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Increasing the Homogeneity of CAT’s Item-Exposure Rates by Minimizing or 

Maximizing Varied Target Functions While Assembling Shadow Tests 
 
Abstract:  A computerized adaptive testing (CAT) algorithm that has the 

potential to increase the homogeneity of CAT’s item-exposure rates without 
significantly sacrificing the precision of ability estimates was proposed and 
assessed in the shadow-test  (van der Linden & Reese, 1998) CAT context of .  
This CAT algorithm was formed by a combination of maximizing or minimizing 
varied target functions while assembling shadow tests. There were four target 
functions to be separately used in the first, second, third and fourth quarter test of 
CAT. The elements to be used in the four functions were associated with: (a) a 
random number assigned to each item,  (b) the absolute difference between an 
examinee’s current ability estimate and an item difficulty,  (c) the absolute 
difference between an examinee’s current ability estimate and  an optimum item 
difficulty, and (d) item information.    

 The results indicated that this combined CAT fully utilized all the items 
in the pool, reduced the maximum exposure rates, and achieved more 
homogeneous exposure rates. Moreover, its precision in recovering ability 
estimates was similar to that of the maximum item information method. The 
combined CAT method resulted in the best overall results compared with the 
other individual CAT item-selection methods. The findings from the combined 
CAT are encouraging. Future uses are discussed.      

 
Key Words: Computerized Adaptive Testing (CAT), Item Response Theory (IRT),  

Dimensionality, Zero-One Liner Programming, Constraints, Item 
Exposure 
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I. Introduction 
A. Problems Associated with MIF Item-Selection Method 

With the combination of advances in the computing power of personal computers and 
item response theory (IRT, Lord, 1980), computerized adaptive testing (CAT) has substantially 
increased the breadth of its applications in all areas. CAT involves the selection of test items 
during the process of administering a test so that each individual takes his/her appropriate 
difficulty-level items. In the past three decades, researchers have sought promising methods in 
ability estimation and in item selection for this technology-based assessment. For example, 
Warm (1989) proposed the weighted likelihood estimation (WLE) in estimating ability 
parameters. The WLE  weights maximum likelihood estimation (MLE) in order to correct MLE 
biased trait (θ) estimates, especially when they are estimated from small numbers of items. 
Additionally, Chang and Ying (1996) recommended using the global Kullback-Leibler (KL) 
information instead of the most commonly used maximum Fisher information for the earlier-
stage of CAT item selection.  

Currently, there is growing interest focused on whether or not the maximum item-
information function (MIF) method is appropriately employed from the beginning through to the 
end of CAT (e.g., Chang, Qian & Ying, 2001; Hau & Chang, 2001; Li & Schafer, 2003; 
Veerkamp & Berger, 1999). From a statistical perspective, CAT is based on seeking items with 
the maximum  information for an examinee, which can rapidly improve this examinee’s ability 
estimate. According to item response theory (IRT), an item with a high discrimination value will 
have a high information value while other parameters (e.g., difficulty) are held constant. In 
addition, an item’s information value is dependent on the value of an examinee’s ability 
parameter and consequently an item’s information value for the same test-taker will vary because 
the test-taker’s ability estimate is continually changing  from early-stages to the end of CAT. 

The value of any ability estimate in the early-stage CAT is, however, poorly estimated 
and is not as accurate as that estimated at the final stage. It thus seems reasonable that an early-
stage item’s information value is not as meaningful as those in later stages and should therefore 
have relatively less effect in the process of seeking the “true” ability estimate. Veerkamp and 
Berger (1999) further demonstrated that an item with the highest discrimination value is not 
necessarily the most informative item, especially when an examinee’s ability parameter is distant 
from this item’s difficulty parameter. 

 Empirical studies have shown that for the early-stage CAT (e.g., numbers of items less 
than 10), otherwise promising CAT algorithms still encounter problems resulting in imprecise 
ability estimates. For instance, Cheng and Liou (2000) evaluated a group of CAT algorithms that 
resulted from combining MLE and WLE ability estimations with the three item-selection criteria, 
including Fisher information, KL information and the optimal difficulty (Lord, 1980, to be 
discussed later). This study showed that ability estimates gradually converged to their true values 
only after 10 to 20 items were administered. Another comprehensive study (Chen, Ankenmann 
& Chang, 2000) studied which among a set of sophisticated item-selection methods introduced in 
that study was the best in facilitating EAP (expected a posteriori) ability estimates at the early-
stage of CAT. That study also showed that stable ability estimates were not obtained for the less-
than-10-item CAT no matter which selection methods were employed. If both studies also 
included the random-selection method (randomly selecting items from a pool) in their studies 
and compared this method with all methods used in both studies, we might speculate that this 
random-selection method would result in comparable results with those from the maximum-
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information-based methods for a short test (e.g., 10) because those methods may not work well 
enough until the ability parameter is well estimated.  

On the other hand, using a maximum-information selection criterion in the early stages of 
CAT usually leads CAT to overuse of items with high discrimination parameters and thus 
threatens test security. Further, it makes item exposure uneven in general. Other methods (Meijer 
and Nering, 1999, provide a literature review) that belong to the family of MIF method (e.g., 
weighted item information, Berger & Veerkamp, 1997; KL information method, Chang & Ying, 
1996) take into account of the uncertainty of  CAT’s ability estimates, but they, like MIF,  tend 
to  select highly discriminating items.  

Various remedies to these problems have been proposed (Revuelta & Ponsoda, 1998). 
The most popular method is the Sympson-Hetter procedure (1985). But because a typical 
Sympson-Hetter procedure involves maximum-information, either in the iterative process of 
obtaining the so-called item-exposure control parameter or in the operational stage of CAT, this 
item-exposure control approach ends up using the more discriminating items first as 
demonstrated by Hau and Chang (2001). Furthermore, although  this procedure was able to 
successfully control each item’s exposure rate to be less than a maximum desirable rate (e.g., 30 
percent), CAT under this procedure still resulted in several of the original maximum-information 
problems (e.g.,  items in the pools unevenly used; a large proportion of items unused, Revuelta & 
Ponsoda, 1998). Apparently, the incorporation of  Sympson-Hetter with the MIF CAT algorithm 
will only resolve part of MIF’s problems.  

