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Abstract
This paper presents a new method for assessing consistency of test perfor-
mance across two occasions, where on one occasion the level of performance
may be misrepresented, and on the second occasion it is not. The new proce-
dure is based on the application of Bayesian model assessment methodology
to multidimensional item response theory. A simulation study based on
a high-stakes multiple-aptitude test-battery was conducted to evaluate the
proposed method. The new procedure was judged superior to one based only
on a discriminant analysis of …nal test-scores.

1. Introduction

For many employers and institutions of higher education, a natural tension exists
between the desire to attract the most able applicants and the unwelcome requirement of
a stressful high-stakes screening exam. In many cases, the exam used to enforce minimum
quali…cation standards is believed to discourage highly quali…ed applicants, and in this
sense may serve to reduce the number of able candidates. Consequently, test-developers
have sought ways of making the testing process less onerous and burdensome from the test-
takers’ perspective. The move towards computer-administered and computerized-adaptive
testing by many test-developers is a direct outcome of these e¤orts.

Computer administered tests possess a number of advantages over conventional paper-
and-pencil tests. The use of a computer allows individually administered standardized tests
which can be tailored to the characteristics or needs of the test-taker. The di¢culty-level of
test questions can be tailored to the test-taker’s aptitude level, resulting in increased mea-
surement e¢ciency (in the case of Computerized Adaptive Testing). Similarly, scheduling
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(of the exam’s time and place) can be more easily adapted to individual preferences than
is possible with conventional group administered paper-and-pencil exams.

Some consideration has been given to in-home (or internet) based computer admin-
istered tests as a means to further increase test-takers’ comfort and convenience, and ulti-
mately as a way to increase their participation rates in mandatory testing programs. One
impediment to in-home high-stakes testing involves the integrity of the reported test per-
formance. In the absence of an impartial proctor, how can the institution verify that the
answers attributed to one individual were not in fact provided by another (presumably more
able) test-taker? Similarly, how can the institution verify that inappropriate resources (e.g.,
dictionaries and encyclopedias) were not used as aids by the test-taker in the unmonitored
privacy of their home? In a typical high-stakes setting, these assurances are provided by
proctors who verify the examinee’s identity and adherence to test-security protocol. With
unproctored in-home exams, some test-takers may be tempted to enlist the aid of others to
achieve high scores and all the bene…ts derived from these improved scores.

One solution to the veri…cation dilemma requires the administration of a short sec-
ond exam given under secure proctored conditions. If performance levels on the initial
(unproctored/in-home) exam are consistent with the short proctored veri…cation exam, then
the in-home scores become the applicant’s scores of record, otherwise the initial test-scores
are invalidated and the applicant is required to retake an alternate form of the full-length
exam under proctored conditions.

The usefulness of the veri…cation approach depends in large part on the e¢ciency and
accuracy of the veri…cation test. Ideally, the short accurate veri…cation test would identify
those misrepresenting their performance, while placing only a small additional burden on
the honest test-taker. Such a short accurate veri…cation test has the potential to increase
participation rates among prospective applicants. Conversely, there are likely to be smaller
increases in participation rates resulting from longer less e¢cient veri…cation exams, since
these exams place additional burdens and discomfort on the test-taker.

This paper presents a new method for assessing consistency of test performance across
two occasions, where on one occasion the level of performance may be enhanced or misrepre-
sented, and on the second occasion it is not. The new procedure is based on the application
of Bayesian model assessment techniques to item response theory. The performance of the
proposed method is evaluated through the use of simulated data based on a high-stakes
multiple aptitude test-battery.

2. Bayesian Model Comparison

The problem of detecting deceitful test-takers can be approached through the appli-
cation of Bayesian model comparison methodology (O’Hagan, 1994, Chapter 7). We begin
by letting T and V denote mutually exclusive item-sets administered under initial and ver-
i…cation conditions, respectively, and let A = T [ V denote the total set of administered
items. Initial items are assumed to be administered under conditions that allow for the
possibility of misrepresented test-performance (i.e., as is possible with in-home exams). In
contrast, veri…cation items are assumed to be administered under conditions that do not
allow misrepresentation to occur (because of the presence of proctors and the enforcement
of standardized testing practices). The source of administered test items is denoted by
h = (hi : i 2 A), where hi = 1 indicates that i 2 T (i.e., item i is contained in the initial
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test), and hi = 0 indicates that i 2 V (i.e., item i is contained in the veri…cation test).
Responses to the n test items are denoted by the n-element vector u = (ui : i 2 A), where
ui = 1 if item i is answered correctly, and ui = 0 otherwise.

We also assume that each test-taker can be classi…ed into one of two mutually exclusive
classes: authentic (a test-taker who does not misrepresent their performance) or enhanced (a
test-taker who does misrepresent their performance). The behavior of enhanced test-takers
is dependent on item-source (initial or veri…cation), whereas the behavior of authentic test-
takers is the same for both item-sources. The behavior of authentic test-takers on both
initial and veri…cation items (spanning m dimensions) is described by Model 0 (denoted by
® = 0), which characterizes the examinee’s performance in terms of a vector of true ability
parameters µ(0) = (µ1; :::; µm). The test-taking behavior of enhanced examinees is described
by Model 1 (denoted by ® = 1), which is dependent on item source. The performance of
enhanced test-takers on initial items is characterized by an enhanced ability vector µ(1) =
(µ1; :::; µm; µm+1; :::; µ2m) ; where performance levels along each of the m-dimensions are
indexed by summed parameters µk + exp (µk+m) (for k = 1; :::; m). Here, exp (µk+m) is
viewed as a positive performance increment. For each dimension k (k = 1; :::; m) these
increments can result from the substitution of the test-taker (with ability µk) with a more
able surrogate [possessing enhanced ability µk + exp (µk+m)]. In contrast, the performance
of enhanced test-takers on veri…cation test items (i 2 V ) is modeled as a function of true
ability parameters µk (for k = 1; :::;m) only, since veri…cation items are assumed to be
administered under secure testing conditions.

