PROBLEM:
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The purpose of administering mental tests to people is usually to compare
each person with some criterion, or to compare each person with others with
regard to test scores. On a conventional test, where all examinees take a
common set of test items, the test score is typically the number of items
answered correctly, or some transformation of the number correct.

When all the items of a test are equivalent, having equal difficulty and
equal intercorrelations, the number-correct score is a sufficient statistic
for estimating ability level (Lord, 1953). It contains all the information
in the pattern or vector of individual item scores. When the items in a test
are not all equivalent, however, the simple number-correct score fails to
convey all the information in the pattern of item responses. Instead a
weighted linear composite of the item scores is needed (Solomon, 1961), where
the weights are proportional to the item discriminating power. When guessing
is a factor, the problem becomes even more complex.

In general, the number-correct score uses less than all of the informa-
tion available in the test item responses. Further, the number-correct score
provides only one more score category than the number of items in the test.
For example, only twenty-one unique scores are available from a 20-item test.
The shorter the test, the smaller the number of discriminations among persons
which can be made. Still a third shortcoming of number-correct scores is the
Tack of comparability of scores from different tests of the same trait or
construct, unless the tests are strictly equivalent.

In scoring adaptive tests, the comparability problem becomes even more
pronounced. An adaptive testing strategy combines both an item selection
procedure and a scoring method. Different persons in effect take different
tests, and the different tests are intentionally non-equivalent across indivi-
duals. The sets of adaptive test items administered to any two persons may
differ in difficulty and in item discrimination, as Mr. Vale has illustrated.
Some adaptive testing strategies, such as the stradaptive and Bayesian ones,
permit test length to vary as well. The number-correct score, and the weighted
Tinear combination of the item scores, are both inadequate for scoring adaptive
tests, except for certain special cases.

What is needed in adaptive testing is a general scoring method which will
take account of the pattern of item responses, and of the difficulty and dis-
crimination of the items administered, and which will yield scores which are
directly comparable despite non-equivalence of the item sets. The scaling
methods made possible by item characteristic curve properties in latent trait
theory provide a class of solutions to the problem of adaptive test scoring.

I will mention two of these methods. But first, a hasty introduction to
latent trait theory.
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Latent Trait Theory

For certain kinds of psychological variables, such as those measured by
most ability tests, the construct or trait being measured is monotonically
related to test score. At the dichotomous item level, this is tantamount to
saying that the probability of a correct response increases with trait level.
Trait level is assumed to vary continuously, but the metric for describing it
is arbitrary.

An-item characteristic curve describes the probability of a correct
response P(u_=1) to a specific test item g as a function of level on the under-
lying trait.9 The curve can be described as a function in several parameters,
usually trait level (o), item difficulty (») and item discriminating power (a).
Thus for a single item g, the probability of correct response, P_(o), can be
expressed in terms of the three parameters: g

P(us=1/6) =P, (e)= F(0,b,3a,) [1]

Now if the forms and parameters of the item characteristic functions are
known and if the convenient property of local independence can be assumed (or
derived from other assumptions), then the probability of a pattern or string
of item scores can be expressed as a compound function of the item character-
istic functions. I.e.,
. k u, l—-u,
P(u,u,...u)=m P () [1-P, (0)] [2]

g=q1 9

Maximum likelihood scoring. For test scoring purposes, of course, we
are not interested in estimating the probability of a pattern of item scores,
but in estimating the trait level parameter o from the item scores. This
presumes that the item parameters bg, ag have been determined (or estimated)

already, so let us say that they have been. Then for any pattern or vector
of dichotomous item scores there is a likelihood function such as Equation 2.
We may use as our trait-level estimate--or test score--the value of 6 at which
the likelihood function is maximal. That is, given a pattern of item scores,
and the parameters of the items administered, trait level may be estimated by
means of maximum likelihood techniques. More important, as long as all the
item parameters are expressed with reference to a common metric and to a
common norm group, trait level estimates in a common metric may be obtained
from examinees' scores on different sets of items. For this reason, maximum
likelihood scoring is especially appropriate for use with adaptive tests.

Although maximum 1ikelihood scoring allows us to make direct comparisons
of persons who took different sets of test items, the method is not without
its shortcomings. For instance, the solution is indeterminate when an examinee
answers every item correctly or every item incorrectly, in which cases the
estimation procedure converges on plus or minus infinity. When items can be
answered correctly by guessing, the same problem may occur with other item
score patterns as well. Although adaptive tests, by virtue of their item
selection processes, are less subject than conyentional tests to item response
patterns yielding infinite maximum 1ikelihood score estimates, there is no
guarantee that such patterns will not occur.
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Bayesian scoring. A Bayesian sequential scoring method proposed by
Owen {7969] avoids the problem of infinite estimates, yet proyides comparable
scores from different sets of test items, in the same kind of metric the
maximum 1ikelihood procedure employs. The Bayesian method is likewise a
consequence of latent trait theory, based again on the properties of {tem
characteristic curves. For simplicity let the item characteristic curves all
be normal ogives, so that