 
B. Alternative Item-Selection Methods 

Instead of using the maximum-information-based methods, the method of matching 
optimal difficulty (MOD) with test-taker’s current ability estimate is another alternative. An 
item’s optimal difficulty (OD) value is defined (refer to Equation 3) as the item’s maximum 
information given the set of item parameter estimates (Lord, 1980,  p.152). The MOD has been 
adopted in several CAT studies (e.g., Cheng & Liou, 2000; Li & Schafer, 2003; Warm, 1989; 
Weiss & McBride, 1984) and its capability to  recover ability estimates comparable with those of 
MIF has been demonstrated (Cheng & Liou, 2000; Li & Schafer, 2003). Its performance on the 
criterion of item exposure rate is of primary interest in this study.  

Another method,  similar to MOD, is to match item difficulty (MID) with test-taker’s 
current ability estimate. Dodd (1990) showed that MID increases the use of items in the pool, but 
Revuelta and Ponsoda (1998) found that  it reduces the accuracy of ability estimates.  

Chang and Ying (1999) as well as Chang, Qian and Ying (2001) proposed a different 
approach, called alpha-stratified adaptive testing. A rationale behind this item-selection method 
is that because the trait estimate is poorly estimated at the early-stage of CAT, using low-
discriminating items in the early stages does not have a negative impact on the trait estimate, but 
increases the exposure rate of these low-discriminating items. Further, those high-discriminating 
items will be efficiently used at the later-stage CAT.  

Up this point, we have introduced several alterative item-selection methods which are 
purely grounded  on statistical criteria, not considering other criteria such as content-balancing 
and other constraints (e.g., dependencies among items in a pool)  into their algorithms. However, 
if those issues are simultaneously considered as is usually required in CAT, the stratification of 
both item discrimination and difficulty parameters, as illustrated in the alpha-stratified adaptive 
testing, together with these additional requirements might become very awkward. This problem 
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has been addressed by combining the alpha-stratified procedure with the shadow test approach 
(van der Linden & Chang, 2003).   

 
C. Item-Selection Methods  for Constrained CAT 

Van der Linden (2000) reviewed several existing methods that incorporate additional 
constraints (e.g., test specifications) in CAT. The utilization of a shadow test approach (van der 
Linden and Reese, 1998) to CAT represented one of the more sophisticated item-selection 
methods that can accommodate various constraints (e.g., content specifications) without the risk 
of some of constraints that might be violated. Its capability to incorporate other item selection 
methods (e.g., alternative methods introduced above) as well other item-exposure control 
methods (e.g., the Sympson-Hetter procedure) into its algorithm is also desirable.  

A more detailed description on the shadow-test approach is presented in the latter section 
of  this paper. In short, there are two key components for the shadow-test approach. One is that 
users set up reasonable constraints and/or item-control methods for the proposed shadow test. 
The other component is to choose a target function to be maximized (or minimized) throughout 
the entire CAT testing. If the Fisher information is the function to be maximized, this component 
could be modified based on the following logic. While the shadow test is assembling at the 
beginning of the CAT, we are maximizing Fisher information that is not really as meaningful as 
we anticipate. This fact reminds us not to do so at the earlier-stage CAT, but to maximize (or 
minimize) other functions to prevent the problems recurred in the maximum-information 
methods (e.g. overuse of highly discriminating items). In doing so, the goal of  increasing the 
homogeneity of CAT’s item-exposure rates might be achieved. This study intended to address 
this issue of what other functions may be legitimate (or appropriate) to be maximized (or 
minimized) in the shadow-test CAT approach.     
 
D. Research Purpose 

The findings from past CAT studies suggest that pursuing the best combination of ability 
estimation and item-selection methods might slightly improve the precision of ability estimates, 
but is not the only solution for CAT. After all, other factors such as the content balance as well 
as the increase in homogeneity of CAT’s item-exposure rates are also essential considerations in 
the CAT algorithms. This study was designed to find CAT algorithms that address these 
concerns. The proposed CAT algorithms are intended to limit the drawbacks introduced by 
existing maximum-information item selection methods but to retain the benefits from the use of 
maximum-information methods in CAT. 

Implementing maximum information in item selection is supposed to work well once the 
trait estimate approaches its true value. It seems reasonable that this item-selection method 
should be efficiently employed at the final-stage shadow-test-constraint CAT. But seeking other 
legitimate functions to be maximized (or minimized) at the early stages of shadow-test CAT also 
seems reasonable.  

In this study, a combination of different CAT algorithms being implemented at different 
stages of  CAT was proposed under the umbrella of shadow-test CAT. There were four target 
functions to be separately used in the first, second, third and fourth quarter test of CAT. The 
elements to be used in the four functions were associated with: (a) a random number assigned to 
each item,  (b) the absolute difference between an examinee’s current ability estimate and an 
item difficulty,  (c) the absolute difference between an examinee’s current ability estimate and  
an optimum item difficulty, and (d) item information. A more detailed description on how to 
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incorporate these four functions in the context of shadow tests is provided later and the rationale 
behind the combination of these four functions is discussed in the conclusion. Of course, we 
might use the standard error of the ability estimate as a criterion to decide when it is suitable to 
start using one of  these four functions, instead of using each quarter test as the transition point. 
However, this type of design, like a flexible-length CAT testing, is particularly difficult to 
implement in current fixed-test-length CATs.  

It is therefore likely that the varied-targeted-function rather than the single-targeted-
function shadow-test CAT will expand the use of all characteristics of items in the pool, 
guarantee meeting all constraints, and maintain the accuracy of the final-stage trait estimate. This 
COMBINED CAT algorithm was implemented in order to explore its use and to compare its 
performance with those using individual methods alone (e.g., MIF, MOD, MID, RANDOM).  