2.1 Posterior Model Probability

From Bayes’ theorem, the posterior probability1 that ® = 1 (i.e., the initial test
performance was misrepresented) given item response data u is:

p(® = 1ju) = p (® = 1;u)=p (u) ; (1)

where

p(u) = p (® = 0;u)+ p (® = 1; u) : (2)

The joint probability terms of u and ® are given by

p(u; ® = 0) = p (® = 0)p (uj® = 0) (3)

where

p (uj® = 0) =

Z
¢ ¢ ¢

Z
p(ujµ(0);® = 0)p(µ(0)j® = 0) dµ1 ¢ ¢ ¢dµm ; (4)

and by

p(u; ® = 1) = p (® = 1)p (uj® = 1) (5)

1For notational simplicity, we denote di¤erent distributions in the same equation or expression by p, with
p (¢j¢) denoting a conditional probability density and p (¢) denoting a marginal density. In each instance, the
arguments are dependent on the context.
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where

p (uj® = 1) =

Z
¢ ¢ ¢

Z
p(ujµ(1); ® = 1)p(µ(1)j® = 1) dµ1 ¢ ¢ ¢dµ2m : (6)

Here p (® = 1) = 1 ¡ p (® = 0) are known prior probabilities, and p(µ(0)j® = 0) denotes a
multivariate normal density with an m-element mean vector ¹0 and an m £m covariance
matrix ©0: Similarly, we model p(µ(1)j® = 1) by a 2m-variate normal density with mean
vector ¹1 and covariance matrix ©1, where the …rst m elements of ¹1 are constrained to
equal those of ¹0, and the upper left m £ m quadrant of ©1 is constrained to equal ©0.
These constraints follow from the fact that the …rst m elements of µ(1) are equal to the
m-element vector µ(0).

The probability of response pattern u for …xed µ(®) and Model ® (for ® = 0;1) is
calculated from the product of terms associated with individual items:

p(ujµ(®);®) =
Y

i2A
p(ui = 1jµ(®); ®)ui [1 ¡ p(ui = 1jµ(®);®)]1¡ui ;

which follows from the standard item response theory assumption of local independence.
For ® = 0, the conditional probability of a correct response to the ith item is given by an
expanded version of the three-parameter logistic model with item speci…c discrimination,
di¢culty, and guessing parameters ai, bi, and ci, respectively:

Pi(µ
(0)j® = 0) ´ p(ui = 1jµ(0);® = 0)

= ci +
1 ¡ ci

1 +exp[¡Da0i(µ
(0) ¡ bi1m)]

; (7)

where D = 1:7, bi is a scalar di¢culty-parameter, ci is the guessing parameter, 1m is a m£1
vector of 1’s, and a0i is a 1 £ m vector of item discrimination parameters. For ® = 1, the
conditional probability of a correct response to the ith item is given by

Pi(µ
(1)j® = 1) ´ p(ui = 1jµ(1); ® = 1)

= ci+
1 ¡ ci

1 + exp(¡Da0iJi
~µi)

; (8)

where eµi = fµ1 ¡ bi; :::; µm ¡ bi;exp (µm+1) ; :::; exp(µ2m)g, Ji = (Im; hiIm) is an m £ 2m
partitioned matrix, and where Im is an m £ m identity matrix. Note that the conditional
probability of a correct response for item i under the enhanced model p(ui = 1jµ(1);® = 1)
is either equal to (when i 2 V ) or higher (when i 2 T ) than the corresponding probability
under the authentic model p(ui = 1jµ(0);® = 0). This follows from noting that the exponent
containing hi in (8) in e¤ect increments the true ability parameters µk by positive values
exp (µk+m) for the enhanced model when hi = 1 (i.e., when the item is an initial item), and
does not provide an increment when hi = 0 (i.e., when the item is a veri…cation item).

2.2 Adaptive Item-Selection

Regardless of how items are selected for the initial test, the certainty regarding ® can
be enhanced though the e¢cient choice of veri…cation-test items. This can be accomplished



SURROGATE TEST-TAKER DETECTION 5

through the adaptive administration of items during the veri…cation test phase. Rather
than selecting items to minimize the uncertainty regarding latent ability parameters (which
is the objective of classical adaptive item selection, van der Linden & Pashley, 2000), a
potentially more e¢cient approach selects items that minimize the posterior uncertainty of
® given data u.

One common characterization of posterior uncertainty is provided by the posterior
variance:

Var (®ju) = p (® = 1ju) [1 ¡ p (® = 1ju)] : (9)

Suppose n items have already been administered, and the corresponding responses are
contained in the n-element vector u. Further suppose that we consider each candidate
item j =2 A for possible administration as the (n + 1)-th item, and select the item j0 which
minimizes the expected posterior variance

j0 = min
j =2A

E [Var (®juj ;u)] ; (10)

where the expectation is taken over the yet-to-be-observed response uj. This expectation is
calculated from the preposterior distribution of uj given the already observed n responses
u:

E[Var (®juj ; u)] = Var (®juj = 1;u)p (uj = 1ju) (11)
+Var (®juj = 0; u)p (uj = 0ju)

where p (uj ju) = p (uj ;u)=p (u). The required terms on the right-hand side of (11) can be
computed from a straightforward generalization of (1) and (2) which replaces u with the
augmented response vectors (uj = 0;u) and (uj = 1;u).

