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Abstract

This paper investigates the application of a Markov chain Monte Carlo ap-
proach (Segall, 2002) to the estimation of item response functions using
sparse data matrices. These sparse data matrices are of the sort produced
by computerized adaptive test sessions. The estimation approach uses a
Bayesian hierarchical model, where slope and intercept parameters are as-
sumed to be sampled from informative distributions who’s moments are es-
timated from data, and where the ability mean and variance parameters are
also estimated simultaneously with other parameters. Results of a simula-
tion study indicate that the procedure can provide satisfactory recovery of
item response functions from sparse adaptive testing data.

Each year, nearly one-half million military applicants take the Computerized Adaptive
Testing version of the Armed Services Vocational Aptitude Battery ([CAT-ASVAB]; Segall
& Moreno, 1999). This battery of tests is used to qualify applicants for military service, and
for entrance into a number of jobs within the military. Data collected from applicants are
also used to calibrate new items for possible use in future item pools. This paper describes
work that is part of a larger effort (Krass & Willians, 2003; Nicewander, 2003; Pommerich &
Segall, 2003; Thomasson, 2003) to evaluate alternate estimation procedures for calibrating
new items for use in the CAT-ASVAB.

Seeding Strategy

The CAT-ASVAB uses a unique design for collecting pretest data for the evaluation
of new items (Segall, Moreno, Bloxom, & Hetter, 1997). The battery is comprised of 10
separately timed, administered, and scored adaptive tests. Each of these 10 tests measure
different abilities and constructs. However, the items within each test are assumed to be
unidimensional. This assumption is strongly supported for most tests by empirical evidence
(Segall, Moreno, & Hetter, 1997).
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According to the data collection design, each examinee receives a single pretest item
along with 10 (or 15) adaptively selected items for each of the 10 tests. The responses to
the pretest items do not count towards the examinee’s scores, and are collected solely for
the purpose of gathering data on new items. The pretest items are positioned as the second,
third, or fourth item of each adaptive test, where the position is chosen randomly for each
test-taker and test.

The fact that only one pretest item response is gathered for each test means that the
responses to the adaptively administered items will play an important and necessary role in
the estimation of item response functions (IRFs). The approach investigated here assumes
that 10 separate unidimensional calibrations will be conducted for pretest items seeded into
each of the 10 adaptive tests.

Calibration Issues

Stocking (1988a; 1988b) has noted a troublesome scale-drift phenomenon when using
the three-parameter logistic item response theory model in the context of online calibra-
tion. She noted that scale-drift can occur over successive generations of pretest calibrations.
According to this scenario, the parameter estimates for the current set of CAT pools are
assumed to come from pretest calibrations of items seeded into previous sets of CAT pools.
She noted a systematic distortion of the score scale after several successive rounds of cali-
brations and item pool replacements.

One factor that might contribute to this distortion is the positive bias in the IRT «
(discrimination) parameter. Items are selected into the pool partly on the basis of their a-
parameter. In addition, CAT-ASVAB selects items largely on the basis of item-information,
which is also heavily dependent on the a-parameters. Consequently, items with chance
positive errors in their discrimination parameters are likely to be administered more often
than items with negative estimation errors. If the calibration procedure fixes the IRF's of
adaptively administered items at their previously (biased) estimated values, these positive
errors among the most heavily used items are likely to further bias the values of estimated
IRFs for new items. Over successive generations of item pools, this phenomenon can lead
to a systematic distortion of the score-scale.