  
 

II. Overview of  CAT Techniques   
A. 3PL Model 
 The commonly-used three-parameter (3PL) logistic IRT model was used to model the 
dichotomous scored items in this study. Under the 3PL model, the probability, Pji, of  the correct 
response on an item i for an examinee with ability θj is given by the following function (Lord, 
1980). 
 

                
)ib(iDaexp(1

)ib(iDaexp(
)ic1(ic=P

j

j

ji −θ+

−θ
−+                                                                           (1)                           

where  
the symbol of "exp” stands for the mathematical function of the natural logarithm exponential,  
ai is the item discrimination,  
bi is the item difficulty,   
ci is the lower asymptote parameter (also known as the guessing parameter), and  
D is a scaling factor (usually equal to 1.702). 
 The scaling factor D is included in the model to make the logistic function as close as 
possible to the normal ogive function (Baker, 1992). 
 
B. Computations of FI and OD Values 
 
1.Fisher Information (FI) 
 A Fisher information is computed at  the current ability estimate, that is: 
 

( ) ( )[ ]
( ) ( )θθ

θ
=θ

ii

2'
i

i QP
P

I                                                                                                                          (2) 

 
where, Pi’(θ) is the first partial derivative of Pi(θ) with respect to θ. 
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2. Optimal Difficulty (OD) 
 For the 3PL, an item’s maximum information is located, based on the item-pool item’s 
difficulty scale, at (Lord, 1980,  p.152): 
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 For the case of 3PL data modeling, both FI and OD values are derived from the 3PL 
item’s parameters, a, b, and c. A difference between them is that an FI value depends on a 
location on the ability (θ) scale; in contrast, the OD  does not. An FI value may be misleading, as 
discussed previously,  if it is computed from an ability estimate that is far away from its true 
value.      
 
C. CAT Ability Estimates  
1. Maximum Likelihood Estimator (MLE) 

Assuming that the local independence assumption holds, then given an examinee with an 
ability, θ, who responds to a set of n items with the response pattern u, the probability (or 
likelihood) of obtaining this response pattern u can be modeled by: 

    Si,  )(Q)(P=)|uL(L ni
u-1

i
u

n

1=i

ii ∈θθθ= ∏                                                                                      (4)                           

where Qi(θ) = 1 – Pi(θ) and Sn  connote the n items that have been administered (or selected ) to 
the examinee during the CAT testing process. The log of this likelihood function is given by:  
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Several methods of  CAT ability estimation exist. For the maximum likelihood estimate 

of θ, MLE (θ),  the log likelihood function (Equation 5) should be partially differentiated with 
respect to θ, then set to equal zero and finally used to solve this equation 6 for θ using the 
Newton-Raphson method or some other suitable numerical strategy.  This equation is given 
below (Lord, 1980) : 
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where ∂ denotes partial differentiation. A problem for the MLE is that it is unable to 
estimate examinees’ abilities when they get items all right or all wrong. This has become an 
issue especially at the early stage of CAT. Thus, this estimator was not considered in this 
research.  
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2. Bayesian Modal or Mean Estimator  

The parameter θ needs to be estimated. If the prior information f(θ) for the distribution 
(or  probability density) of θ together with the observed response pattern u,  are available,  we 
are then able to approximate the  posterior distribution of θ according to Bayes’ rule. The 
posterior density of  θ is: 
 

)u(f

)(f)u(L
)u|(f

−

−
θθ

=−θ                                                                                                                      (7) 

 
Where f(u)  is the marginal probability of u given by Bock and Lieberman (1970) and  
Bock and Aiken (1981): 
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∞
∞                                                                                                      (8) 

 
The function f(u)  is irrelevant while finding the solution of the θ parameter. Hence, the posterior 
function can simply be proportional to a prior function times a likelihood function. That is: 
 

)(f)u(L)u|(f θθ∝−θ
−

                                                                                                                     (9) 

 
The relative influence of observed data (the input for the likelihood function) and prior 
information on the posterior function (related to the updated belief) depends on test-lengths, 
item-pool characteristics, and the magnitude of prior dispersion. As the prior becomes vague or 
diffuse, the posterior function is closely approximated by the likelihood function and 
consequently the Bayesian approach will result in the same solution as the likelihood approach. 
In contrast, if  the prior is very informative or specific, then it would have a relatively greater 
influence on  the posterior function.  

 For the maximum a posteriori (MAP) estimator , the estimate is the value that maximizes 

the posterior density function of )u(f
−

θ . The 
∧
θ  can be derived by partially differentiating the 

log-posterior density function with respect to θ , setting this equation equal to zero (Equation 
10), and solving this non-linear equation:  

    

0)u(fln =−θθ∂
∂                                                                                                                            (10) 

 
 MAP is the mode of the posterior distribution. Another method to solve equation 10 is to 
find the mean of the posterior distribution of θ. This method is called the expected a posteriori 
(EAP) estimator. The mathematical expression for  this estimator can be found in Bock and 
Aitkin (1981) and its features in CAT has been well documented by  DeAyala, Schafer, and 
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Sava-Bolesta (1995). Compared with MAP estimation (Wang, Hanson & Lau, 1999),  EAP had 
slightly lower standard errors, but was slightly more biased.  
 
C.  The Shadow-Test CAT  
1. Zero-One Liner Programming 

If  factors such as content balance and item-exposure control are needed to be taken into 
account during the process of selecting items for examinees,  the technique of  zero-one linear 
programming (Theunissen, 1985, 1986; van der Linden & Boekkooi-Timminga, 1989) is a 
suitable method that can be easily and effectively adapted into the CAT process.  A description 
of zero-one linear programming is presented  below, before the shadow test CAT, that utilizes 
the zero-one linear programming (van der Linden & Reese, 1998), is illustrated.      

  Linear programming is designed to seek the maximum value for a linear function such 
as Equation 11 while the required constraints formalized in Equation 12 are imposed.   
 