Additional items can be selected and administered until either: (a) the posterior
variance Var (®ju) based on administered items becomes su¢ciently small, or (b) some
prespeci…ed target test-length has been reached.

2.3 Marginal Probability Approximations

For moderate to high dimensionality problems (moderate to large m), the integration
in (4) and (6) can be computationally burdensome using standard numerical quadrature
techniques, since the number of function evaluations increases exponentially with m. How-
ever, useful approximations can be obtained by the exact integration of a truncated Taylor
series expansion. For higher-dimensionality problems, this approach requires far fewer com-
putations than required by numerical quadrature techniques.

Approximations to the marginal probabilities given by (4) and (6) can be obtained
through a second-order Taylor series expansion (Tanner, 1996, p. 31) about the posterior
mode

µ̂
(®)

= max
µ(®)

"
p(ujµ(®); ®)p(µ(®)j®)R

p(ujµ(®); ®)p(µ(®)j®)dµ(®)

#
:
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This expansion takes the general form

p (uj®) =

Z
exp[l®(µ

(®)ju)]dµ(®)

=

Z
exp[l®(µ̂

(®)ju) + (µ(®) ¡ µ̂
(®)

)0S®(µ̂
(®)ju)

¡1

2
(µ(®) ¡ µ̂

(®)
)0I®(µ̂

(®)ju)(µ(®) ¡ µ̂
(®)

) + r®(µ
(®)ju)]dµ(®)

¼ p(ujµ̂(®); ®)p(µ̂
(®)j®)

¯̄
¯I®(µ̂(®)ju)

¯̄
¯
¡1=2

(2¼)(®+1)m=2 (12)

where l®(µ
(®)ju) = ln[p(ujµ(®);®)p(µ(®)j®)];

I®(µ̂
(®)ju) = ¡ @2

@(µ(®))2
l®(µ

(®)ju)

¯̄
¯̄
¯
µ(®)=µ̂

(®)

;

and S®(µ̂
(®) ju) = @l®(µ

(®)ju)=@µ(®)
¯̄
¯
µ(®)=µ̂

(®). Since the …rst term l®(µ̂
(®)ju) is a constant,

it can be moved outside the integral. The second term vanishes since the vector of …rst
derivatives evaluated at the mode is equal to zero: S®(µ̂

(®)ju) = 0. Then by ignoring the
higher-order terms r®(µ

(®)ju), the remainder resembles the exponent of a multivariate nor-
mal density function with integral given by Anderson (1984, pp. 15–17). The approximation
provided by (12) can be calculated from the following steps:

1. Compute the posterior mode µ̂
(®)

.

2. Compute the determinant of
¯̄
Ī®(µ̂

(®)ju)
¯̄
¯ (the determinant of the observed in-

formation matrix evaluated at the posterior-mode µ̂
(®)

).

3. Compute the product p(ujµ̂(®); ®)£ p(µ̂
(®)j®) (the product of the likelihood and

prior evaluated at the posterior-mode) and combine with other terms as indi-
cated in (12) to produce the approximation to p (uj®).

Additional computational details are provided in the Appendix.

3. Simulation Study

A simulation study was conducted to examine the performance of the proposed
Bayesian detection method when applied to a high-stakes multiple aptitude battery. Re-
sponses from examinees assumed to follow the authentic and enhanced ability models were
generated for two types of exams: an adaptive initial exam and an adaptive veri…cation
exam. For the veri…cation exam, two approaches to item selection and classi…cation were
studied. The …rst approach used traditional adaptive item-selection which maximized the
precision of the latent ability parameters. This approach, termed score-based approach, used
an optimally weighted linear combination of the resulting initial and veri…cation test-scores
to classify respondents. The second approach was based on the Bayesian model-comparison
strategy, which used an adaptive item-selection strategy to minimize the posterior uncer-
tainty of ®, and a classi…cation index based on the posterior probability of ® given all initial
and veri…cation item response data u.
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Table 1: CAT-ASVAB characteristics
Test Pool a Battery

Subtest Content Area Length Size 80th %-tile Full Partial
1 General Science (GS) 15 110 1.4

p
2 Arithmetic Reasoning (AR) 15 209 1.4

p p
3 Word Knowledge (WK) 15 228 1.7

p p
4 Paragraph Comprehension (PC) 10 88 1.4

p p
5 Auto Information (AI) 10 104 1.7

p
6 Shop Information (SI) 10 103 1.4

p
7 Math Knowledge (MK) 15 103 2.1

p p
8 Mechanical Comprehension (MC) 15 103 1.2

p
9 Electronics Information (EI) 15 97 1.2

p

Table 2: Covariance matrix of latent abilities ©

Dimension
Dimension GS AR WK PC AI SI MK MC EI

GS 1.000
AR .645 1.000
WK .908 .611 1.000
PC .808 .847 .880 1.000
AI .486 .332 .326 .349 1.000
SI .676 .424 .566 .514 .824 1.000

MK .564 .846 .516 .711 .150 .218 1.000
MC .739 .758 .644 .800 .623 .725 .625 1.000
EI .808 .639 .724 .743 .642 .724 .536 .822 1.000

3.1 Full and Partial Test Batteries

All item responses were simulated from items patterned after unidimensional subtests
contained in the Computerized Adaptive Testing version of the Armed Services Vocational
Aptitude Battery ([CAT-ASVAB]; Segall & Moreno, 1999). These subtests, and their dis-
attenuated correlations © are listed in Tables 1 and 2, respectively. Two conditions cor-
responding to two di¤erent batteries were simulated: (a) a full battery, and (b) a partial
battery. The full battery condition consisted of all m = 9 subtests/dimensions spanned by
the CAT-ASVAB. The partial battery condition consisted of only m = 4 dimensions—the
math and verbal portions of the battery. (See the last two columns of Table 1.) These four
subtests play a special role in Military selection: A weighted sum of scores from these four
tests is used to determine eligibility status for entrance into the Military.

