ADAPTIVE TESTING RESEARCH AT MINNESOTA —
SOME PROPERTIES OF A BAYESIAN SEQUENTIAL ADAPTIVE

MENTAL TESTING STRATEGY!

Adaptive or tailored testing subsumes a number of
different strategies for adapting the difficulty of test items
to the ability of the examinee. One of the most elegant of
such strategies is a Bayesian sequential technique proposed
by Owen (1969) and studied empirically by several inves-
tigators including Wood (1969), Urry (1971) and Jensema
(1972).

Owen’s technique is a general one for the sequential
design and the analysis of independent experiments with a
dichotomous response. Its application in mental testing is
to the problem of estimating ability by means of sequential
selection, administration and scoring of dichotomous test
items. The mathematical details of the method arise out of
latent trait theory, with the item characteristic curves all
assumed to take the form of the normal ogive. The
properties of the normal ogive item characteristic function,
and its logistic approximation, have been described by Lord
& Novick (1968) and Birnbaum (1968), respectively.

Owen’s procedure involves the individually tailored
sequential design of a test by appropriate choice of
available item parameters® (ag, by, c,) and estimation of
ability via a Bayesian-motivated approximation. At each
step m in the ability estimation sequence, a normal prior
distribution on ability () is assumed, with parameters
(0% ,,,), where m indicates the number of items already
administered in the sequence. A test item to be adminis-
tered at step m+/ is-selected so as to minimize a quadratic
loss function on 8. With ¢,=0 (ie., no guessing) and
discrimination parameters 4, constant over items, the
appropriate item is the available one which minimizes the
absolute value of the difference (b,-u,,). With ¢,>0 the
optimal difference is somewhat negative, that is, optimal
difficulty is somewhat “easier” than examinee’s ability.
Following item administration at step m+1, the parameters
My s o? m of the prior distribution are updated in accord
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Portions of these results were presented at the Spring meeting of
the Psychometric Society in Iowa City, Iowa, April 1975.

A complete report of these results is in preparation (McBride &
Weiss, 1975a).

2As most commonly used, @, and b respectively are the
discrimination and difficulty paraméters of t%e normal ogive model.
C, is the guessing parameter, the probability that an examinee will
réspond correctly to the item when he does not know the answer.
The subscript g indexes items.
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with the examinee’s performance on the item. In the case
of a correct answer:
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In the above equations (taken from Owen, 1975)
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My, sy and 02m+1, the parameters of the Bayes posterior
distribution on @ are used as the parameters of the next
step’s prior. At each step the prior distribution is taken to
be normal, an assumption which is not strictly correct after
the first item (Owen, 1975). Testing may be terminated
when 0%, becomes arbitrarily small or when m becomes
arbitrarily large, or when some other criterion has been
reached. At termination the latest M,y is the estimator of 6,
and 02m is a measure of the uncertainty of the estimate.
Urry (1971) and Jensema (1972, 1974) have interpreted
0?,, as the squared standard error of estimate (S.E.E.) of
;. Owen (1975) gives a theorem showing that as m — oo,
My 0.

Practically speaking, of course, the number of items
administered will never approach infinity; but if the pool of
available items is sufficiently large and appropriately
constituted, 02m will diminish rapidly, permitting valid
estimation of 8 in a very small number of items. Urry
(1971, 1974) has specified the requirements for a satisfac-
tory item pool for implementing Owen’s testing procedure
and has shown in computer simulation studies that Owen’s
sequential test can achieve in from 3 to 30 items the
validity of a much longer conventional test, with the
average number of items diminishing as their discriminatory
power increased.

Validity, i.e., the correlation of test scores with the
simulated underlying ability, is only one criterion by which
to evaluate a proposed adaptive testing strategy. Since the
Bayesian sequential test scores are actually estimates, in the
same metric, of underlying trait level, the accuracy of the
estimates is also an interesting datum. By “accuracy” here
is meant the closeness of the estimates to actual ability,
which may vary systematically with ability level. Another
interesting property of estimates is bias, or error of central
tendency. Two kinds of bias should be of some con-
cern: 1) unconditional bias, or group mean error of
estimate; and 2) conditional bias, or mean error of estimate
at a given level of the parameter being estimated. As a
matter of convention, then, in the following the term
“accuracy” will refer to mean absolute error of estimate,
(1/N) 2'6,~0;; “bias” will refer to mean algebraic error of
estimate (1/N) 2 (0,-0,); and “conditional bias” will refer
to mean algebraic error of estimate at a given value of 6,
(1/N) Z(9;-616).

The purpose of the present paper is to report the results
of a series of simulation studies designed to investigate the
influence of item pool characteristics on some properties of
the Bayesian sequential test other than the correlational
validity of the trait estimates. These properties will include
bias and accuracy of the estimates, as well as others
enumerated below.

_The studies reported below were motivated by results
obtained with live testing of Owen’s strategy. Using a
329-item pool of vocabulary knowledge test items, a
correlation of .80 was obtained between estimated ability
and number of test items to termination (McBride & Weiss,
1975b). Simulation studies designed to investigate the
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influence of the item pool on that unexpectedly large
correlation led to our discovery of systematic non-inear
bias in the Bayesian estimates of ability. The nature of the
bias, and some of its correlates, are discussed below.

METHOD

1. Dependent variables of interest included test length
(number of test items administered before the termination
criterion was reached), errors of estimate (6-6), bias of
estimate (mean over individuals of (§-6)), absolute value of
the error [6—0|, and validity of the estimates of 8, ry 3.