Maximize ∑
=

∧

−
θ

L

1i
ii ,x)(nInformatio                                                                                                (11)                         

subject to   
A ⋅ x  �    b                                                                                                                                   (12) 
where �    could  be <, =, or > ,                                                                                                            
and for  i to L,  

{ }0,1x i ∈                                                                                                                                      (13) 
 
The usual target function to be maximized in Equation 11 is the item information. The 

target function can be replaced with others as illustrated later. 
In Equation 11, the items in the bank are indexed by i=1,…,L and the values in the  

variable xi are parameters that will be estimated. For zero-one linear programming, the x values 
are constrained to be either one or zero as indicated in Equation 13 to identify whether an item is 
a qualified candidate item. The value of one or zero in the decision variables, x, indicates 
whether the items are selected or not for the test.   

A vector will be created as shown below before seeking the solution---the binary decision 
values for the x-vector. The matrix of A together with vector of  b are used to specify what 
constraints are specified.  In the present example we have an item pool with 10 items; the first 
five items belong to the first domain and the rest of the items belong to the second domain. In 
addition, there are two constraints to be imposed, namely 2 and 3 items from these two domains, 
respectively, which are expected to be administered to each examinee. Under this testing 
scenario, the A matrix  and b vector will be created as shown below before seeking the solution 
of  the vector parameter  x. 

 
A=[ 1 1 1 1 1  0  0  0 0 0 
       0 0 0 0 0  1  1 1 1 1 ] 
 

 b = 







3
2

 

The number of  columns in the A matrix should equal the number of items in the pool. In 
addition, each row in the A matrix together with the corresponding row in the b vector expresses 
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a single constraint. The first constraint as described above is expressed in the first row in the A 
matrix together with  the first row in the b vector. The series of  five 1’s indicate that the first 
five of  the 10 items are from Domain 1 and the last series of  five 0’s indicate that the last  five 
of  the 10 items are not from Domain 1. Finally, the condition of  2 items in Domain 1 to be 
picked is specified as “2”  in the first row in the b vector.   
 
2. CAT with Shadow Tests        
 The shadow-test CAT  was proposed by van der Linden and Reese (1998) using zero-one 
linear programming to impose constraints. Various types of constraints that can be employed in 
CAT are enumerated in van der Linden and Reese (1998) and van der Linden (2000). The 
algorithms (refer to van der Linden & Reese, 1998;  van der Linden, 2000) for this constraint 
under  CAT are: 
(1). Set an initial ability estimate, for example, a value generated from the uniform distribution  

with range [0,1].   
(2). Assemble an on-line shadow test that: (a) has met all the constraints as specified by  

Equation 12,  (b) maximizes information value on the Equation 11 at the provisional 
ability estimate, and (c) includes the previously administered item(s). 

(3). Administer the item with maximum information among items from the on-line shadow test  
that have not yet been administered. 

(4). Re-estimate abilities based on the examinee’s response(s) to the items that have been    
administered. 

(5). Release all unused items that have been previously included in the shadow test  to the item  
pool. 

(6). Add an additional constraint to the constraints that have been imposed in the zero-one linear  
model to ensure that the item being recently selected and administered to the examinee  
“must” be included in the next updated on-line shadow test. For matrix expression in the 
above example, if Item 2 is selected first,  the A matrix  and the b vector should be 
updated in the following way: 
A=[ 1 1 1 1 1  0  0  0 0 0 
       0 0 0 0 0  1  1 1 1 1  
        0 1 0 0 0 0 0 0 0 0 ] 

 b =
















1
3
2

 

The last  row in the A matrix  combined with the last row in the b vector indicates that Item 2 is 
part of the updated shadow test. 
(7). Repeat the procedures 2-6 until the fixed n items (or other criteria) have been administered  

(or met). 
   

In short, this shadow-test  CAT begins with assembling an on-line “full-shadow” test that 
meets all the desirable constraints and has maximum information (or other statistical criteria)  at 
a provisional ability estimate. An item with maximum information (or other statistical criteria) is 
then selected from this shadow test, instead of  directly from the full item pool. Each of  the next 
serial shadow tests includes all previously administered items and consequently the last shadow 
test is an actual CAT test which always meets all constraints.  
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D. CAT Item Selection In the Context of  Shadow Test 
 The item selection methods used in this study are defined in the context of the shadow-
test constraint: 
(1) MIF: Maximize the summation of all items’ information values while assembling shadow 
tests, then select the item with the maximum information from the shadow test.  
 
(2) MOD: Minimize the summation of all items’ absolute difference values between a test-
taker’s current ability estimate and items’ OD values while assembling shadow tests; then select 
the item with the minimum absolute difference from the shadow test.  
 
(3) MID: Minimize the summation of all items’ absolute difference values between the test-
taker’s current ability estimate and items’ difficulty values while assembling shadow tests; then 
select the item with the minimum absolute difference from the shadow test.  
 
(4) RANDOM: Each item is assigned a random number (RN). This RANDOM method used a 
similar procedure as MIF method did for selecting an item. The difference between both methods 
is that instead of maximizing the summation of all items’ information values in the MIF method, 
the RANDOM method maximizes the summation of all items’ RN values while assembling 
shadow tests. There is no operational value in maximizing the summation of all items’ RN, but 
this tricks the zero-one linear programming to assemble shadow tests that meet constraints. 
Accordingly, this RANDOM method is similar to randomly select an item from the pool; the 
difference here is that this RANDOM method also takes into account the required constraints. 
 
 
III. Methodology 
A. Simulated Item Bank  
 An item response matrix from 9351 examinees on the 45 Reading/Language Arts items 
on the CTBS second-grade test (CTB/McGraw-Hill, 1997) was used to generate a simulated item 
bank. Forty five items are not enough to form an item pool. In order to simulate a large item pool 
that covers a variety of  possible combinations of the 3PL item parameters, a, b and c, and to 
maintain the intercorelations of item parameters for the items in the pool, we relied on the 
principle that the numerical value of each item parameter estimate is dependent on the metric of 
the underlying latent trait (θ). This fact allows us to obtain another numerical value for the same 
item when we intentionally change the metric of the latent trait. Accordingly, the 9351 
examinees were first grouped into six subgroups by the level of the examinee’s abilities. We then 
purposely combined some subgroups together (e.g., the combination of groups 1, 3 and 5 or 
groups 2, 4 and 6, or groups 1, 4 and 5, etc.) to form a sample with about 3500 examinees.  
Afterwards, the computer program of BILOG (Mislevy & Bock, 1990) was used for item 
calibrations with this sample’s test data to obtain a set of  item parameters. The above procedure 
was repeated 13 times and a 585-item bank was created, whose summary of item characteristics 
is presented in Table 1.   