Py (0) = P(ug:1|0>=¢[agco—bg>] (3]

Again we do not know the value of o, but we observed the item scores (1 or 0),
and have previously estimated the parameters a_ and b_ of each item g. If we

began by estimating that an examinee's trait level © was equal to the mean u
of a normal distribution, and that the variance of that distribution is

og, Bayes' theorem permits us to calculate the mean and variance of © posterior

to observing his score on a single item. That is, using Bayes' Theorem and the
parameters of the prior distribution we may proceed from P(ug=]l®) to

P(e|u9=1) and from P(u_=0|0) to P(e|u_=0) which in turn permit us to evaluate
expressions for E(@[ug) and var(elug), the expected value and variance of the
posterior distribution of o, conditional on item score.

As proposed by Owen in the context of an adaptive testing strategy, the
Bayesian estimation procedure never yields the troublesome infinite estimates.
It is dependent, however, on the order in which the item scores are evaluated,
since it involves updating the trait level estimate one item at a time. Several
factors are capable of limiting the accuracy and validity of the resulting
"final score" estimates. Guessing can introduce marked bias. Additionally,
the Bayesian approach depends heavily on its "priors". An inappropriate choice
of parameters for the initial prior distribution can result both in severe bias
and some loss of validity (McBride, 1975) in the scores.

Choosing Among Scoring Methods

So, where does that Teave us? We have a variety of scoring procedures
available for adaptive tests. Two of these have been described above. Others
are described by Lord (1970). Some are appealing by virtue of their simplicity,
but either fail to provide adequate differentiation among examinees, or to rank
examinees on a scale that permits comparing scores obtained on different tests,
or both. Others are appealing because of their mathematical elegance, but are
subject to distortions such as bias, or to absurdities such as infinite scores,
or to invalidity due to inappropriate prior assumptions. Given that we are to
use an adaptive test in some applied setting, how are we to choose among alter-
native scoring methods?

The answer is that there is no simple answer. The choice will depend on
the test itself, on the setting in which the test is used, on the purpose to
which the test scores are to be applied, on practical constraints such as
scoring costs, and perhaps on other considerations as well. Using psychometric
criteria, scoring methods can be evaluated in terms of a number of criteria,
including information and bias.
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Information. Suppose that trait level is distributed continuously, and
measured in real numbers. We can talk of the regression of test scores on trait
level, that is, a curve depicting the mean test score at any level of the trait.
If the regression is linear, we know that its slope is constant, so that for any
unit increase in trait level, there is a corresponding constant increase in mean
test score. If the regression is non-linear, the increment in mean test score
may or may not be linearly related to trait level.

Similarly, we may talk of the precision of measurement at any trait level
in terms of the inverse of the standard deviation of test scores at that level.
Like the slope, the precision may or may not be constant across trait levels.
The "information" at any level of the trait is defined as the squared ratio of
the slope at that level to the standard deviation of scores at that level. In-
formation may be constant across trait levels, or may vary. If the information
is constant, the test scores are making equivalent discriminations at all levels
of the trait. If it is not constant, the test scores discriminate better at
some levels of the trait than at others, and perhaps discriminate best at some
one point (see Appendix for a further discussion of "information").

Bias. Just as precision and information are discussed in terms of trait
level, we may speak of bias at any given trait level. Bias here is defined as

follows:
bias = E(X) 6| — o

[4]

where X is the test score. Bias, then, is the algebraic difference between the
expected value of the test scores X at a given trait level o and o itself. As
I mentioned earlier, the metric for o is arbitrary. So is the test score
metric X. Since both are arbitrary, we should be more concerned about the form
of the relation of bias to © than to the numerical values. Constant bias, or
bias linear in ©, is not usually a problem in psychological measurement. Non-
linear bias, however, may be a problem in some applied settings.

Comparison of Maximum Likelihood and Bayesian Scoring

In choosing a scoring method for an adaptive test, it would be prudent to
evaluate the information and bias characteristics of the resulting scores
against the criteria dictated by the purpose of testing. These evaluations may
be conducted by analytic methods for certain kinds of tests (e.g., Lord, 1970),
but where real item pools are involved, Monte Carlo computer simulation methods
may be necessary. An example of such a simulation follows (see Appendix for
details of the simulation method; numerical results are in Appendix Tables A-2
through A-4).

This simulation study used the Bayesian sequential adaptive testing
strategy designed by Owen (1969). Rather than accepting Owen's method for
scoring the resulting patterns of item responses, however, we wanted to evaluate
it in comparison with two alternative scoring procedures: 1) the maximum 1ike-
Tihood estimation procedure described above and 2) the number correct score.