2. Independent variables of interest included the effects
of guessing in both the response model and the scoring
algorithm, of item discrimination, and the correlation of
difficulty and discrimination parameters in the item pool,
and of different termination criteria.

3. Examinees for the first study were simulated by
computer-generation of pseudorandom numbers (from a
normal population with mean O and variance 1) which
represented the ability 0; of each examinee, i. For the
second study, 100 examinees were simulated at each of 31
points on the ability continuum.

4. Item responses were simulated by comparing P’g(e,.)
for each item g and examinee i/ with a random number €yj
from a rectangular distribution in the interval [0,1]. A
score of 1 for examinee / on item g was assigned if
P’ g(Gi)>eg,-. Otherwise a score of 0 was assigned.

5. Itrem pools were simulated under two different
conditions:

a. A perfect item pool with items of constant
discrimination @, and guessing parameter ¢y was simulated.
Under this condéi,tion, the computer program computed the
optimal difficulty b, ,; of the next item to administer, and
a simulated item with that difficulty value was made
available. This is referred to as a “perfect” item pool
because in effect we have simulated an item pool in which
an unlimited number of items is available at any point on
the difficulty continuum. The estimated optimal difficulty
of an item to administer at stage m+/ is equal to the
current ability estimate, 0,,, when guessing is not a factor
(i.e., when cg=0). When guessing is a factor (c,~0), the
estimated optimal difficulty b, is smaller than 8,, by an
amount which is a joint function of 4, and ¢g. That is,
when ¢,>0 (bg—gm)<0. (Actually, the true optimal diffi-
culty is a function of dg, ¢ and the unknown parameter 6.
The Bayesian sequential test procedure only estimates 6
and hence estimates the optimal item difficulty. At any
rate, the simulated “perfect” item pool makes available at
every step m an item whose difficulty is exactly equal to
the estimated optimal item difficulty based on a,, Cg, and
the then current estimate of 8).

b. A differentially discriminating “perfect” item pool
was simulated by having unlimited item difficulties b
available (as in a. above), but varying item discrimination
systematically so that the mean ag could be specified and



the regression of a, of item difficulty b, could be varied. In
this way it was possible to simulate item pools in which
more highly discriminating items were available in some
regions of the ability continuum than in others. The details
of this procedure are described in Study 2, below.

6. The Bayesian sequential test was simulated by a
computer program. Input variables were 6;; the parameters
ug and o®; of the initial prior distribution on 0; the
number of items to be administered to any examinee; the
constant discrimination parameter 4, of the perfect item
pool (or the mean discrimination parameter of the dif-
ferentially discriminating perfect item pool), along with
two guessing specifications. The first, ¢;, specified the
propensity of the examinees to guess while the second, c,,
specified whether guessing was to be accounted for In
scoring.

Study 1: The effects of guessing
" For this study the “perfect” item pool was used, with
two values of ¢,:c,= { 0 paired with two values of the
&g 1200 Vo :
personal guessing tendency ¢;~ {.20. Of the four possible
pairwise combinations, only three were used; resulting in
three sets of conditions

ci Cg
no guessing 0 0
uncorrected guessing .20 0
corrected guessing 20 .20

In the first condition, no guessing takes place (c;=0) and no
correction for guessing enters into the scoring formula
(cg=0). In the second condition ¢;=.20 (every individual i
has a random chance of correct response equal to .20), but
cg=0 (guessing goes uncorrected in the scoring algorithm).
Finally, in the third condition, the .20 guessing parameter
and the scoring correction for guessing take the same value.

In each condition, the same 100 “examinees” (0;
sampled from a normal (0,1) population) were administered
14 simulated Bayesian sequential tests in which testing
terminated for an examinee whenever the ozm, the
estimated variance of the posterior distribution of 8, fell
below .0625 (this is equivalent to the Urry/Jensema
criterion of SEE <.25). The 14 simulated tests in each
condition were experimentally independent, and differed
from each other in the value of the a, parameter, which was
constant within a test, but which varied systematically
across tests. The 14 a,, values were ¢, = .5, 6,.7, .8, 9,1.0,
1.25,1.50, 1.75, 2.00, 2.25, 2.50, 2%5, 3.00.

For each test in each condition, the following variables
were observed:
mean and range of test length, &
. errors of estimate, ¢; = (6,-0;)
test bias, (1/N) Z -9,

1

. mean absolute error, (1/N) Z 16;-0;|
test validity rg4 i
correlated error 7§, and rg,
correlated test length rg g and rgg

e oo
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Study 2: The effects of the configuration of item param-
eters in the item pool

Most simulation studies of Owen’s sequential test have
used a constant item discrimination parameter within each
test. Typical item pools in actual use, however, have varying
item discriminations, with the potential effect of having
more discriminating items available in some ranges of the
trait level than in others. In this study, different item pool
agx by configurations were simulated by using the differen-
tially discriminating “perfect” item pool. The approximate
correlation (r,5) between item discriminating power and
item difficulty was varied in order to observe its effect on
some properties of the Bayesian test and of the resulting
scores.

Three different values of 7,5 were simulated: -.71, 0
and +.71. With r,;=.71, more discriminating items are
available, on the average, at higher levels of 6.With 7, =-71
the more discriminating items were available at the lower
levels of 6. And with r,;=0, no level of 0 was favored in
terms of available discriminating power of the items,
although discriminating power was free to vary randomly.
In each “item pool” configuration, the mean item discrim-
ination @, was set at 1.25. Additionally, a minimum a
value of .80 was imposed, in accord with Urry’s (1974%
recommendation.

