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Glossary

content balancing a set of one or more ancillary item-selection constraints based on
content or non-statistical item features.

conventional testing an approach to individual difference assessment where all examinees
receive the same items, typically (but not necessarily) in printed mode.

exposure control algorithm an algorithmic enhancement to precision-based item selec-
tion that limits the usage rates of some highly informative items for the purpose of increased
test security.

information a statistical concept related to the asymptotic variance of maximum likelihood
trait estimates; it can be expressed as the sum of individual item information functions which
can be evaluated at specific points along the trait scale.

item pool a collection of test questions and associated item-parameters from which items
are selected for administration by the adaptive item-selection algorithm.

item response function a mathematical function providing the probability of a correct
response conditional on the latent trait level θ.

measurement precision an index of the accuracy of test scores, often assessed by the
average or expected squared difference between true and estimated trait parameters, E(θ−
θ̂)2.

measurement efficiency the ratio of measurement precision to test-length: One test or
testing algorithm is said to be more efficient than the other if it provides more precise scores
for a fixed test-length, or if it achieves equally precise scores with fewer administered items.

stopping rule the rule used to determine when to end the test; typically based on the
number of administered items (fixed-length), or on the precision-level of the estimated trait
parameter (variable-length).

trait a psychological dimension of individual differences that includes ability, aptitude,
proficiency, attitude, or personality characteristics.

trait estimate an item-response-theory based test score, denoted by θ̂, typically calculated
by Bayesian or maximum likelihood estimation approaches.

trait parameter an item-response-theory based parameter θ that denotes the examinee’s
standing along the latent trait dimension.



COMPUTERIZED ADAPTIVE TESTING 1

COMPUTERIZED ADAPTIVE TESTING is an approach to individual difference assess-
ment that tailors the administration of test questions to the trait level of the examinee. The
computer chooses and displays the questions, and then records and processes the examinee’s
answers. Item selection is adaptive–it is dependent in part on the examinee’s answers to
previously administered questions, and in part on the specific statistical qualities of admin-
istered and candidate items. Compared to conventional testing where all examinees receive
the same items, computerized adaptive testing (CAT) administers a larger percentage of
items with appropriate difficulty levels. The adaptive item selection process of CAT results
in higher levels of test-score precision and shorter test-lengths.

I. CAT Response Models

Modern CAT algorithms are based on concepts taken from item response theory (IRT)
and from maximum likelihood and Bayesian statistical estimation theories. Early pioneers
of CAT, including Frederic M. Lord and David J. Weiss (upon whose work modern CAT
algorithms are based) used item response functions (IRFs) as the basic building blocks of
CAT. These functions, denoted by Pi(θ), express the probability of a correct response for
an item as a function of latent trait level θ. The trait estimated from adaptive testing can
be a psychological (or other) dimension of individual differences, including ability, aptitude,
proficiency, attitude, and personality. For ability measurement, IRFs are generally assumed
to be monotonically increasing functions. Consequently, as θ increases, so too does the
probability of a correct response.

One of the most commonly used mathematical expressions for an IRF is the three
parameter logistic (3PL) model:

Pi(θ) = ci +
1− ci

1 + e−1.7ai(θ−bi)
, (1)

where the parameters ai, bi, and ci denote the slope, difficulty, and guessing parameters,
respectively for item i. The 3PL is often used to model dichotomously scored responses from
multiple choice items. The two parameter logistic (2PL) model (often used to model attitude
or personality items) is a special case of (1), where guessing is assumed to be nonexistent
(i.e., ci = 0). The one parameter logistic (1PL) model (where ai = 1 and ci = 0) is used in
cases where the IRF associated with item i is characterized by its difficulty parameter bi; all
IRFs have identical slopes, and the probability of an examinee with infinitely low trait-level
correctly answering the item is zero. Other IRF models have also been used to extract
information from incorrect options of multiple choice items, or from other item response
formats (e.g., rating scales).