3.2 Simulated Test-taker Characteristics

Ability parameters for two types of examinees were generated. The …rst type consisted
of 2,500 authentic respondents whose responses were consistent with the authentic-ability
model (® = 0). For these examinees m-element vectors of parameters µ(0) were speci…ed.
The second type consisted of 2,500 enhanced respondents whose responses were consistent
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with the enhanced-ability model (® = 1). For these examinees, 2m-element vectors of
parameters µ(1) were speci…ed.

For the 2,500 simulated test-takers whose responses were consistent with the
authentic-ability model (® = 0), the m-element vectors of parameters µ(0) were drawn
from a normal distribution with mean 0, and covariance matrix © (shown in Table 2). For
the Full-Battery condition (m = 9), the entire 9 £ 9 ©-matrix was used in the covariance
matrix speci…cation. For the Partial-Battery condition (m = 4), only variances/covariances
involving the four math/verbal dimensions (Table 1, last column) were used in specifying
the required 4 £ 4 ©-matrix.

Under the enhanced-ability model, we denote the full vector of ability parameters by

µ1; :::; µm; µm+1; :::; µ2m ;

where the …rst m-elements denote the test-taker’s true ability on each of the m latent
dimensions, and the second set of m-elements (m + 1; :::;2m) denote corresponding log-
increments. These parameters were generated using an approach based on a surrogate
test-taker strategy:

1. First, draw a vector of true-abilities for the target test-taker from the population
distribution : (µ1; :::; µm) » N (0;©).

2. Let ¸ = (¸1; :::; ¸m) denote a vector of indicator variables, where ¸k = 1 if a
surrogate with higher ability on dimension k has been identi…ed, and ¸k = 0
otherwise. Initially ¸k = 0 (for k = 1; :::;m).

3. Sample a surrogate (denoted by s) from the same distribution: (µs1; :::; µ
s
m) »

N (0;©). If need be, repeatedly sample surrogates until one is found that has
higher latent ability levels on all four key2 dimensions (corresponding to subtests
AR, WK, PC, and MK), then assign log ability-increment parameters to the
target test-taker in the following manner:

µk+m = ln(µsk ¡ µk)
¸k = 1

¾
for all k where µsk > µk .

4. For the Full-Battery condition, if any dimensions have not been assigned a sur-
rogate increment-parameter (i.e., if

P
k ¸k 6= m), sample a new surrogate and

perform the assignments given by

µk+m = ln(µsk ¡ µk) , for all k where (µsk > µk \ ¸k = 0) ;

and

¸k = 1, for all k where µsk > µk :

Note that increment-parameters are only assigned for previously unassigned
dimensions. The surrogate sampling is repeated until all dimensions have been
assigned a log-increment parameter.

2Scores based on these dimensions are among the most important to the test-taker, since a composite
based on these subtests directly in‡uences entrance into the Military. These dimensions are also among the
most highly correlated, and are believed to be highly g loaded, as suggested by their high predictive validity
for success in military training.
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Table 3: Summary statistics of raw gain scores.

Dimension
Statistic GS AR WK PC AI SI MK MC EI
Mean 1.19 1.20 1.11 1.25 1.02 1.07 1.15 1.20 1.18
SD .81 .81 .82 .76 .84 .85 .83 .84 .84
Skewness .82 .91 .95 .86 1.15 1.08 .95 .81 .82
Kurtosis .43 .81 .78 .84 1.26 1.06 .82 .35 .46

This algorithm was used to generate ability parameters for the 5,000 simulees assumed
to follow the enhanced-ability model. The …rst m-elements of the prior mean vector ¹1 were
set to zero, and the upper-left m£m submatrix of ©1 was set equal to © (shown in Table 2).
The remaining elements of ¹1 and ©1 were speci…ed from sample means and covariances of
the µ(1) parameters generated from 10,000 additional replications of the surrogate test-taker
sampling algorithm. The average Pearson product moment correlation r between log-gain
and ability across the relevant dimensions was

1

m2

mX

j=1

mX

k=1

r
¡
ln

¡
µsj ¡ µj

¢
; µk

¢
=

½ ¡0:25; for Full-Battery (m = 9)
¡0:30; for Partial-Battery (m = 4)

;

suggesting that lower ability simulees tended to receive slightly larger gains. The average
correlation among log-gain variables was

2

m (m ¡ 1)

mX

k=2

k¡1X

j=1

r
¡
ln

¡
µsj ¡ µj

¢
; ln(µsk ¡ µk)

¢
=

½
+0:25; for Full-Battery (m = 9)
+0:33; for Partial-Battery (m = 4)

;

suggesting that those receiving large gains on one dimension tended to receive slightly larger
gains on other dimensions as well. The …rst four moments of the marginal distributions of
raw (µsk ¡ µk) gain-scores resulting from 10,000 full-battery3 replications of the surrogate
test-taker sampling algorithm are displayed in Table 3.