The item pool configuration was simulated by means of:

1) selecting the appropriate b, for the next item from
the perfect item pool as though all ag were equal to Z,; call
this b*, = (bg I()m,ﬁg);

2) calculating a conditional ag value from a linear
transform of b*g:

S.D -
= AN
aglb*e = 1y (S.D.B )-b¥gtay

where S.D.5 is the standard deviation of the ag
parameters in the simulated pool

S.D.p is the standard deviation of the by parameters
in the simulated pool
ap, b*e, Typs Eg are as previously defined;

3) adding an error component, e,, to the approximate

ag, so that for each item administered a*y = aglb* teg

where a*g is the simulated discriminating power of
the item

aglb*g is the approximate discrimination defined
above

eg is a random number from a population normal in

0,0%,)
O, = \/0'2e = SDA (1—r2ab)1/2'

4) setting a*g equal to .80 whenever it would otherwise
have a lower value.

“Examinees’ for this study were 3100 simulated 0’s,
100 at each of 31 equally spaced intervals between -3.0



and 3.0, inclusive. The corrected guessing condition
(c =c;=.20) was in effect. The posterior variance termina-
tlon cntenon (0%,,<.0625) was used, with an arbitrary
30-item maximum test length. At each of the 31 @ levels
the following variables were observed for each individual, i:

a. test length, k;
b. test score, 0

c. error of estlmate, e - 60

While study 1 examined average characteristics of the
Bayesian test and test scores, Study 2 was concerned with
certain properties of the procedure as a function of trait
level, 0, and of the item pool configuration, r,,. For each
configuration, the regressions of X, € and 0 on 8 were
estimated from the means of the 100 individuals at each
level of 0.

Additionally, the data were used to calculate empirical
values of the information function /5{@) of the Bayesian
test scores §. The information at any level §; may be
calculated as the square of the ratio of the partial glerivative
with respect to 0 of the regression of test scores 8 on 8, to
the conditional standard deviation (o4 ,) of the test scores
at the given level of 6. This may be wntten I3(0) =
[a/ae(E(elf)))]2

04

(after Lord, 1970, p. 153). In each

configuration for each of the 31 levels of 8, the conditional
standard deviation was estimated as the observed S.D. of
the 100 test scores at that level. The numerator of the
equation was calculated for each 6 point from a third
degree polynomial equation for the regression of § on 6,
estimated by least squares fit to the thirty-one mean 8’s
observed under each item pool configuration.

RESULTS

Study 1

Tables 1, 2 and 3 and Figures 1, 2 and 3 contain the
results of sequential testing under the three conditions of
guessing/correction for guessing, at each of 14 item
discrimination levels. Some noteworthy trends are:

a. Test length was constant at each a, level in the no
guessing (Table 1; Figure 1) and uncorrected guessing
(Table 2; Figure 2) conditions, with test length to termina-
tion diminishing proportionately with the inverse of the g
level.

In the corrected guessing condition (Table 3 and Figure
3) test length varied across individuals, while mean test
length within a, level behaved in the same manner as dic
test length in the other two conditions. One datum of note
is the behavior of test length as a function of ag level: in
order for all examinees to reach normal termination in less
than 30 items (in the corrected guessing condition), the
item discrimination value must exceed 1.25 (a,>>1.25).

Another result of interest is an expected one: the
corrected guessing condition required more items to termi-
nation than did the other conditions.
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b. Errors of estimate, ¢ = (0 0) were moderately
correlated with ability 6 and test score ' under all
conditions, as revealed in Tables 1, 2 and 3. ¢; tends to be
positive for 8;<0 and negative for ,>0. This result was
consistent, and reflects a regression effect caused by the
quadratic loss function employed in the item selection
procedures.

c. Test bias, mean absolute error, test validity, corre-
lated errors and correlated test length values for the no
guessing, uncorrected guessing and corrected guessing con-
ditions are listed in Table 1, 2 and 3, respectively.
Additionally, Figures 1, 2 and 3 graph some of these values
as a function of &, level within each condition. Noteworthy
in these data is the sizeable bias and mean absolute error in
the uncorrected guessing condition (Table 2; Figure 2), as
well as the tendency for bias and absolute error to increase
at a, levels above 2.00 in"the corrected guessing condition

(l'able 37 Figure™ 3). Notfe also that in the uncotrecied
guessing condition (Table 2), test validity, 73, decreased at

levels beyond 2.00. Jensema (1972) observed this
p enomenon, which he termed “correlation drop-off.”

Study 2

Table 4 lists the observed mean values under each item
pool configuration of test score, test length, and error of
estimate for each value of 0. Figures 4, 5 and 6 depict these
data graphically.

a. Test length. Mean test length (Figure 4) did not vary
with 6 in the 7,,0 configuration since the maximum of 30
items occurred at all levels. In the r,,-.71 configuration,
mean test length covaried positively and almost perfectly
with ability level. In the r,,+.71 configuration, test length
covaried inversely with trait level, with more items required
at the lower trait levels until the arbitrary 30-item limit was
reached. -

b. Test scores. The regression of mean trait estimates, 0
on 0 was virtually linear in all three configurations in the
interval [-1.5<8<2.0]. As can be seen from
Figure 5, the Bayesian test scores tended to underestimate
6 at high trait levels, and to overestimate 6 at low trait
levels. The regression of 6 on 6 departed from a linear
regression at extreme levels of 8 (beyond 6 = £2.00) with
the departure more noticeable in the lower extremes of the
scale.

c. Errors of estimate. The regression of mean errors of
estimate on 6, seen in Figure 6, clearly illustrates a
tendency of the Bayesian test scores to overestimate 0
markedly and consistently at §<-1.5 in all three item pool
configurations. The tendency to underesiimate Righ Us &3
also illustrated. In this data the latter tendency was quite
strong with r,;,~.71 but less so with 7,5 +.71.