One way to avoid this distortion caused by the systematic bias of item parameters
among the most heavily used items is to rely on re-estimated IRF's using new data, rather
than on existing biased estimates obtained from the previous data collection round. If
the IRFs for adaptively administered items are re-estimated with new data, then these
IRF's should be less biased with regard to discrimination parameters (and other parameters
as well). By re-estimating all (pretest and operational) parameters simultaneously, the
scale-distortion problem should diminish, if not disappear entirely. However, this approach
places more substantial demands on the calibration procedure, because of the sparseness
of the data matrix—some items will be administered to relatively few respondents, while
other items will be administered to many test-takers. Still some difficult items will be
administered to only high-ability test-takers, while other easy items will be administered to
primarily low-ability test-takers. Consequently, in this paper the capability of procedures
to estimate the IRFs of pretest items will be investigated in the context of re-estimating
the entire adaptive item pool.
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If all (pretest and adaptive) IRF's are estimated simultaneously, the unit and origin
of the IRT scale become arbitrary and must be fixed using some convention. To fix the
score scale, it is assumed that the parameters of at least some items remain constant over
time, and are known. This assumption is plausible, if these items were calibrated using
large samples, and if they are administered infrequently relative to the other items. In the
paradigm described below, items from Form 04D are assumed to have known IRFs, and
data collected from 04D are used to fixed the unit and origin of the IRT score-scale.

Estimation Procedure

The estimation approach evaluated here is based on a Markov Chain Monte Carlo
approach (Segall, 2002a) implemented by the IFACT computer program (Segall, 2002b).
Markov chain Monte Carlo (MCMC) techniques have proven useful for complex estimation
problems in many areas of applied statistics. Several authors have explored the applicability
of MCMC estimation approaches to IRT (e.g., Albert, 1992; Baker, 1998; Béguin & Glas,
2001; Fox & Glas, 2001; Hoijtink & Molenaar, 1997; Patz & Junker, 1999a; Patz & Junker,
1999b).

The MCMC approach taken in this paper extends that taken by others in two respects.
First, informative sampling distribution of item parameters are estimated for distributions
of item parameters, where slope and intercept parameters are assumed to be sampled from
informative distributions who’s moments are estimated from data. This hierarchical ap-
proach is likely to be especially well suited to the analysis of data produced by computerized
adaptive tests, where the numbers of examinees administered different items varies widely.
In these instances, strength can be pooled across items, helping to increase the precision of
IRF-estimates of items adaptively administered to small numbers of test-takers.

A second extension of the current application treats the mean and variance of the
latent ability distribution as parameters to be estimated rather than as fixed known pa-
rameters. This allows the unit and origin of the IRT scale to be fixed by fixing some
item parameters, and estimating the ability distribution mean, variance, and other item
parameters simultaneously.

The objective of the MCMC approach implemented in IFACT is to obtain estimates
of multidimensional item response theory item parameters. Typically, MCMC estimates
are obtained by forming means of individual item-parameter values sampled from their joint
posterior distribution. Similar to the approach taken by Béguin and Glas, we augment the
existing item response data and item parameters with other parameters. This augmented
model results in full-conditional distributions which simplify the simulation process and
allows the use of Gibbs sampling. Specifically, we seek to draw samples from the joint
posterior distribution:

p(6= (T N),.0.2.v. 1, A i, WIU) = p(2,v]U,60.6,¢)p (&lne, A ) p(c)
xp (1e) P (A¢) p (011, W) p (1) p (W)

where € is an n x (m + 1) matrix of slope A and intercept T parameters; c is the n-element
vector of guessing parameters; 6 is the N x m matrix of ability parameters; z and v are
N x n matrices of latent continuous and dichotomous item-knowledge parameters; p, and
A¢ are the mean vector and covariance matrix of the distribution of slope and intercept item
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parameters, and p and W are the mean vector and covariance matrix of ability parameters
0. Marginal estimates of parameters of interest can be obtained by ignoring the sampled
values of the augmented parameters (i.e., 8,z,v, Bes Ag, 1, W), and by computing parame-
ters means of 7, A, and c once the chain has converged (Gilks, Richardson, & Spiegelhalter,
1996). After providing starting values of item and person parameters 7, A, c, and 6, the
general updating process proceeds as follows:

1. Draw z and v conditional on U, 7, A, ¢, and 6.
Draw A and 7 conditional on 0, z, p,, and Ag.
Draw pe and A¢ conditional on A and 7.

Draw c¢ conditional on v and U.

Draw p and W conditional on 6.

