method really depends on the pool characteristics and the needs of individual testing programs. 
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