1ﬂf0rmatlon The estimated values of the derivative

9_[E(616)], the conditional standard deviation 04 and
ale information at each level of 6, under each item pool
configuration, are listed in Table 5. Smoothed information
curves for all three configurations are plotted in Figure 7.
Some noteworthy trends are pointed out here.




TABLE 1

Test Length, Mean Errors of Estimate, and Cormrelates of Ability 6 and Test Score 0, as a

Function of Item Discrimination ag in the Perfect Item Pool. No Guessing Condition (cg=cl-=0).

Item Discrimination (a,)

Property 5 6 7 8 9 1.0 125 15 175 2.% 225 25 275 3.0

Test Length

Mean 100 71 52 41 33 27 18 13 11 9 7 7 6 5

Minimum 100 71 52 41 33 27 18 13 11 9 7 7 6 S

Maximum 100 71 52 41 33 27 18 13 11 9 7 7 6 N
Error of Estimate

Mean (Bias) .00 -.01 02 01 .00 .01 00 .02 .04 .06 .04 05 .03 .04

Mean Absolute Error 17 17 19 19 18 .19 18 21 20 21 21 20 .21 22
Correlates

with error

Toe -35 -27 -31 -36 -39 -35 -37 -37 -30 -37 -39 -36 -32 -35

Toe -17 -08 -10 -16 -20 -15 -17 -14 -07 -15 -16 -14 -09 -10

with test length

Tok .2

Tox

rgg(validity) 98 98 .98 98 98 98 .98 97 97 97 97 97 97 97

a. Correlations not computed since test length (k) was constant.

TABLE 2

Observed Properties of the Bayesian Sequential Test as a Function of Item
Discrimination in the Perfect Item Pool. Uncorrected Guessing (cg:O; ¢j=20°

Item Discrimination (ag)

Property S 6 Ni .8 9 1.0 125 1.5 175720 225 25 275 30
Test Length
Mean 100 71 52 41 33 27 18 13 11 9 7 7 6 S
Minimum 100 71 52 41 33 27 18 13 11 9 7 7 6 5
Maximum 100 71 52 41 33 27 18 13 11 9 7 7 6 5

Errors of Estimate

Mean (Bias) 57 A48 47 42 37 34 30 .27 29 3t .32 .31 29 .29
Mean Absolute Error 58 48 48 46 42 39 .37 .37 36 40 .39 .38 .37 .39
Correlates

with error

r .51 -46 -49 -48 -48 -43 -44 -36 -31 -31 -32 -32 -32 -32
’gz -29 -23 -23 -19 -20 -13 -16 -04 O1 05 .05 .05 .07 .02
with test length a

qu

Tok

rea(validity) 97 97 96 95 95 95 96 94 95 93 93 .93 92 91

a. Correlations not computed since test length (k) was constant.
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TABLE 3

Observed Properties of the Bayesian Sequential Test as a Function of Item
Discrimination in the Perfect Item Pool. Corrected Guessing (cg=cl=.20)

Item Discrimination (ag)
Property S .6 7 .8 9 1.0 125 15 175 2.0 225 25 2795 30
Test Length
Mean 100 99 77 60 48 40 27 20 16 13 11 10 9 9
Minimum 100 93 66 52 42 33 21 14 11 8 7 6 6 5
Maximum 100 100 88 69 57 49 32 26 21 19 18 16 15 14

Errors of Estimate

Mean (Bias) 04 03 .02 .03 .02 .04 .01 .01 .01 .02 .04 .06 .07 .08
Mean Absolute Error 22 .18 .16 .18 .19 .19 16 .17 19 .20 A8 .20 A9 21
Correlates
Toe -39 -36 -25 -39 -42 -35 -37 -37 -38 -39 -25 =37 -33 -33
The -17 -18 -09 -20 -23 -16 -19 -.18 -18 -.19 -14 -14 -10 -.08
Yok .7 54 80 78 78 .81 .81 8 .85 .88 .85 .88 .90 .88
Tk .... .56 .82 81 .80 .83 .82 84 .87 .89 .86 .90 91 .90
Y] 97 98 .99 98 98 .98 98 .98 98 .98 98 .97 97 97

a. Correlations not computed since test length (k) was constant.
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Figure 1. Some observed properties of a Bayesian sequential test,
as a function of item discrimination. No guessing; perfect
item pool; posterior variance termination criterion.
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Figure 2.