6. Draw 0 conditional on 7, A, z, u, and W.

ANl

Steps 1-6 were repeated for 1000 iterations with response data described below, until con-
vergence had been reached. Then the average T, A, ¢, u, and W parameter values (averaged
across 1000 additional cycles) were taken as parameter estimates. Details of each of the six
steps (along with additional model assumptions) are described by Segall (2002a).

Simulation Study

Three datasets of 122,400 examinees each were used to evaluate the performance of
the IFACT estimation procedure!. The structure of the datasets, characteristics of the item
pool and pretest items, and results of the IFACT estimation procedure are described below.

Item Pool Characteristics

The item pools used in the simulation study were pattered after pools used in the
Arithmetic Reasoning test of the CAT-ASVAB. Estimated 3PL item parameters from previ-
ous calibrations were treated as true values for the purpose of data generation. The pretest
group consisted of 100 items. See Pommerich and Segall (2003) and Thomasson (2003) for
additional details regarding the characteristics of the adaptive and pretest item pools.

Dataset Structure

Three datasets of item responses were generated, each dataset based on a different
normal distribution of ability: (a) low ability group with py = —1,0 = 1.2, (b) medium
ability group with gy = 0,0 = 1, and (c) a high ability group with py = 1,0 = 0.8. The
simulated item selection and scoring was patterned after that used by the CAT-ASVAB
(Segall et al., 1997), with adaptive test lengths of 15 items; maximum information item
selection contingent on the Sympson-Hetter exposure control algorithm (Hetter & Sympson,
1997; Sympson & Hetter, 1985); and Bayesian modal ability estimates computed after the
final administered item.

For each dataset, the simulation data generation design (Thomasson, 2003) closely
matched the characteristics of pretest item data collected in the operational CAT-ASVAB.
According to this design, data for the calibration of 100 pretest items are collected from
122,400 examinees under the following restrictions:

!See Krass and Willians (2003)and Pommerich and Segall (2003)for a description of the results from two
other estimation approaches evaluated on the same data.
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Table 1: True and Estimated Ability Distribution Moments

Population Estimated

Ability Group  u o W o
Low —1 1.20 —.88 1.12

Medium 0 1.00 .03 .97

High 1 .80 98 .82

e Randomly equivalent (in terms of latent ability) groups of test-takers are assigned
to one of four alternate items pools (denoted by 01D, 02D, 03D, and 04D). Each item pool
consists of unique sets of items (containing 94 items for Form 01D, and 137 items each for
the remaining 3 forms). These forms are designed to produce interchangeable test-scores.

e About one-third of the test-taker group (N = 40,000) are assigned to each of the
three Pools 01D, 02D, and 03D. The remainder of the sample (N = 2,400) is assigned to
Pool 04D.

e For each examinee, a pretest item is randomly selected from the pool of 100 pretest
items. This process results in 1,224 responses to each pretest item, with randomly equivalent
(with regard to @-distribution) groups of respondents answering each pretest item.

Results

Table 1 summarizes the estimated ability distribution moments from the IFACT es-
timation procedure. As indicated, the estimated mean p and standard deviation o are very
close to the true values used to generate the data in each of the three datasets.

Table 2 summarizes root mean squared difference (RMSD) statistics between IRFs

calculated from true (a, b, ¢) and estimated <€L, b, é) parameters for each of the three condi-

tions. The squared differences between IRF's were evaluated at the true 6 for each examinee
receiving the item. Separate summaries were computed for adaptive and pretest items:

1/2
N 15 . 9
RMSD(Adaptive) = ¢ (15N) 1Y% [P (@, bag,cayi0;) — P (&Aij, bAij,éAij;ej)}

j=1i=1

N 1/2

N 2
RMSD (Pretest) = ¢ N°'>° [P (as,, bs;, cs,;0;) — P (asj,bgj, és; aj)]
j=1

where P (a,b, c; ) denotes the three-parameter logistic function; A;; denotes the item index
of the ith adaptively administered item to the jth examinee; S; denotes the item index
of the single seed (pretest) item administered to the jth examinee; ; denotes the true
ability parameter for examinee j; and N = 120,000. As expected, the RMSDs for adaptive
items were slightly larger than those for pretest items. This is most likely due to the
reduced sample sizes for some adaptively administered items. In general, the RMSDs were
acceptably small.