3.3 Initial Test

An initial test was simulated for each respondent. Item selection and scoring algo-
rithms, as well as item-pool composition were based on the CAT-ASVAB (Segall, Moreno,
Bloxom, & Hetter, 1997; Segall, Moreno, & Hetter, 1997). Item responses were generated
according to an m-dimensional multi-unidimensional model. According to this approach,
each item possessed one nonzero discrimination parameter contained in the m-dimensional
vector a0i = (a1i; a2i; :::; ami). The pattern of nonzero item discrimination parameters for
the ith item was dependent on the content (or dimension) k (for k = 1; :::; m) measured
by the item. The discrimination parameter aki > 0, if item i measures dimension k, and
aki = 0 otherwise. The bi, ci, and nonzero aki were de…ned from the estimated unidimen-
sional three-parameter logistic item parameters from Form 1 of the CAT-ASVAB. These

3Although the sample moments of the 10,000 partial-battery replications are not displayed, they were
within sampling error of their full-battery counterparts—a result assured by the data generation algorithm.
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estimated parameters were treated as true (error-free) values for response generation, and
for item selection and scoring.

In addition to the characteristics of the items (as indicated by their a, b, and c pa-
rameters), simulated responses to the adaptively selected items were also dependent on the
examinee classi…cation: authentic respondent (® = 0) or enhanced respondent (® = 1).
For authentic respondents, the conditional probability of a correct response was calculated
from (7) which is dependent on the test-taker’s ability level µ(0). For enhanced respondents,
the conditional probability of a correct response to items contained in the initial test pool
(hi = 1 : i 2 T ) is calculated from (8), which is dependent on the set of surrogate ability
parameters (expressed as functions of the parameters contained in µ(1)). In both instances,
dichotomous (correct/incorrect) responses were produced by comparing the relevant condi-
tional response probabilities to pseudo-random uniform numbers.

Using this approach, multidimensional responses can be used to simulate outcomes
associated with m separately administered and scored unidimensional adaptive tests (Segall,
1996). This approach is useful in situations where the dimensions spanned by a collection
of unidimensional tests are correlated. The number of separately tailored unidimensional
adaptive tests simulated for each test-taker depended on the condition. For the Full-Battery
condition, nine adaptive tests were simulated. For the Partial-Battery condition, four adap-
tive tests were simulated. (See Table 1.) Items were adaptively selected to maximize Fisher
information (Lord, 1980, pp. 72–73) evaluated at the provisional ability estimate (Owen,
1975). Tests were terminated after a …xed number of administered-items (either 10 or 15;
see Table 1), and a …nal score µ̂k for each dimension k was speci…ed as the mode of the
posterior distribution. The Bayesian scoring algorithms assumed unidimensional standard
normal prior distributions.

3.4 Veri…cation Test

Two veri…cation-testing approaches were simulated. The …rst was a score-based ap-
proach, where test-takers were classi…ed on the basis of weighted linear combinations of
initial and veri…cation test-scores. The second approach was based on the Bayesian model-
comparison strategy.

3.4.1 Score-Based Approach.
Full and partial battery veri…cation tests were simulated using the same conventions

as the initial tests described above: maximum information item selection, …xed length
tests, Owen’s (1975) provisional ability estimator, and …nal posterior mode scoring. Full
and partial battery item pools for veri…cation tests were cloned from the initial test pools4

summarized in Table 1. For response generation, the source of the administered items was
assumed to be from the veri…cation pool i 2 V so that hi = 0. As indicated by (7) and (8)
(when hi = 0), generated responses to these items were dependent only on the test-taker’s
true ability level, and were not in‡uenced by the ability level of surrogates, regardless of
the test-taker classi…cation. Four di¤erent veri…cation tests were simulated: (a) full-battery
long (27 items), (b) full-battery short (9 items), (c) partial-battery long (55 items), and (d)
partial battery short (20 items). Table 4 provides test-lengths for individual subtests.

4Note that there were no restrictions on the administration of items across the initial and veri…cation
test item pools. That is, they were assumed to be mutually exclusive for the sake of the simulation study.
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Table 4: Veri…cation test-lengths for score-based conditions

Full Length Battery Partial Length Battery
Subtest Long Short Long Short

GS 3 1
AR 3 1 15 5
WK 3 1 15 5
PC 3 1 10 5
AI 3 1
SI 3 1 15 5

MK 3 1
MC 3 1
EI 3 1

Total 27 9 55 20

The result of this veri…cation test was a vector of m scores (posterior modes) for
each simulated respondent. These scores were combined with the m initial test scores
for the 5,000 respondents to produce discriminant function scores (Fisher, 1936) for each
respondent:

ŷ = X
¡
X0X

¢¡1
X0y;

where X denotes a 5000 £(2m + 1) matrix where the jth row (denoted by xj) contains the
constant 1 and the 2m test-scores of the jth respondent:

xj = (1; µ̂j1; :::; µ̂jm| {z }
Initial

; µ̂j1; :::; µ̂jm| {z }) ;

Veri…cation

and where y denotes a 5000-element vector of true respondent classi…cation

yj =

½
1; if ® = 1 for the jth respondent
0; otherwise.

The accuracy levels of the predicted classi…cation scores ŷ for the full and partial-battery
conditions were compared to those produced by the Bayesian method.

3.4.2 Bayesian Surrogate Test-Taker Detection Strategy.
Two hypothetical item pools were constructed for the multidimensional Bayesian

approach: one for the full-battery veri…cation test, and another for the partial-battery veri-
…cation test. The item pool for the full-battery veri…cation test consisted of 117 items. Each
item was assumed to load on a single dimension, with 13 items loading on each of the nine
dimensions. If for example the ith item loaded on the third (WK) dimension, its pattern
of discrimination parameters resembled a0i = (0; 0; a3i;0; 0;0;0; 0; 0). All items loading on
the same dimension were assumed to have equivalent non-zero discrimination parameters.
These were set to the 80th-%tile value of the empirical distribution of discrimination pa-
rameters (for the unidimensional pools of the corresponding dimension). These are listed
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in the last column of Table 1. Within each set of 13 items, di¢culty values b’s were equally
spaced from ¡1:5 to +1:5. All guessing parameters c’s were set to 0:2.