Some observed properties of a Bayesian sequential test,
as a function of item discrimination. Uncorrected .20

guessing; perfect item pool; posterior variance termina-
tion criterion.
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Figure 3. Some observed properties of a Bayesian sequential test,
as a function of item discrimination. Corrected .20
guessing; perfect item pool; posterior variance termina-
tion criterion.
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TABLE 4

Mean Test Scores (8), Mean Test Length (k) and Mean Error of Estimate (e)
for Three Item Pool Configurations, at each of 31 Trait Levels (9)

Item Pool Configurations

rab+'7 1 rab.() rab-.7 1

[} i k e 6 k e 8 k e
-3.0 -2.39 30 612 -2.47 30 532 -2.30 14 696
-2.8 -2.26 30 545 2.29 30 513 -2.20 14 601
-2.6 -2.06 30 542 -2.25 30 .352 -2.17 15 427
-2.4 -2.00 30 404 -2.06 30 342 -2.08 15 317
2.2 -1.81 30 .390 -1.94 30 263 -1.93 16 .269
-2.0 -1.70 30 296 -1.80 30 204 -1.74 17 263
-1.8 -1.60 30 200 -1.66 30 141 -1.65 18 146
-1.6 -1.44 30 163 -1.45 30 151 -1.48 18 125
-1.4 -1.24 30 .162 -1.32 30 .082 -1.29 20 110
-1.2 -1.12 30 076 -1.12 30 .082 -1.14 21 060
-1.0 -.93 30 073 - 93 30 071 - .98 22 .018
- .8 - .74 30 .055 - .74 30 .055 - .76 24 .037
- .6 - .56 30 .038 - .59 30 014 - .58 26 .015
-4 - .44 30 -.040 - .40 30 .004 - .35 27 049
-2 - .25 30 -.046 - .21 30 -.010 - .14 29 062

0 - .06 30 -.058 .05 30 046 .02 30 021

2 20 30 -003 .16 30 -.039 .19 30 -.007

4 .35 30 -.053 .34 30 -.056 .35 30 -051

.6 53 29 -.068 .61 30 .010 58 30 -.015

.8 .76 29 -.044 74 30 -058 .81 30 013
1.0 95 28 -.051 .89 30 - 113 92 30 -.080
1.2 1.11 27 -091 1.16 30 -.036 1.15 30 -.047
1.4 1.37 26 -.034 1.33 30 -.068 1.25 30 -.150
1.6 1.53 26 -.074 1.48 30 -117 1.46 30 -.140
1.8 1.73 25 -.070 1.68 30 -.123 1.64 30 -.165
2.0 1.89 24 -113 1.88 30 -.119 1.78 30 -.224
2.2 2.09 24 -.107 2.05 30 -.146 1.98 30 -.224
2.4 2.27 23 -132 2.22 30 -176 2.13 30 -270
2.6 2.47 23 -.126 2.37 30 -.230 2.33 30 -.273
2.8 2.63 23 -.168 2.57 30 -.230 2.43 30 -.372
3.0 2.81 23 -.189 2.72 30 -.282 2.57 30 -426
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Figure 4. Mean estimated ability (@) at thirty-one ability points (8)
for the simulated Bayesian sequential test under three
item pool configurations.
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Figure 5. Mean number of items to termination (test length) at
thirty-one ability points (#) for the simulated sequential
test under three item pool configurations (See text.)
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(6) for the simulated Bayesian sequential test under three
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Estimated Value of the Derivative ;?g’ Conditional Standard
Deviation 7 and Value of the Information Function 1@(9)

for Three Item Pool Configurations, at 31 Ability Levels (8)

TABLE 5

Item Pool Configuration

¥ rab,71 rab() rab—.71
] 20 o« 1206 L 150 20 03 I2(0)
Y] al6 4(0) 20 016 8(0) 30 6le ]

-3.0 523 307 2.90 588 .336 2.58 450 .353 1.63
-2.8 .566 353 2.57 629 333 3.57 S11 308 2.75
-2.6 .607 .328 342 .668 304 4.83 .568 279 4.14
2.4 645 341 3.58 704 283 6.20 621 264 5.54
2.2 .682 321 451 .738 294 6.31 .670 268 6.26
-2.0 716 .330 471 770 284 7.35 716 289 6.14
-1.8 748 324 5.33 .799 228 12.29 .758 289 6.87
-1.6 778 257 6.26 .826 266 9.64 .796 247 10.37
-1.4 783 311 6.34 .850 265 10.29 .830 230 13.01
-1.2 .832 314 7.01 872 261 11.16 .860 251 11.73
-1.0 855 278 9.46 .892 275 10.52 .886 235 14.21
- .8 876 316 7.69 .909 278 10.70 908 244 13.86
- .6 .895 283 10.00 924 260 12.63 927 244 14.44
-4 912 282 10.47 936 288 10.57 .942 255 14.66
-2 927 .308 9.06 946 278 11.59 953 284 13.96

0 940 305 9.50 954 249 14.68 .960 257 13.96

2 946 253 1398 959 248 14.96 963 284 11.50

4 959 255 14.14 962 281 11.72 963 252 14.59

.6 965 287 11.29 962 275 12.25 958 285 11.31

.8 965 269 12.86 960 248 15.00 950 276 11.85
1.0 971 228 18.15 956 250 14.62 938 336 7.79
1.2 971 228 18.13 .949 250 14.42 922 294 9.84
1.4 968 218 19.71 940 272 11.94 .902 295 9.36
1.6 964 246 15.35 928 259 12.85 .879 301 8.52
1.8 957 229 17.46 914 292 9.81 851 317 7.21
2.0 948 263 13.00 .898 .289 9.66 .820 .296 7.67
2.2 937 230 16.56 .879 260 11.43 785 321 5.98
2.4 924 210 19.35 .858 255 11.32 .746 294 6.44
2.6 .908 227 16.00 834 270 9.55 .703 349 4.06
2.8 .891 258 16.69 .808 250 10.46 657 332 3.91
3.0 871 218 16.00 780 279 7.82 .606 293 4.28
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Figure 7.