It is important to note that these numerical values of parameters calibrated from different-
ability samples are assumed to lie on the same scale even though they do not. We used this 
process of generating an item pool in order to simulate a larger item pool having similar diversity 
as that which would be obtained from existing test data in terms of the variance of  the items’ 
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parameters, ai, bi, and ci. In addition,  the existing intercorrelation among item parameters in the 
real data will continue to exist in the simulated item pool.  
 
Table 1: 
 Summary of Item Characteristics for the Simulated Item Pool  
     (Number of Items = 585) 
Item Parameter Mean 

 
SD Minimum Maximum 

Discrimination    .88 .35 .35 2.4 
Difficulty -.40 1.18 -4.44 4.15 
Guessing   .27  .10 .05   .45 
 
 
B. True Ability Levels and Test Starting Points  
 We included 13 points on the true ability or θ scale, ranging from –3.0 to 3.0 in 
increments of 0.5. The initial ability of all simulated subjects at the beginning of the test was 
found as a random drawn from the uniform distribution with range [0,1]. The EAP ability 
estimator was used to estimate abilities, assuming the prior distribution of  examinee’s abilities 
to be distributed as  a standard normal N(0,1). 
 
C.  Item Selections under the Varied-Function Shadow Test Constraints  

Table 2 presents the five CAT algorithms explored. The first is a typical shadow-test 
CAT and is expected to result in the most precise ability estimate among five, but may result in 
poorest homogeneity of item-exposure rates. The result from this condition served as a basis for 
comparisons with other CAT algorithms when the shadow test approach was used to maintain 
content balance in CAT.  

The MID and MOD algorithms were  employed in the second and third simulation 
conditions, respectively. The fourth was the RANDOM  shadow test  algorithm, which was 
expected to result in the poorest ability estimates, but the greatest homogeneity of item-exposure 
rates.  

The above four shadow-test CAT algorithms employed a unique function to be 
maximized or minimized from the beginning throughout the end of CAT. The fifth simulation 
condition was created to combine these four algorithms together (called COMBINED) and 
implemented them for each quarter test when a CAT was divided into four-quarter-length 
subtests. As seen in Table 2, RANDOM was used for the first quarter, MID for the second, MOD 
for the third, and MIF for the last. This algorithm was motivated in part by an assumption that an 
ability estimate at the fourth-quarter of a CAT is accurate and stable enough to efficiently and 
effectively implement the maximum-information algorithm.  

 
Table 2: Simulated CAT Algorithms     
Condition Q1 Q2 Q3 Q4 Dependent Variable 
MIF MIF MIF MIF MIF 
MID MID MID MID MID 
MOD MOD MOD MOD MOD 
RANDOM RANDOM RANDOM RANDOM RANDOM 
COMBINED RANDOM MID MOD MIF 

 
Item-exposure Rates 
 
Ability Estimates 
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D.  Test Constraint and Test Lengths  

There were four constraint conditions imposed to assemble an on-line shadow test. Table 
3 lists the item classification for the CTBS, Grade 2 Test. The first condition required one item 
from each of the 8 domains and created a 8-item test. The second required one item from each of 
15 objectives and created a 15-item test. The third  required two items from each of 15 objectives 
and created a 30-item test. These three test lengths were used in the first four CAT algorithms 
(MIF, MID, MOD, and RANDOM). 

The fourth constraint condition corresponded to the specifications listed in Table 3 that 
were used by the publisher in creating the CTBS Reading/Language Arts. Hence, the number of 
items for each objective on the shadow test was constrained as in the original test consisting of 
45 items.  The fifth CAT algorithm of Combined was used for this test length. 

 
Table 3 
Item Classification Table for CTBS, Grade 2 Test 
Domain Objective and Skills Number of Items 

vocabulary 3 1 Basic Understanding 
stated information 5 
conclusions 4 2 Analyze Text 
story elements/character 3 
predict/hypothesize 1 3 Evaluate and Extend Meaning 
extend/apply meaning 3 
make connections 2 4 Identify Reading Strategies 
vocabulary strategies 4 

5 Introduction to Print word analysis 7 
6 Sentence Structure complete/fragment/run-on 2 

sequence 2 7 Writing Strategies 
relevance 2 
usage 3 
punctuation 1 

8 Editing Skills 

capitalization 3 
 

 
E. Computer Program 
 The computer program CAT  was used for running the simulation conditions.  The CAT 
was coded using the MATLAB matrix language (The MathWorks, 2001), in which the 0-1 linear 
programming was resolved from the callable library of LINDO API (LINDO Systems, Inc. 
2001). Technically, the LINDO API  was called into the CAT to seek the solution of the vector 
of x in Equation 11.  
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F. Data Analyses and Evaluation 

One hundred replications for each condition were conducted.  Afterward, the BIAS and 
RMSE (root mean squared error) for each of  the ability estimates were calculated by the 
formulas shown below.  
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      where θj is the true ability parameter, 
^

jθ  is the corresponding estimated ability parameter, 
and r is the number of replications, which was 100 in this study. 
 RMSE is a measure of total error of estimation that consists of systematic error (BIAS)  
and random error (SE). These three indexes relate to each other as follows (Rao, 2000): 
 

RMSE(θj)2 ≅ SE(θj)2 +BIAS(θj)2                                                                                             (16)   
 
As can be seen from Equation 16 either a large variance (SE2)  or a large BIAS will 

produce a large RMSE. The accuracy of an estimator is inversely proportional to its RMSE so 
that the RMSE index is the best criterion for accuracy of an estimator (Rao, 2000). Accordingly,  
this index was primarily used to compare the accuracy of ability estimates when they were 
estimated under various simulation conditions.  We also provided the BIAS results for reference 
if needed. 