The item pool for the partial-battery veri…cation test was constructed using similar
conventions. It consisted of 116 items; each item loaded on a single dimension, with 29
items loading on each of the four dimensions. All items loading on the same dimension were
assumed to have equivalent non-zero discrimination parameters which were set equal to the
80th-%tile value of the empirical distribution of discrimination parameters. (See Table 1).
Within each set of 29 items, di¢culty values b’s were equally spaced from ¡1:5 to +1:5 and
all guessing parameters c’s were set to 0:2.

For each respondent, the posterior probability (1) was computed from the response
data provided by the administered items. The prior classi…cation probability was assumed
to be known: p (® = 1) = p(® = 0) = :5. The veri…cation test was terminated if the
maximum test-length had been reached (30 items for the full-battery condition; 60 items
for the partial-battery condition), or if the posterior stopping criterion

min [1 ¡ p(® = 1ju) ; p (® = 1ju)] < 0:001

has been satis…ed. This criterion can be equivalently expressed in terms of the posterior
variance, where testing continued until

Var (® = 1ju) < 0:001 £ 0:999 :

If neither test-termination criteria had been satis…ed, additional items were selected and
administered. These items were chosen to minimize the expected posterior variance (10).
Responses generated for selected items were dependent only on the test-taker’s true ability
level, and were not in‡uenced by the ability level of surrogates, regardless of the test-taker
classi…cation as indicated by (7) and by (8) when i 2 V (hi = 0).

For long initial tests, item selection computations can be abbreviated somewhat by
skipping the multidimensional Bayes modal estimation. Rather than computing four di¤er-
ent posterior modes for each candidate item (for each model and possible response), good
results can be obtained by evaluating the Taylor series approximation (12) at the posterior
modes based on the complete set of administered items (excluding the candidate item). Us-
ing this simpli…cation, the posterior modes are computed (and thus updated) only after the
item is chosen, and a response is generated. This simpli…cation was used in the simulated
item-selection algorithm.

3.5 Results

Receiver operating characteristic (ROC) curves of signal detection theory (Green &
Swets, 1966) can be used to examine the relative performance of alternate classi…cation
procedures. For a given classi…cation procedure, a point along the ROC curve can be
calculated from the two proportions:

x(t): false-alarm rate, the proportion of authentic examinees with index values greater
than cuto¤ t; (i.e., the proportion of authentic examinees improperly identi…ed
as enhanced), and
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y(t): hit rate, the proportion of enhanced examinees with index values greater than
cuto¤ t, (i.e., the proportion of enhanced examinees correctly identi…ed as en-
hanced).

Procedures can be compared on the basis of selected [x(t); y(t)] pairs obtained for various
cuto¤-values of t applied to the index values.

Classi…cation accuracy rates were calculated for alternative combinations of maximum
test-length and posterior variance targets using intermediate results from the simulated
tests. The outcomes for the full and partial battery conditions are detailed in Tables 5 and
6, respectively. For each condition, test-length summaries and false-alarm rates for di¤erent
conditions de…ned by maximum test-length (Max. n) and posterior variance (PV) stopping
rules are displayed. Results for the …xed-length score-based procedure are provided at the
top of Tables 5 and 6, while results for the variable-length Bayesian procedure are provided
in the main body of each table.

For the full-battery condition, the most accurate classi…cation was provided by the
condition depicted in the …rst row (under Bayesian procedure) which consisted of a maxi-
mum test-length of 30 items, with a posterior stopping criterion of :001£ :999. Here we see
that the average test length n for the authentic test-takers (® = 0) was 25.6 items, and 19.8
items for the enhanced-ability test-takers (® = 1). We also see that the proportion of au-
thentic test-takers with test-lengths equal to zero p(n = 0) was about 4-percent, compared
to the near zero-percent for enhanced test-takers. The false-alarm rates were .01, .02, and
.07 for hit rates of .90, .95, and .98, respectively. These are superior to the false-alarm rates
of the score-based procedure (based on 27 items) depicted in the …rst row of Table 5.

For …xed maximum test-length and posterior stopping criteria, the partial-battery
condition displayed lower classi…cation-accuracy than the full-battery condition. However,
high hit and low false-alarm rates were observed for many stopping-rule combinations.
For example, for the condition de…ned by 20-item maximum test-length and :001 £ :999
posterior-variance stopping criteria, the false-alarm rates were .02 and .07 for hit rates of
.90 and .95, respectively. In this condition average test-lengths were 19.9 and 14.2 items for
authentic and enhanced test-takers, respectively.

The results displayed in Tables 5 and 6 suggest several other notable trends.

I. For both the full and partial-battery conditions, the Bayesian procedure:

(a) Provides high hit-rates with low false-alarm rates for a number of
conditions de…ned by alternative test termination criteria.

(b) Outperforms the score-based procedure for conditions of comparable
test-lengths.

II. The following notable full-battery outcomes (Table 5) were achieved by the
Bayesian method:

(a) It provides a hit-rate of .98 while achieving a very low false-alarm rate
of .07. This level of detection is likely to be satisfactory for high-stakes
testing programs where accurate-detection is required.
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(b) Over one-fourth of the authentic test-takers [p(n = 0) = :29] required
no veri…cation test even for the condition which produced a hit-rate
of .95 with a false-alarm rate of .06.