Smoothed curves of the information functions of the
Bayesian sequential test under three different item pool
difficulty-by-discrimination configurations. (see text.)
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1) Under all three item pool configurations the informa-
tion functions were very low in the low end of the 0
distribution;

2) For r,3+.71 the information values uniformly in-
creased with increasing 6;

3) For 7,50 information generally increased with 6, to
about 6 = 1.00, then decreased somewhat;

4) For 1,3~ .71 information increased sharply with 8,to
about 8 = 0, then just as sharply decreased.

DISCUSSION

Study 1

Test length, or number of items required to satisfy the
posterior variance termination criterion, was shown to vary
inversely with item discriminatory power, a,, when the
latter is constant for all items in a given test. Tlglis result was
expected, and corroborates the findings of Jensema (1972,
1974) who also pointed out that if constant item dis-
criminatory powers were available it would be possible to
predict the validity of the trait estimates from the number
of items administered, and conversely to estimate the
number of items required to achieve any given validity
level.

In the no-guessing and uncorrected guessing conditions
(that is, in tests which assume no guessing) the test length
was constant for any fixed @, value. This result would not
be likely to occur with a finite pool of items due to the
inevitability of imperfect §-with-item-difficulty matches.
That is, with a finite item pool some variance in test length
would likely occur even if all items had equal discrimina-
tion parameters. The fact that there was no variance in
test length  (within any given discrimination level) with the
perfect item pool indicates that any variance in test length
in a real, constant-discrimination, no-guessing test must be
due solely to inadequacies in the distribution of item
difficuity parameters in the finite item pool.

These results are pertinent to the use of Rasch-model
ability estimation in an adaptive testing situation. Except
for the specification of the item characteristic function, the
Rasch model is conceptually identical with the no-guessing
model used in Study 1. Within each test, item discrimina-
tion parameters were constant (as the Rasch model
assumes) and no-guessing was assumed. Thus the major
difference between this portion of Study 1 and a Rasch
model simulation would be in the definition of the item
response model. We assumed a one-parameter normal ogive
response model, whereas the Rasch model uses a one-
parameter logistic one (Bimbaum, 1968, p. 402). As
Bimbaum (1968, p. 399) has pointed out, the two response
models are very similar. Thus, the results of Study 1 for the
no-guessing condition should be generalizable to adaptive
tests based on the Rasch model.

In the corrected guessing condition (Figure 3) there was
some variance in test length for all 4, values (except
ag = .50, where no testees terminated in fewer than 100

items). For all g, levels above .50, test length 8 correlated
strongly and positively with the trait estimate 6 (Table 3).
The test length - correlation r5y equalled or exceeded .80
for all a, values above .6. The correlation r,; between test
length and ability 6 was of similar magnitude but always
smaller than rgz. It seems obvious that for the case of
constant item discrimination and non-zero guessing there is
a systematic relationship between ability 8 or test score 8
and number of items administered. Examination of the
partial correlations, however, shows that Yoy vanishes when
6 is statistically controlled for. For instance, for a, = 1.0 we
observed 7oy = .81, g = .83, rp4 = 98, Controfling for §
and @, respectively, yields the following partial correlations:

rek_é =-.03

rékae =31

Analysis of the corresponding partial correlations for the
other a, levels would yijeld a similar result: r,; japproxi-
mately zero, but 75, , positive and moderate. This suggests
that, at least for the constant item discrimination case, the
tendency for rgx to be positive is due to some characteristic

© of the trait estimation method using the guessing correc-
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tion.

Another observation with regard to test length has a
practical application. Where the posterior variance termina-
tion criterion is to be used, it is desirable that all or nearly
all examinees reach criterion (e.g., o2m< 0625 or some
other arbitrary value) within a reasonably small number of
items, Typically (e.g., Urry, Jensema), a 30-item maximum
test length has been imposed in conjunction with the
posterior variance criterion. If a large number of examinees
reach the 30-tem limit before attaining the posterior
variance criterion, the latter may lose its usefulness as a
predictor of test validity. The data of Table 3 (and Figure
3) indicate that even with a ‘“‘perfect” item _pool, the
constant item discrimination parameter must equal or
exceed @, =1.25 in_order to insure test termination in

tewer than 30 items for the majority of examinees when

guessing is a factor. Although it is difficult to generalize this

finding" to the case of typical finite item pools, it is
reasonable to expect that test termination via the posterior
variance criterion 02m<.0625 will seldom occur in fewer
than 30 items in Bayesian sequential tests using item pools
whose mean item discrimination parameter is less than
1.25.

Errors of estimate were moderately and negatively
correlated with 8 in all three conditions, with the strongest
correlations observed in the uncorrected guessing situation.
That is, with constant item discrimination and a perfect
pool of item difficulties, larger errors of estimate (@—0)
tended to occur as @ decreased. This tendency can be
viewed as a regression effect. As is typical with linear
regression estimates for all three conditions the estimates 6
tended to be closer to the mean than the actual values 6.



. The correlation rj, between trait estimates § and errors
(6-0) was consistently of the same sign but lower magni-
tude than ry,, with the no guessing and corrected guessing
conditions,

The mean error of estimate, or bias, was virtually zero in
the no guessing condition, until ag became large (Table 1;
Figure 1). For a,21.50 there was a tendency for positive
bias to occur. Similarly, mean absolute error was quite
constant until 2,=1.50, than became larger. In the corrected
guessing condition (Table 3, Figure 3) mean absolute error
was fairly constant across a, levels, but bias was positive at
low a, values, diminished virtually to zero at intermediate
levels, and began to increase steadily as ag increased above
2.0.