The item-exposure rate refers to the ratio of the number of  times an item has been 
administered to the total number of test-takers. The following indices (refer to Revuelta & 
Ponsoda, 1998) were used to compare the five CAT algorithms: (a) the percentage of items never 
administered in the population, (b) the standard deviation (SD) of the variable of  the item-
exposure rate, (c) the minimum and maximum values of this variable. The distribution of  the  
item-exposure rates, grouped in several intervals, were also computed for each CAT condition.           

 
 

IV. Results 
 A. The Effect of  CAT Algorithms on the Ability Estimate 
 
1. Test Length =8 

Figure 1a shows BIAS as a function of true θ for MIF, MID, Random and MOD methods 
for test length (TL) = 8. As test length was small (e.g., TL= 8), this condition can be analogous 
to the early-stage of CAT.  All algorithms show similar patterns. Large BIAS (>1.5 or <-1.5)  of 
CAT ability estimates were produced for the highest and lowest abilities either using the 
statistically sound method, MIF, or the unreasonable method, RANDOM.  



 15

Among these four item-selection methods, MIF was the best method in producing the 
least BIAS of CAT’s ability estimates, RANDOM was the poorest, and MOD and MID were 
ranked between the best and the poorest. This is because MOD tended to perform slightly better 
in the high abilities than MID did,  but it performed slightly worse in the low abilities than MID 
did.  

In terms of  accuracy (or RMSE) of CAT ability estimates as shown in Figure 1b, the 
same rank ordering of these four methods as  that found for the BIAS measure was observed.   
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Figure 1a. BIAS as a Function of True θ for MIF, MID, RANDOM and MOD  Methods  

When Test Length (TL)  = 8. 
 



 16

-3 -2 -1 0 1 2 3
0

0.5

1

1.5

2

True θ

R
M

SE
MIF,TL=8
MID,TL=8
RANDOM,TL=8
MOD,TL=8

 
 
Figure 1b. RMSE as a Function of True θ for MIF, MID, RANDOM and MOD  Methods  
  When Test Length (TL)  = 8. 
 
2. Test Length=15 
 Figures 2a and 2b shows the BIAS and RMSE results for these four CAT methods when 
test length was set at 15. The BIAS or RMSE  for the low and high abilities were still 
relatively large  for the case of TL=15, although some improvement occurred over TL=8. 
The ranking of performance among these four methods was as the same as found in the case 
of TL=8. 
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Figure 2a. BIAS as a Function of True θ for MIF, MID, RANDOM and MOD  Methods  
When Test Length (TL)  = 15. 
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Figure 2b. RMSE as a Function of True θ for MIF, MID, RANDOM and MOD Methods  

When Test Length (TL)  = 15. 
 
3. Test Length=30 
 Figures 3a and 3b show the BIAS and RMSE results for these four CAT methods when 
test length was 30. Under TL=30, the best method, MIF,  made a sizeable improvement in 
recovering those high and low abilities that were relatively poorly estimated when test length 
equaled 15 or 8.  For the condition of TL=30, the MOD or MID, in general, produced 
comparable results with the MIF. The MID, performed slightly poorer than the MOD at some 
ranges of abilities, but at some ranges of low abilities this method produced less BIAS or 
RMSE than the MOD did. The poorest method, RANDOM, did not make significant 
improvement as the rest of the three methods did as the test length increased, especially for 
the low and high abilities.  
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Figure 3a. BIAS as a Function of True θ for MIF, MID, RANDOM and MOD Methods  

When Test Length (TL)  = 30. 
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Figure 3b. RMSE as a Function of True θ for MIF, MID, RANDOM and MOD  Methods  

When Test Length (TL)  = 30. 
 
4. Test Length=45 
  For the condition of TL=45, the COMBINED method together with the other four 
methods was used. As expected, this method became the second best algorithm in recovering 
CAT’s abilities, as seen in Figures 4a and 4b, which shows BIAS and RMSE as a function of 
true θ for these five methods. This COMBINED method was created by combining of the 
best method, MIF, the poorest method, RANDOM, and the other two alternative methods, 
MID and MOD. Its performance in estimating abilities only slightly differs from the best 
method.   
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Figure 4a. BIAS as a Function of True θ for MIF, MID, RANDOM, MOD and  

COMBINED Methods When Test Length (TL)  = 45. 
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Figure 4b. RMSE as a Function of True θ for MIF, MID, RANDOM, MOD and  
COMBINED Methods When Test Length (TL)  = 45. 

 
 

B. Item Exposure Rate 
1. Comparisons of Exposure Rates Among Five CAT Methods 
 The results of item exposure rates when TL=45 for the Random, MIF, MID, MOD and 
COMBINED methods are presented in Table 4.  The plot of each  item’s exposure rate for these 
five CAT  methods are presented in Figure 5.  

The rate of unused  items is high in MIF; 54.87% of the items were never selected for any 
of the 5000 examinees. In contrast, the poorest CAT’s ability estimator, Random used all items 
in the pool. The MID and MOD had about 1.20% of the items unused. The second best ability 
estimator, COMBINED, like the RANDOM method, used all items.  

If the maximum desirable item-exposure rate was set at .30,  which is a  typical value 
(ranging from .2 to .4 in the context of the Sympson-Hetter’s item-exposure control method), the 
percent of items whose item-exposure rates are larger this criterion for each method is presented 
in the last second row from the bottom in Table 4. The overexposure rate beyond this criterion is 
9.40%  for MIF, 3.24% for MID, 2.56% for MOD and 1.7% for COMBINED. This finding 
implies that the COMBINED  worked well in producing low percent of overexposured items 
even though the item-exposure control was not involved into its algorithm. 