Table 3 summarizes the moments of the true and estimated parameters. As indicated
by a comparison of the true and estimated parameter means, there appeared to be a slight
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Table 2: RMSDs Between True and Estimated IRF's
Ability Group Adaptive Items Pretest Items

Low 047 1030
Medium 024 023
High 021 020

Table 3: Characteristics of True and Estimated Parameters
Adaptive Pretest
Statistic a b c a b c
True Parameters

7 1.53 .02 .18 1.51 .08 .19

o 46 1.17 .06 46 1.21 .06
Estimated — Low Ability Group

7 1.77 .18 .23 146 .16 .19

o 39 113 .11 31 1.12 .06

Estimated — Medium Ability Group

I 1.70 24 .24 148 15 .21

o 37 1.07 .14 42 1.13 .09
Estimated — High Ability Group

0 1.68 .47 .30 145 .26 .30

o .32 .80 .20 42 1.00 .20

positive bias for the a and b parameters for the Adaptive items. This bias was less evident
however for the Pretest items.

Table 4 displays item parameter recovery statistics for each condition, including the
correlation r and root-mean-squared-difference RMSD between true and estimated param-
eters. As expected, parameter recovery for the pretest items was superior to that of the
adaptive items. Also as expected, b parameters were better estimated than other parame-
ters; a parameters were more precisely estimated than the guessing parameters c; and the
¢ parameter was more precisely estimated in the low-ability group than in the medium or
high ability groups.

Discussion

The IFACT procedure appeared to provide satisfactory results for the estimation of
item parameters from sparse data matrices. The estimates of pretest items appear to be
estimated sufficiently well for use in adaptive item pools, where these parameters will be
used to select items and generate test scores.

One advantage of the IFACT procedure over BILOG (Zimowski, Muraki, Mislevy, &
Bock, 2003) is that the estimates can be placed on the proper scale by fixing some IRFs
at previously estimated values, rather than through a separate linking step. This might
reduce scale drift over time. However, additional study would be required to confirm this
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Table 4: Item Parameter Recovery

Adaptive Pretest

Statistic a b c a b c
Low Ability Group

r .81 .98 .46 .84 1.00 .80

RMSD .36 .31 .11 26 .16 .04

Medium Ability Group

r .80 .91 .29 87 .99 .36

RMSD .33 .54 .15 23 .19 .09
High Ability Group

r 71 .72 .06 86 .92 —.05

RMSD .35 .85 .24 24 .52 .24

assertion.

The ForScore (Levine, in press) procedure is possibly disadvantaged by the require-
ment of initial estimates of the adaptive item parameters. These initial estimates are re-
quired for both re-estimating adaptive items, and for estimating IRFs of pretest items.
Results suggest however, that misspecification of these adaptive IRFs (by an amount ex-
pected from a conventional calibration of these items) will have only a small negative effect
on the precision of the estimates of adaptive and pretest items.

One potential disadvantage of both the IFACT and BILOG procedures is their heavy
reliance on the unidimensional 3PL assumptions. The ForScore procedure evaluated by
Krass and Willians (2003) might be less susceptible to model violations than either the
BILOG or IFACT approaches. However, additional simulation studies are required to con-
firm this hypothesis.

The MCMC approach investigated here will be evaluated using additional data to
examine the outcome of parameter estimates and scale drift over successive rounds of pretest
item calibration and adaptive item pool construction phases. In each round, the pretest
items calibrated in the previous round will be used to construct adaptive item pools for
the next round. In these future simulations, item response data will be generated which
violates (to a realistic degree) assumptions of unidimensionality and monotonicity of item
response functioning. Results from the evaluation of these data will provide additional
useful information for evaluating the relative merits of the IFACT, BILOG, and ForScore
approaches for use in CAT-ASVAB item pool maintenance, and will help answer important
questions regarding scale drift.
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