According to the assumption of local independence, the conditional probability of an
observed response pattern is given by the product of item specific terms:

P (u1, u2, ..., un|θ) =
nY
i=1

Pi(θ)
uiQi(θ)

1−ui , (2)

where ui denotes the scored response to item i (ui = 1 if item i is answered correctly;
ui = 0, otherwise), Qi(θ) = 1−Pi(θ) (i.e., denotes the conditional probability of an incorrect
response) and n denotes the number of answered questions. One implication of (2) is that
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the probability of a correct response to item i is independent of the response to item j after
controlling for the effects of θ.

Another important property of IRT is scale invariance: The scale of measurement
along which examinees are placed, the θ-scale, is defined independently of the statistical
properties of the administered items. This invariance property does not hold for scales
derived from classical test theory, which are founded on number or percentage correct
scores. A percent-correct score of 75 on a test containing easy items has a different meaning
than a score of 75 on a test containing difficult items. In contrast, an IRT based test-score
(i.e., trait estimate θ̂) has the same meaning for tests containing either easy or difficult
items (provided all item parameters have been transformed to a common scale). This IRT
invariance property enables the comparison of scores from different or overlapping item-sets.
In the context of IRT, θ̂ test-scores are all on a common measurement scale, even though
these scores might have been estimated from tests consisting of different items.

II. Test Score Precision and Efficient Item Selection

Although the invariance property of IRT ensures that the interpretation of θ remains
constant across tests consisting of different items, the precision with which θ can be es-
timated is very much dependent on the statistical properties of the administered items.
Examinees with high θ-levels can be most accurately measured by tests containing many
difficult items; examinees with low θ-levels can be most precisely measured by tests con-
taining many easy items. This can be verified, for example, by an examination of the 1PL
model, where the asymptotic variance of the maximum likelihood estimator is given by

Var(θ̂|θ) =
"
1.72

nX
i=1

Pi(θ)Qi(θ)

#−1
. (3)

It can be seen from (3) that the smallest variance is obtained when Pi(θ) = Qi(θ) = 1/2
for each item–any other values of these conditional response probabilities lead to a larger
variance. From (1), we see that for the 1PL this optimal condition occurs when bi = θ, that
is when the difficulty parameter of each item matches the examinee trait-level parameter.

One implication of (3) is that the optimal (i.e., most precise) testing strategy chooses
items solely on the basis of the examinee’s true trait-level θ. But obviously this is not
possible, since θ is unknown prior to testing. (If it were known, testing would be unnecessary
in the first place.) It is possible however to use an iterative adaptive algorithm, where
an estimated trait-level θ̂k is obtained after each administered item k = 1, ..., n, and the
difficulty parameter of the next administered item bk+1 is matched to the current estimate:
bk+1 = θ̂k. In this sense, the difficulty of the next question bk+1 is adapted to the most
up-to-date trait estimate θ̂k of the examinee. By doing so, the precision level of the final
estimate (obtained after the completion of the last item) is greater than that expected from
conventional non-adaptive testing.

This idea of adapting the statistical properties of administered items based on re-
sponses to previous items forms the basis of all CAT item selection algorithms. However,
commonly used algorithms differ along two primary dimensions: first in the type of statis-
tical estimation procedure used (maximum likelihood versus Bayesian), and second in the
type of item-response model employed (e.g., 1PL, 2PL, or 3PL).
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III. Maximum Likelihood Approach

The maximum likelihood (ML) approach to CAT item-selection and scoring is based
on the log-likelihood function

l(θ) = ln
nY
i=1

Pi(θ)
uiQi(θ)

1−ui . (4)

The estimate θ̂(ML) is defined as the value of θ for which the likelihood (or equivalently the
log-likelihood) function is maximized. Since no closed-form expression exists for θ̂(ML), it
is typically calculated using an iterative numerical procedure such as the Newton-Raphson
algorithm.