(c) Nearly all enhanced test-takers [p(n > 0) = :94] required at least some
veri…cation test items.

(d) Very short tests (15 items or less) can achieve a high hit-rate (.95)
with a low false-alarm rate (.08).

III. The following notable partial-battery outcomes (Table 6) were achieved by the
Bayesian method:

(a) It provides a hit-rate of .95 while achieving a false-alarm rate of .03.

(b) Over one-fourth of the authentic test-takers [p(n = 0) = :29] required
no veri…cation test even for the condition which produced a hit-rate
of .90 with a false-alarm rate of .05.

(c) Very short tests (10 items or less) can achieve a high hit-rate (.90)
with a low false-alarm rate (.05).

4.0 Discussion

The full-battery simulation study demonstrates that the Bayesian procedure can accu-
rately classify 98 percent of enhanced test-takers, while only misclassifying about 7 percent
of the authentic test-takers. In practice, this accuracy level is likely to be satisfactory for
even high-stakes tests, where cheating is most likely to provide large payo¤s. Results also
suggest that test-takers are likely to experience little additional testing burden by veri…ca-
tion testing based on the Bayesian approach. The performance of the Bayesian procedure
is especially impressive in comparison to the more traditional score-based procedure. With
comparable test-lengths, the Bayesian approach provides false-alarm rates that are signi…-
cantly lower than those produced by the score-based procedure.

Although the accuracy of the Bayesian procedure reported here is high, its accuracy is
likely to be situation speci…c. First, classi…cation accuracy is likely to be in‡uenced by the
size and precision of the item pools (both initial and veri…cation). Large pools with highly
discriminating items and heterogeneous di¢culty parameters are likely to provide the most
accurate classi…cation. Second, the size of ability increments (i.e., di¤erence between the
surrogate and test-taker’s ability levels) are also likely to play prominent roles in determining
classi…cation accuracy—with larger average increments providing higher accuracy. Third,
the dimensionality of the battery and the length of the initial exam appear to have an e¤ect
on classi…cation accuracy: Longer initial-exams spanning many dimensions appear to result
in greater accuracy than short initial-exams spanning a smaller number of dimensions.

Another consideration which may limit the generality of the reported …ndings centers
on test-taker behavior with regard to seeking and utilizing surrogate examinee knowledge.
In practice, test-takers may use reference materials instead of surrogates, or use a com-
bination of their own knowledge, and knowledge obtained from surrogates and reference
materials. Although these scenarios were not explicitly modeled in the simulation study,
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Table 5: Full-battery false-alarm rates (proportion of authentic test-takers classi…ed as enhanced
test-takers) and test-length statistics for score-based and Bayesian procedures.

Test-length Statistics False
Termination Criteria Model Alarm Rates

® = 0 ® = 1 Hit-Rate
Max. n PV p(n = 0) n p(n = 0) n .90 .95 .98

Score-Based Procedure
27 — .00 27 .00 27 .02 .05 .13
9 — .00 9 .00 9 .10 .20 .39

Bayesian Procedure
30 :001 £ :999 .04 25.6 .00 19.8 .01 .02 .07

:003 £ :997 .16 20.6 .01 17.0 .01 .03 .14
:006 £ :994 .29 16.2 .03 14.7 .01 .06 .77
:009 £ :991 .37 13.3 .06 13.1 .02 .57 .77

25 :001 £ :999 .04 21.8 .00 17.9 .01 .03 .08
:003 £ :997 .16 17.7 .01 15.5 .01 .04 .15
:006 £ :994 .29 14.1 .03 13.5 .01 .07 .77
:009 £ :991 .37 11.7 .06 12.1 .03 .58 .77

20 :001 £ :999 .04 17.8 .00 15.6 .01 .05 .13
:003 £ :997 .16 14.7 .01 13.7 .01 .06 .24
:006 £ :994 .29 11.8 .03 12.0 .02 .08 .77
:009 £ :991 .37 9.9 .06 10.8 .04 .58 .77

15 :001 £ :999 .04 13.7 .00 12.8 .02 .08 .20
:003 £ :997 .16 11.4 .01 11.4 .02 .08 .33
:006 £ :994 .29 9.3 .03 10.2 .03 .15 .77
:009 £ :991 .37 7.8 .06 9.3 .06 .58 .77

10 :001 £ :999 .04 9.3 .00 9.3 .06 .18 .35
:003 £ :997 .16 7.9 .01 8.6 .07 .21 .42
:006 £ :994 .29 6.5 .03 7.8 .09 .28 .77
:009 £ :991 .37 5.6 .06 7.3 .13 .60 .77

5 :001 £ :999 .04 4.7 .00 4.9 .16 .31 .53
:003 £ :997 .16 4.1 .01 4.8 .17 .34 .57
:006 £ :994 .29 3.4 .03 4.5 .19 .39 .77
:009 £ :991 .37 3.0 .06 4.3 .24 .61 .77
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Table 6: Partial-battery false-alarm rates (proportion of authentic test-takers classi…ed as enhanced
test-takers) and test-length statistics for score-based and Bayesian procedures.