Excluding the RANDOM, the COMBINED method was best at producing the most 
homogeneous item exposure rates, MOD was second, MID was third, and MIF was poorest. 
Compared with the variance of item exposure rates produced by MIF, the COMBINED, MOD 
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and MID  reduced the variance of item exposure rates by 80.54%, 66.68% and 57.17%, 
respectively. Those figures are presented in the last row of Table 4. The ultimate goal of 
increasing the homogeneity of CAT’s item-exposure rates, which has been pursued in this 
research, was achieved by using the COMBINED algorithm. This finding combined with the 
results regarding the accuracy of  CAT ability estimates suggests that when compared with MIF 
CAT,  the COMBINED CAT is the CAT algorithm of choice because this method not only 
resulted in comparable results as the MIF CAT, but also made full use of all items in the pools. 
On the other hand,  more than half of  items in the pools would never be administered to 
examinees under MIF CAT testing method under the realistic conditions studied here.   
 
Table 4 
Item Exposure Rate Distribution for the RANDOM, MIF, MID, MOD and COMBINED 
Methods Under the Shadow-test-constraint Control  

Methods Item Exposure Rate (x100) 
RANDOM MIF MID MOD COMBINED 

0: Items Never Administered 0.00 54.87 1.20 1.20 0.00 
1-5 14.86 16.23 50.09 46.85 41.02 
5-10 67.53 5.83 27.18 29.74 35.04 
10-15 16.58 4.62 8.89 10.60 13.68 
15-20 1.03 3.08 4.62 4.27 4.96 
20-25 0.00 3.76 2.39 3.25 2.22 
25-30 0.00 2.22 2.39 1.54 1.37 
30-35 0.00 1.88 1.03 1.03 0.85 
35-40 0.00 1.03 0.68 0.17 0.34 
40-45 0.00 1.71 0.17 0.17 0.34 
45-50 0.00 1.54 0.17 0.34 0.17 
50-60 0.00 2.05 0.34 0.51 0.00 
60-70 0.00 0.68 0.51 0.17 0.00 
70-80 0.00 0.34 0.34 0.17 0.00 
80-90 0.00 0.17 0.00 0.00 0.00 
90-99 0.00 0.00 0.00 0.00 0.00 
100: Items Always Administered 0.00 0.00 0.00 0.00 0.00 
Mean  7.69 7.69 7.69 7.69 7.69 
SD    2.75 14.76 9.66 8.52 6.51 
Minimum  0.60 0.00 0.00 0.00 0.02 
Maximum  17.32 81.38 78.96 70.78 47.08 
Larger than 30 0.00 9.40 3.24 2.56 1.70 
Reduced Variance of Item 
Exposure Rate 

96.53 Anchor 57.17 66.68 80.54 
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Figure 5a. Plot of Each Item’s Exposure Rate for the RANDOM Method 
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Figure 5b. Plot of Each Item’s Exposure Rate for the MIF Method 
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Figure 5c. Plot of Each Item’s Exposure Rate for the MID Method 
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Figure 5d. Plot of Each Item’s Exposure Rate for the MOD Method 
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Figure 5e. Plot of Each Item’s Exposure Rate for the COMBINED Method 
 

2.  Refining the COMBINED CAT Algorithm 
In this study, an item-exposure control method (Sympson & Hetter, 1985) was not chosen 

and incorporated into this COMBINED CAT algorithm and consequently it turned out only 
about 1.7 % of items were overexposured when the maximum-allowed item-exposure rate was 
set at .30. This fact might indicate that without the involvement of an item-exposure control 
method, test security under this COMBINED algorithm still might not be seriously threatened  
because of  its performance in maintaining a low overexposure rate.  

On the other hand, if we intend to refine this algorithm to make each item’s exposure rate 
as low as possible, the Sympson-Hetter method, which requires repeated simulation studies to set 
values of item-control parameters  prior to the operational use of the test, could be included, but 
as a very low overexposured rate occurred here, this very time-consuming method might no 
longer be needed. The method of setting a maximum item-exposure rate during the on-line CAT 
environment might be practicable. A more comprehensive method for this approach can be found 
in van der Linden and Veldkamp’s study (2002).  

A less complex method, but supported empirically, is the restricted maximum exposure 
rate (RMER), proposed by Revuelta & Ponsoda (1998). This RMER method, like the Sympson-
Hetter’s method, sets the maximum-allowed rate, k,  for a CAT algorithm. During the process of 
CAT, the actual item-exposure rate for each item is calculated as Ai/N, where Ai is the number of 
times the item has been administered and N is the number of examinees who have already taken 
CAT. This value was then compared with the pre-specified criterion, k. If this value is larger 
than k, the item was “temporary” removed form item bank and became an unavailable candidate 
to be selected. As the CAT continues, the number of  examinee increases and the quotient of 
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Ai/N will decrease. The item will be again available because its exposure rate is again below k. 
When this RMER procedure is incorporated into the COMBINED CAT algorithm, those 
overexposured items (e.g., 1.7%  in this study) should never take place with small enough k.         

Reviewing CAT literature and the results generated from this research, we found that no 
matter what method we used, examinees with middle-level abilities were well estimated, even 
when test lengths were short. In addition, MIF made a dramatic improvement for high and low 
ability estimates. These findings might help us to refine the COMBINED CAT algorithm as 
designed in this study by the following modification. After the second-quarter test of CAT,  if 
examinee’s ability estimates fall within the middle range of  θ (e.g.   –0.5 ≤ θ ≤ 0.5), the MOD 
method is used to the end of  CAT;  if they are high (e.g., θ > 2) or low (e.g., θ < -2), the MIF is 
used to end of  CAT, and for the rest the original COMBINED method to the end of CAT. When 
this modified COMBINED CAT is implemented, direct  item-exposure control methods such as 
the RMER procedure might not be needed to prevent any items from being overexposed.  
 