In order to generate data from which to compare the three scoring methods,
we simulated administering a 20-item Bayesian sequential adaptive test to 3200
examinees of known ability--100 examinees at each of 32 trait levels (o) in
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the interval [-3.2505+43.0] . These trait level values can be thought of as
standard deviation units. A pattern of 20 simulated item scores (1 or 0) was
generated for each simulated examinee. Every such pattern was scored using
each of the three scoring methods. For each scoring method, the mean and
standard deviation of the 100 scores at each trait level © were calculated.

Regression of scores on ability. The means are plotted against trait
level © in Figures 19 and 20. Figure 19 contains the mean scores for the

Figure 19

REGRESSION CURVES FOR BAYESIAN AND MAXIMUM LIKELIHOOD SCORING

43
]
2
o]
0—
MEAN L
) ]
| BAYESIAN
-1
E i rast————
-2
MAXINUM LIKELIHOOD

< T L e s e e e B S e e o
3 ) -1 0 +]1 +2 +3
Low ABILITY H1GH

Bayesian scoring method. Note that the estimated regression of Bayesian scores
on © is slightly non-linear. Its slope varies from one leyel to another, which
has implications for the information in the scores. Figure 19 also contains the
means for the maximum Tikelihood scoring technique. Note that the regression

of these scores on © appears almost linear. Figure 20 shows the mean number-
correct score as a function of 0. For these scores the regression is somewhat
non-linear.
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Figure 20

REGRESSION CURVE FOR NUMBER CORRECT SCORE
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Figure 21

BIAS CURVES FOR BAYESIAN AND MAXINUMW LIKELIHOOD SCORING
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Bias. Figure 21 contains bias plots for the Bayesian and maximum 1ike-
lihood scores. Figure 22 i{s the bias plot for the number correct scores. In
the trait interval shown, the maximum 1ikelihood scores appear to be nearly
unbiased estimators of trait level. The Bayesian scores are not so favorable
in this regard. The bias is severe in the extremes of trait level, and is
noticeably non-linear. The bias in the number correct scores follows a trend
similar to that of the Bayesian scores.

Figure 22

BIAS CURVE FOR NUMBER CORRECT SCORE
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Information. So far we have looked at the regression of test scores on
0, and found that only for the maximum 1ikelihood scores was the regression
approximately linear. Similarly, the maximum likelihood scores appear far
superior to the other two in terms of bias. Now let us look at the estimates
of the information curves for the three methods. Figure 23 shows these for
all three scoring methods. Both the Bayesian and the maximum 1ikel{hood
curves are convex, rising from near zero at 0=-3 to a peak of 13 in the mid-
range, then declining somewhat in the upper trait levels. The shapes of the
curves are so similar, and their differences so small that it would be diffi-
cult to call either method superior in information in the o range from -1 to
+3. The number-correct information curve, on the other hand, is concave,
and is clearly inferior to the other two except at the very low trait levels.
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Figure 23
INFORMATION CURVES FOR THREE SCORING METHODS
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Limitations of the Scoring Methods

Given the three scoring methods, then, which one should we select for use?
The number correct score is obviously inappropriate except for ranking persons
in the extreme low end of the trait level range. The similarity of the infor-
mation curves for the two latent trait estimation techniques suggests that
they are virtually interchangeable for ordering persons, other things being
equal.

But of course other things are not equal. The maximum 1ikelihood estima-
tion method is about three times more expensive than the Bayesian one. On the
other hand, the Bayesian method of scoring is subject to non-linear bias. If
unbiased measurement were a goal of the test, the expense of the maximum 1ike-
Tihood procedure might be justified. If simple ordering of persons with respect
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to trait level were all the tester required, the Bayesian scores seem prefer-
ablel. Other than that, no simple prescription is advisable.

I have mentioned only two true latent trait scoring methods. Numerous
other scoring methods are available (e.g., Larkin & Weiss, 1974; Weiss, 1973),
most of which Tack the mathematical elegance of the Bayesian and maximum 1ike-
lihood methods, yet may approach both in terms of information. A1l of these
methods provide a sufficient range of scores to permit maximal discrimination
among persons (if test length is sufficiently long), and many of them use all
the information in the pattern of item responses. The two that I have illus-
trated above also permit comparisons of scores obtained on different tests of
the same trait, although the bias in the Bayesian scores may make such compar-
isons hazardous. The point of this discussion has not been to prescribe an
all-occasion scoring method, but rather to show that there is a choice, and
to suggest computer simulation as a tool to facilitate a rational choice among
alternatives in the face of shifting decision parameters.

1Test scores are usually used only to order persons relative to one another, or
to classify them into two or more discrete categories. Technically, both Owen's
scoring method and the maximum likelihood one are statistical estimation pro-
cedures. As such they are useful for actually estimating parameters CR charac-

terizing persons <, on the basis of responses to a set of test items. For
applied purposes requiring only the ranking or classification of persons, the
test score information curves are of paramount interest. But there may be
certain applications in which actual parameter estimates are important. For
these app?ications the small-sample (where sampling is over items) bias charac-
teristics of the estimation procedure have important implications for the
utility of the resulting estimates.