Test-length Statistics False
Termination Criteria Model Alarm Rates

® = 0 ® = 1 Hit-Rate
Max. n PV p(n = 0) n p(n = 0) n .90 .95 .98

Score-Based Procedure
55 — .00 55 .00 55 .01 .06 .19
20 — .00 20 .00 20 .05 .12 .31

Bayesian Procedure
55 :001 £ :999 .00 54.2 .00 25.1 .01 .03 .10

:010 £ :990 .01 39.2 .00 16.9 .01 .03 .10
:050 £ :950 .12 17.7 .01 10.6 .02 .04 .37
:100 £ :900 .29 9.3 .04 6.9 .03 .27 .64

40 :001 £ :999 .00 39.6 .00 21.1 .01 .03 .12
:010 £ :990 .01 30.7 .00 14.4 .01 .03 .12
:050 £ :950 .12 14.9 .01 9.3 .02 .04 .36
:100 £ :900 .29 8.2 .04 6.4 .03 .27 .64

30 :001 £ :999 .00 29.8 .00 18.0 .01 .04 .16
:010 £ :990 .01 24.5 .00 12.5 .01 .04 .16
:050 £ :950 .12 12.9 .01 8.3 .02 .06 .35
:100 £ :900 .29 7.3 .04 5.9 .03 .28 .64

20 :001 £ :999 .00 19.9 .00 14.2 .02 .07 .18
:010 £ :990 .01 17.6 .00 10.1 .02 .07 .18
:050 £ :950 .12 10.3 .01 7.1 .03 .08 .34
:100 £ :900 .29 6.3 .04 5.2 .05 .28 .64

10 :001 £ :999 .00 10.0 .00 8.8 .05 .13 .34
:010 £ :990 .01 9.5 .00 6.8 .05 .13 .34
:050 £ :950 .12 6.7 .01 5.2 .06 .14 .40
:100 £ :900 .29 4.5 .04 4.1 .08 .36 .66

5 :001 £ :999 .00 5.0 .00 4.9 .14 .26 .50
:010 £ :990 .01 4.9 .00 4.3 .14 .26 .50
:050 £ :950 .12 3.9 .01 3.5 .15 .27 .53
:100 £ :900 .29 2.8 .04 3.0 .16 .42 .68
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the multidimensional model may still provide satisfactory detection with an appropriate
choice of prior distribution on ability and gain parameters. Further research would be
needed to verify this possibility.

In any given application, mis-speci…cation of the prior distribution of ability/log-
increments (indexed by mean vector ¹1; and covariance matrix ©1) is likely to degrade the
performance of the Bayesian procedure—with the amount of degradation related to the
degree of mis-speci…cation. In the study described here, distribution parameters involv-
ing log-increments were speci…ed on rational grounds by assuming particular behavioral
patterns among examinees. In practice, these strong assumptions may not hold—at the
very least they should be empirically veri…ed. A more accurate prior speci…cation might
be achieved by estimating the full distribution of ability/log-increment parameters directly
from the population of interest. In principal, this can be done through an extension of a
direct estimation procedure of the sort recommended by Mislevy (1984), where ¹1 and ©1
are estimated directly from initial and veri…cation test item responses provided by a group
of representative test-takers. Given an accurate speci…cation of the prior, studies of the
sort presented here can be conducted to estimate the expected classi…cation accuracy of the
proposed method with given item pools and test termination criteria.

Appendix

Modal values µ̂
(®)

can be obtained through an iterative numerical procedure such as
the Newton-Raphson procedure, where the (j + 1)-th approximation is given by

µ(®)j+1 = µ(®)j + I¡1® (µ(®)j ju)S®(µ
(®)
j ju) ; (13)

and where I®(µ
(®)
j ju) and S®(µ

(®)
j ju) denote the …rst and minus second derivatives evaluated

at µ(®)j (see below). In some instances, convergence can be improved by replacing I¡1® (µ(®)j ju)

by its expected value, which can be obtained by substituting Pi(µ
(®)j®) for ui in (14) below.

Successive iterations are obtained until convergence has been achieved, usually indicated
when µ

(®)
j+1 ¼ µ

(®)
j .

First Derivatives

The required …rst derivatives are given by Segall (1996, p. 340, Equation 25):

S0(µ
(0)ju) ´ @

@µ(0)
l0(µ

(0)ju) =
X

i2A
vi(µ

(0)j® = 0)ai ¡©¡10 (µ(0) ¡ ¹0) ;

and

S1(µ
(1)ju) ´ @

@µ(1)
l1(µ

(1)ju) =
X

i2A
vi(µ

(1)j® = 1)DµJ
0
iai ¡©¡11 (µ(1) ¡ ¹1)

where ai = (a1i; :::; ami)
0,

Dµ = diag f11; :::; 1m; exp (µm+1) ; :::; exp(µ2m)g ;
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and

vi(µ
(®)j®) =

D[Pi(µ
(®)j®) ¡ ci][ui ¡Pi(µ

(®)j®)]

(1 ¡ ci)Pi(µ
(®) j®)

;

and where diag denotes a diagonal matrix.

Second Derivatives

The second derivative matrix is used in the iterative procedure (13) for calculation of
the mode, and also in the Taylor series expansion (12). This matrix (minus the observed
information matrix) is given by

@2

@(µ(0))2
l0(µ

(0)ju) ´ ¡I0(µ
(0)ju) ´

X

i2A
wi(µ

(0)j® = 0)aia
0
i ¡ ©¡10 ;

and

@2

@(µ(1))2
l1(µ

(1)ju) ´ ¡I1(µ
(1)ju)

´
X

i2A
wi(µ

(1)j® = 1)DµJ
0
iaia

0
iJiDµ +Zi ¡ ©¡11 ;

where Zi is a 2m £ 2m diagonal matrix with elements

Zi = hivi (µ®j®) diagf01; :::; 0m; a1 exp(µm+1) ; :::; am exp (µ2m)g

and where

wi(µ
(®)j®) =

D2[1 ¡ Pi(µ
(®)j®)][Pi(µ

(®)j®) ¡ ci][ciui ¡ P2i (µ
(®)j®)]

(1 ¡ ci)
2 P 2

i (µ
(®)j®)

: (14)
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