The estimator θ̂(ML) is asymptotically normally distributed with mean θ and variance

Var(θ̂|θ) =

·
−E ∂2

∂θ2
l(θ)

¸−1
= 1/

nX
i=1

Ii(θ) , (5)

where the information function for item i, denoted by Ii(θ), is

Ii(θ) =

h
P
0
i (θ)

i2
Pi(θ)Qi(θ)

, (6)

and where P
0
i (θ) denotes the derivative of the item response function with respect to θ. For

the one and three parameter logistic models, these derivatives are P
0
i (θ) = 1.7Pi(θ)Qi(θ)

and P
0
i (θ) = 1.7aiQi(θ) [Pi(θ)− ci] /(1− ci), respectively.
From (5), it is clear that the asymptotic variance of the ML estimate θ̂(ML) can be

minimized by choosing items with the largest information values. If θ were known in advance
of testing, then available items could be rank-ordered in terms of their information values
(6) at θ, and the most informative items could be selected and administered. Since θ is not
known (to know or approximate θ is of course the purpose of testing), the most informative
item can be selected using item information functions evaluated at the provisional (most
up-to-date) trait estimate, Ii(θ̂k(ML)). After the chosen item has been administered, and
the response scored, a new provisional estimate can be obtained and used to reevaluate item
information for the remaining candidate items. These alternating steps of trait estimation
and item-selection are repeated until a stopping rule (typically based on test-length or
precision) is satisfied. The adaptive item selection and scoring algorithm is summarized in
Table 1.

IV. Bayesian Approach

In instances where a prior distribution for θ can be specified, some test developers have
opted to use a Bayesian framework for item-selection and trait estimation. The prior density,
denoted by f(θ), characterizes what is known about θ prior to testing. The most common
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Table 1: CAT Item Selection and Scoring Algorithm

Step Description

1. Calculate provisional
trait estimate.

Obtain a provisional trait estimate, θ̂k, based
on the first k responses.

2. Choose Item. Compute information Ii(θ̂k) for each candi-
date item by substituting the provisional trait
estimate θ̂k (calculated in Step 1) for the true
parameter θ in (6). Select for administration
the item with the largest item information
value.

3. Administer item and
record response.

4. Repeat Steps 1 — 3 until the stopping rule has been satisfied.

5. Calculate final trait es-
timate θ̂

based on all responses, including the response
to the last administered item.

approach to prior-specification in the context of CAT sets the prior equal to an estimated θ-
density calculated from existing (or historical) examinee data. Then the assumption is made
that future examinees (taking the CAT test) are independent and identically distributed

θ
iid∼ f(θ). Although in many cases, additional background information is known about

examinees relating to θ (such as subgroup membership), this information is often ignored
in the specification of individual examinee priors–to allow such information to influence
the prior could lead to, or magnify, subgroup differences in test-score distributions.

A Bayesian approach provides estimates with different statistical properties than pro-
vided by ML estimates. In CAT, Bayesian estimates tend to have the advantage of smaller
conditional standard errors σ(θ̂|θ), but possess the disadvantage of larger conditional bias
B(θ) = µ(θ̂|θ)− θ, especially for extreme θ levels. Thus the choice of estimation approach
involves a trade-off between small variance (of Bayesian estimates) and small bias (of ML
estimates). Bayesian procedures do in general provide smaller mean-squared-errors (MSEs)
between θ and θ̂ (which is a function of both conditional variance and bias) than provided
by ML estimates. This suggests that Bayesian estimates can provide higher correlations
with external criteria, and a more precise rank-ordering of examinees along the θ-scale.
Practitioners who are concerned about the effects of bias, or who do not have precise es-
timates of the trait distribution tend to favor the ML approach. Conversely, practitioners
whose primary objective is to minimize MSE or conditional variance have tended to favor
Bayesian approaches.