Study 2

Test length. The data illustrate clearly the effect of item
pool configuration on the correlation of test length with 8
(or 5): The correlation is strong and its sign was opposite
that of the r,;, correlation in the simulated item pool. (For
the r,;0 configuration there was no variance in test length,
due to the arbitrary 30-item limit. The preceding three
studies have shown, however, that with constant a,, test
length varies directly with 6. Presumably that relationship
would hold for the 7,,0 configuration if test length was
free to exceed 30 items). We have already alluded to the
inverse relationship between test length and the rate of
reduction in the Bayes posterior variance. Thus, it should
be clear that the configuration of difficulty and discrimina-
tion parameters in the item pool, which can be roughly
described by the correlation of the discrimination and
difficulty parameters (7,;), effectively dictates the rate of
posterior variance reduction at any level of the trait 6.
Furthermore, if a maximum test length is arbitrarily
established (such as the 30-item limit used by us, and by
Urry, 1974, and Jensema, 1972) that limit, in conjunction
with the item pool configuration, may dictate regions of
the 0 continuum in which satisfactory convergence of the
trait estimates will seldom occur.

Errors of estimate. Study 1 found very high validities of
the trait estimates 8, indicating that the Bayesian sequential
test is capable of ordering simulated examinees from a
normal population quite well with respect to the variable,
0, underlying the item responses. Study 2 was motivated by
an interest in the accuracy of the estimates of 8, rather than
the correctness of ordering, as a function of 8 itself. The
data showed clearly that the Bayesian estimates behaved in
a manner similar to linear regression, except at the extremes
of the normal distribution (6<-1.5 and 6>2.0). Typically,
linear regression underestimates the criterion variable above
the mean, and overestimates it for values below the mean.
Such was the case for the Bayesian sequential estimates,
except that the underestimates became fairly sizeable
(around .20) on the average for 6>2.0, and overestimates
became severe (larger than .5) in the lower levels of the
trait. Furthermore, it was shown that the behavior of the
trait estimates varies as a function of the item pool

51

configuration. Thus, by controlling the item pool configura-
tion for a live-testing item pool it should be possible to
control the accuracy of the Bayesian test scores as
estimators of the actual trait level of the examinees. Other
alternatives may prove useful in this regard. Some of these
will be discussed below.

Information. For the configuration r,,+.71, the in-
formation of the trait estimates appears to increase linearly
with 6, at least in the interval [~3.0<6<3.0]. This is what
we might expect, since item discrimination increased with 0
in this configuration. Note (Table 4) that mean test length
in this configuration was 30 items for-3<#<.6,and then
decreased linearly with for §<.6, reaching a mean of 23
items at 0 = 3.0.

For the 7,,0 configuration the information function
appeared to take the shape of an inverted (and rather
asymmetric) shallow dish, with maximal information
attained in the interval [0<6<1.5]. This should approxi-
mate, at least in its form, the information structure
resulting from applying the Bayesian sequential test with a
real item pool whose configuration is based on Urry’s
(1974) prescription. It should be apparent that some
efficiency of measurement will be lost in the extremes of
the 6 distribution, especially in the lower extremes. Note
that for these data, test length was a constant 30 items at
all levels.

For the r,,-.71 configuration the information curve
does not take the shape one would assume intuitively.
From knowledge of the distribution of the discrimination
parameters it would seem that the curve should mirror that
of the r,;+.71 information but with maximal information
at 8=-3.0. Instead it rather emphatically takes the convex
form. The test is maximally efficient in the interval
[-1<6<0], and rapidly loses efficiency elsewhere. This is a
remarkably different result from what one would expect.
The highest item discrimination parameters were available
at the low end of the @ scale, yet information was as low
there [-2<6<-1.5] as it was where the lowest item
discrimination values occurred [1.5<0<3.0] . The low levels
of information in the low 6 region are due in part to the
small number of items administered there. As Table 4
reveals, the posterior variance termination criterion resulted
in mean test length of 14 items at 0=-3.0; 17 items at
0=-2.0; 22 items at 8=1.0 The information values ob-
tained with these test lengths could be adjusted statistically
to estimate the information values for constant 30 item test
length. Such an adjustment would still show an efficiency
loss at 8<-2.0 for this item pool configuration, despite the
high average item discrimination in that region. We will
address this problem further in the discussion to follow.

Implications. These results were obtained by simulating
a “perfect” item pool; i.e., a pool in which unlimited
numbers of items of any difficulty level were available. This
should result in data, which, within the limits of sampling
error, approximate the best possible results obtainable using
the sequential testing procedure as specified by Owen
(1969), under the conditions studied.




We have found, as did Urry (1971, 1974) and Jensema
(1972, 1974) before us, that the procedure has the
potential to yield trait estimates having very high validities
with great economy in test length, provided that highly
discriminating test items, rectangularly distributed on
difficulty, consitute the item pool. We have also found that
there may _be a tendency of the method to overestimate
group mean _trait level, when item discrimination para-
meters are very high, even when the trait estimation model
‘exactly conforms to the item response model. When the
estimation model is not congruent with the item response
model (as in the uncorrected guessing condition of study 1)
we have found that rather sizable bias of estimate may
occur, accompanied by diminished validity.