 
3. Correlations between 3PL Item Parameters and CAT Algorithms 
 As stated in the introduction, the MIF method might tend to select highly discriminating 
items from the item pool  in the constrained CAT. This can be confirmed as we computed the 
correlations between the 3PL item parameters and the item exposure rates for the five CAT 
algorithms, RANDOM, MIF, MID, MOD, and COMBINED. As seen in Table 5, we found that 
the correlation of item-exposure rate and the ai parameters was .60 for the MIF CAT, .35 for the 
COMBINED CAT, and almost zero for the RANDOM, MIDO and MOD. This finding implies 
that the more highly discriminating the items are; the more likely they are to be administered in 
MIF CAT; in contrast, the two alternative methods, MID and MOD, did not follow this pattern.  

 The correlation between item-exposure rate and the bi parameter was  almost zero for the 
MIF method. The correlation for the item difficulty oriented method, MID, was .22, and the 
correlation was .10 for the MOD method. The slightly positive correlations for the bi parameters 
for the MID and MOD methods may result from an interaction between the item-pool 
characteristics and the level of examinee’s abilities. As seen in Table 1,  the simulated item pool 
had more easy than difficult items (mean of difficulty = -.40), but we simulated  a normally 
distributed ability construct in the group to take this item pool. When the MID was used in CAT,  
the items with item difficulties that are nearest to the examinees’ abilities had more chance to be 
selected. As a result, harder items are, in general, preferable for this simulated examinee group. 
Here, the scale of item difficulty and ability parameter is the same. By the above logic, we might 
expect to obtain almost zero correlation between item-exposure rate and the bi parameters for the 
MID or MOD method  if  we used another item pool whose average item difficulty is close to the 
average ability for the group of  examinees.    
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Table 5 
The Intercorrelations in Item Exposure Rates among 3PL Item Parameters as well as the Five 
CAT Methods 

 A b c RANDOM MIF MID MOD COMBINED 
1.00        

b 0.03 1.00       
c 0.19 0.04 1.00      
RANDOM 0.02 0.01 0.04 1.00     
MIF 0.60 0.06 -0.07 -0.02 1.00    
MID 0.04 0.22 0.06 0.04 0.20 1.00   
MOD 0.08 0.10 0.08 0.06 0.22 0.84 1.00  
COMBINED 0.35 0.12 -0.03 0.09 0.70 0.54 0.54 1.00 
 
 

V. Conclusions 
 Key goals of CAT are to estimate each test-taker’s ability efficiently and precisely. This 
seems to be best achieved by one of the family of maximum item information methods (e.g., 
MIF). Unfortunately, this type of  item-selection method tends to select highly discriminating 
items from the beginning of CAT through to the end of testing. Negative consequences of that 
were discussed in the introduction and consequently interest in other promising item-selection 
algorithms is growing.  
 The family of maximum item information methods can be classified as item-
discrimination-oriented methods. This study also explored two non-item-discrimination-oriented 
methods (e.g., MID and MOD) which have not often been evaluated in CAT studies. These two 
item-selection methods can be classified as item-difficulty-oriented based on their nature of the 
way of selecting items.   
 Based on the literature and the results of this study, these two methods do not outperform 
MIF in terms of accuracy of ability estimates, but both methods, especially MOD,  were capable 
of producing comparably accurate results with MIF. When the factor of  item-exposure rate was 
also taken into account, MIF might waste a large  proportion (e.g. more than 50%) of the items  
in a pools and lead to overexposure of some items. Thus, the MOD method made use of more 
items and exhibited a more homogeneous item-exposure rate. These desirable features should 
make the MOD method more appealing in  real CAT testing applications in the near future, 
especially if more studies using this promising item selection method are explored.   

The ultimate goal of the current study was not to seek the best CAT algorithms in 
recovering ability estimates, but to find a compromise algorithm that is capable of increasing the 
homogeneity of CAT’s item-exposure rates without significantly reducing the precision of ability 
estimates. Reviewing literature, a CAT using a modified shadow-test algorithm might be suitable 
to serve this purpose.   

There are two key components for the typical shadow tests constraint. One is the item 
information function to be maximized; the other is the constraints imposed by users. At the 
beginning of the shadow-test  CAT (e.g., the first  two quarter tests), we are maximizing 
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something (e.g., information) that may not be as meaningful as we anticipate. We may be 
emphasizing information, technically by maximizing (or minimizing)  other functions, while the 
on-line shadow test is assembled at the beginning of the CAT. A modification that allocates more 
emphasis to user constraints designed to minimize exposure may be possible. Such a 
modification might dramatically expand the use of all characteristics of  items in the pool and 
guarantee that all constraints are fully met.  

What other target (or objective) functions are legitimate (or appropriate) to be maximized 
(or minimized)  in the CAT test? In this study, a combination of different CAT algorithms to be 
implemented at different stages of  CAT was proposed. The Random method was used in the 
first-quarter stage of CAT. As explained previously, the poorest CAT algorithm, Random, does 
little harm in recovering ability at this early-stage CAT, but this method makes all items have 
almost equal likelihoods to be administered to any examinees. For the second and third quarter 
stages of CAT, better CAT item-selection methods, MID and MOD were used, respectively. 
Because the mechanism of each of these two methods does not depend of item parameter values 
and will make use of most items in the pool without significantly reducing the precision of 
ability estimates, these desirable features make them fit the middle-stages of CAT. At the final-
stage (i.e., the fourth quarter of the test), test-takers’ ability estimates are sufficiently accurate 
and stable for MIF to seek items with more information to improve upon test-takers’ existing 
ability estimates.  

Based on these results, the combined item-selection method under the shadow-test 
approach in CAT appears to have fully utilized all the items in the pool, reduced the maximum 
item exposure rates, generated more homogeneous exposure rates, and produced a very low rate 
of item overexposure (e.g., the proportion of items administered to 30% or more of the 
examinees was only 1.7%). Moreover, its accuracy in recovering ability estimates was similar to 
that of the MIF method. The COMBINED CAT method thus provided the best overall results. 
Some suggestions to refine this COMBINED method were provided in the previous section.  
More studies are needed to assess the impact of those modifications of the Combined CAT. 
Studies of how to implement the combined method for applications where the test length is 
variable are also needed. 
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