The Bayesian approach to CAT item-selection and scoring is based on the posterior
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density function
f(θ|u) ∝ f(u|θ)f(θ) , (7)

where f(u|θ) is equivalent to the probability function (2), f(θ) is the prior distribution of θ,
and u = (u1, ..., un) is a vector of scored responses. Whereas the prior f(θ) describes what is
known about θ before the data are observed, the posterior density function f(θ|u) provides
a description of what is known about the examinee’s trait-level after the item response data
u have been obtained. Typically, summary statistics are used to characterize the posterior
distribution: a measure of central tendency (such as the posterior mean or mode) is often
taken as the trait point estimate, and the variance of the posterior distribution is typically
taken as a measure of uncertainty. Small posterior variance values suggest that θ̂ has been
estimated with a high degree of precision; large posterior variance values suggest otherwise.

One Bayesian approach to item selection chooses the next item to minimize the ex-
pected posterior variance, where the expectation is taken with respect to the yet-to-be
observed response to the candidate item. This quantity is calculated by computing the
values of the posterior variance if the candidate item is answered both correctly and in-
correctly, and then calculating a weighted average of the two posterior variances, where
the weights are equal to the probability of correct and incorrect responses based on the
predictive posterior distribution.

A less computationally intensive and more commonly used Bayesian item-selection
method is consistent with a normal-based inference approach. According to this approach,
the posterior distribution is approximated by a normal density

f(θ|u) = N(θ̂(MAP), V ) , (8)

with mean equal to the mode (maximum a posteriori; [MAP]) of the posterior density,
denoted by θ̂(MAP), and variance based on the expected information evaluated at the mode:

V = 1/

½
−E

·
∂2

∂θ2
ln f(θ|u)

¸¾
θ=θ̂(MAP)

= 1/

(
1/σ2 +

nX
i=1

Ii(θ)

)
θ=θ̂(MAP)

. (9)

This approximation assumes that the prior is normal with variance denoted by σ2. The
information function for item i, denoted by Ii(θ) is equivalent to the one derived for the
ML case given by (6). It is clear from an examination of (9) that the administration of
the item with the largest information value (evaluated at θ̂k(MAP)) will provide the greatest
reduction in posterior variance V . As with the ML approach, the adaptive item selection
and scoring algorithm summarized in Table 1 is used, where the provisional trait estimate
θ̂k is set equal to the posterior mode θ̂k(MAP). Calculation of the mode requires the use of
an iterative numerical algorithm to find the maximum of the log posterior density function
(7). Alternating steps of trait estimation and item-selection are repeated until a stopping
rule is satisfied. The posterior variance based on observed information

Var(θ|u) = 1/
·
− ∂2

∂θ2
ln f(θ|u)

¸
θ=θ̂(MAP)

(10)

is an often-used characterization of measurement precision.
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V. Item Selection Enhancements

Although the adaptive item-selection algorithms form an efficient basis for precise
measurement, test developers have often found it beneficial or necessary to alter these
algorithms. These alterations, or enhancements, include the specification of rules used to
choose the first several items; the specification of rules used to stop the test; modifications
to the item-selection algorithms intended to reduce opportunities for test-compromise, and
to help achieve a more balanced item content; and the use of time-limits.

A. Item-Choice Early in the Adaptive Sequence

Most commonly used adaptive item-selection algorithms require the existence of a
provisional trait estimate. This provisional estimate is used to evaluate the relative infor-
mation contribution of candidate items, and is specified from the responses to earlier items.
But how should the first item be selected? The choice of the first item and other early items
depends on the approach taken: ML or Bayesian.

ML approaches have adopted a set of heuristics for item selection early in the adaptive
sequence. Typically, the first item selected is one of moderate difficulty relative to the
population of examinees. If the first item is answered correctly, then a more difficult item
is selected and administered; if the first item is answered incorrectly then an easier item
is selected. If necessary, selected items become successively easier or harder until at least
one correct and incorrect response has been obtained. At this point, the ML function will
typically possess a finite maximum, and the adaptive item selection and scoring algorithm
(Table 1) can be used.