Lord (1970, p. 152) made the point that evaluating a
tailored test by means of a group statistic (such as our
validity coefficient r44) presumes some knowledge of the
group’s distribution on the trait being measured, and
ignores information relevant to the accuracy of trait
estimates at any one level of the trait. The validity of the
Bayesian sequential test trait estimates was, as we have
seen, quite high under the conditions used in our simulation
studies. The accuracy of the estimates was also favorable in
what corresponds to the middle ranges of a normal
distribution on 6, but was found to be less favorable in the
extremes, especially the lower extreme. Similarly, the
information functions of the trait estimates showed that
the effectiveness of measurement under the Bayesian
tailoring procedure varied systematically as a function of
the configuration of the item parameters constituting the
item pool, but in all three configurations measurement
effectiveness was very low in the low ranges of the trait.

The observed loss of accuracy and information in the
extremes of the “typical” range of 0 are disturbing; since
the advantage of tailored testing over conventional testing is
the former’s supposed potential for superior measurement
accuracy and effectiveness in those extremes. From our
data it is apparent that with the exception of the 7,,+.71
configuration, the sequential test scores are behaving much
like conventional test scores, at least in terms of the shapes
of their information functions. And even for the r,;-.71
configuration measurement effectiveness was relatively
poor in the lower extremes of 8. The utility of the Bayesian
adaptive testing strategy may be diminished considerably
by results like those reported for Study 2, if they prove to
be general.

The problems revealed in Study 2 (of bias non-linear in
#, and of convex information structures of the trait
estimates) have causes which may be amenable to improve-
ment. At the heart of the problem is the effect of guessing,
which generally operates to reduce measurement efficiency
at all trait levels, and especially at low trait levels. Also at
the core of the problem is the Bayesian procedure itself. As
we have pointed out earlier, the Bayesian trait estimates
behave like regression estimates. Extreme values of 6 are
systematically regressed toward the initial prior esti-
mate: the assumption of a normal prior distribution of ¢
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ensures this tendency. Now, the more extreme 0 is for any
individual, the larger will be the regression effect, on the
average. Recall that the item selection procedure selects an
item with difficulty b, somewhat easier than the current 8
estimate. But for high 8 the current estimate is almost
always too low. Hence the difficulty of the selected item
will almost always be too easy for extremely able exam-
inees. Cumulated over, say 30 items, the effects of this
inappropriate item selection will be several:

1) mean proportion correct will tend to increase as a
function of @, despite the explicit attempt of the tailoring
procedure to make it constant at all levels of 8;

2) 0 will tend to be underestimated for high ¢ due to
the inappropriate difficulty of the test items administered;

3) information loss will occur at high 6 due to the
shallowing slope of the regression of 6 oro.

For low @ the initial prior is an overestimate. Hence, the
first item selected will generally be too difficult
[(b -0)>0], yet the examinee has a non-zero chance of
answermg it correctly. A correct answer, of course, will
cause an increase of § and thus result in another inappropri-
ate choice of item difficulty. Furthermore, as Samejima
(1973) has shown, there may actually be negative informa-
tion in a correct response to an item whose difficulty b
exceeds an examinee’s actual trait level 6 by a fairly smaﬁ
increment, when guessing is a factor. We suggest that
examinees in the low extremes of § are rather consistently
being administered overly difficult items [(bg—0)>0] with
several systematic results:

1) mean proportion correct tends to decrease with 0
despite the tailoring process;

2) posterior variance reduction tends to be more rapid
for individuals of low trait levels, due largely to their
sub-optimal proportion of correct responses, resulting in
shorter mean test length;

3) the shorter the test length, the less opportunity the
Bayesian estimation procedure has to converge to extreme
trait level estimates;

4) non-convergence combines with negative information
in some correct responses to diminish severely the effective-
ness of measurement in the low regions of the trait.

Some of the conclusions just stated are speculative.
Specifically, we have not looked at proportion correct as a
function of @, nor at the quantity (b -9), both of which
bear on the appropriateness of the taﬂonng process. Future
simulation studies will be necessary to examine these
variables.

One goal of adaptive testing should be to achieve a
constant high level of measurement effectiveness at all
levels of 0. This desideratum is equivalent to a high,
horizontal information function. We have found that the
Bayesian sequential test failed to achieve this goal despite
an unrealistically favorable set of circumstances: the per-
fect item pool, errorfree item parameters, and a scoring
model perfectly congruent with the item response model.
We have attributed the shortcomings of the Bayesian trait
estimates to the regression-like tendency of the sequential



estimates themselves, which in turn result in inappropriate
item selection for individuals whose trait levels are ex-
tremely high or low.

There are at least two methods of ameliorating this
problem, both of which should, to some extent, lessen the
bias of estimate at the extremes and improve the informa-
tion structure of the trait estimates. The first method
involves the assumption of a rectangular rather than a
normal prior distribution of 6. The second method would
involve replacing the present item selection procedure with
a mechanical branching procedure which would be less
sensitive to large errors in the current trait estimate in its
choice of the next item to administer. Needless to say, both

of these alternatives do considerable violence to Owen’s
elegant procedure.

If the practitioner is committed to the procedure as it
was originally proposed, it would seem that the best course
of action would be to take great care in assembling the item
pool, and to administer a constant number of items (say
30) to each examinee. If no strong commitment to Owen’s
procedure is involved, the practitioner may be well advised
to use another adaptive strategy, such as Weiss’ stradaptive
test (Weiss, 1974), Lord’s (1974) maximum likelihood
procedure, or a similar procedure being investigated by
Samejima (1975). Systematic investigation of some of these
strategies, which will permit them to be compared with the
Bayesian sequential test, are currently in progress.
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