The Bayesian approach formalizes these heuristics by setting the initial provisional
trait estimate equal to the mean of an informative prior trait density. The first item chosen
is one with high–or highest information at the prior mean. After the administration of
the first item, the provisional trait estimation and item selection algorithm (given in Table
1) can be applied in a straightforward manner. Unlike the ML estimate, the provisional
Bayesian estimate (taken as the posterior mean or mode) is defined for all response patterns,
including those containing all correct or incorrect responses.

B. Stopping Rules

There are two common test termination or stopping rules used in CAT: fixed-length
and variable-length. Fixed-length tests require that the same number of items be adminis-
tered to each examinee. One consequence of fixed-length tests is that measurement precision
is likely to vary among examinees. In contrast, variable-length tests continue the adminis-
tration of items until an individualized index of precision satisfies a target precision level.
These precision indices are often based on ML information (5) or Bayesian posterior variance
(10) statistics.

Test developers have found that the choice of stopping rule is often highly depen-
dent on the test-purpose, item-pool characteristics, and operational constraints. In many
instances for example, equally precise scores among examinees are paramount, helping to
ensure that decisions and interpretations made on the basis of test-scores are equally precise
for all examinees. In other instances however, the occasionally long test-lengths (possible
with variable-length tests) might be judged too burdensome for examinees, and possibly for
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test-administrators as well. To moderate some of the operational burdens, variable-length
testing has been implemented with upper-bound constraints on the maximum number of ad-
ministered items, and in some instances, on the maximum amount of testing time allowed
for each examinee. In other instances, test developers have opted for fixed-length tests
to help standardized testing-conditions including variability in testing-time, and related
testing-fatigue.

C. Test Compromise Safeguards

In some instances, examinees may attempt to misrepresent their performance. This
is especially likely when the test-scores on the exam are used as a basis for important
decisions. With CAT, the same items are typically administered on multiple occasions
(spanning weeks, months, or possibly years). This repeated item use provides examinees
with an opportunity to obtain information about the questions from others taking the test
before them. In these instances, one or more compromise deterrents can be implemented.

The adaptive item selection algorithm (Table 1) provides highly efficient, but de-
terministic item selection. Consequently, two examinees providing the same pattern of
responses to a set of multiple choice questions (e.g., A, D, C, A, B, C, D, ...) will receive
the same items, and the same θ estimate. An examinee could be assured a high score by
simply re-entering the response pattern copied from a high-scoring examinee. This strategy
can be thwarted however by adding a stochastic component to the item selection algorithm.
Rather than matching the difficulty parameter bi with the provisional trait estimate θ̂k, the
next administered item for the 1PL model can be selected at random from among those
items with difficulty parameters bi falling in a narrow interval around θ̂k (namely the inter-
val θ̂± δ, where δ is some suitably small constant). A strategy with similar intent designed
for the 3PL model is based on the 5-4-3-2-1 algorithm, where the first item is selected at
random from the five most informative items at the current provisional trait level, the sec-
ond administered item is selected at random from the four most informative items evaluated
at the current provisional trait estimate, and so forth. The fifth and subsequent items are
chosen to maximize precision evaluated at the provisional trait estimate.

Although these strategies decrease or eliminate the gains associated with copied an-
swer patterns, they do not necessarily limit the usage or exposure of the item pool’s most
informative items. That is, these strategies can still lead to instances where some items are
administered to nearly all examinees. An alternate method, referred to as the Sympson-
Hetter exposure control algorithm was designed specifically to place an upper ceiling on
the administration rates of the most used items (typically highly discriminating items of
moderate difficulty).

The Sympson-Hetter exposure control algorithm assigns an exposure control para-
meter, denoted by ei, to each item i. These parameters are used in conjunction with the
adaptive item selection algorithm to screen items. For the selection of the kth item, candi-
date items are rank-ordered by information level evaluated at the provisional trait estimate
θ̂k. The item with the largest information is considered first. A random uniform number r
(between 0 and 1) is drawn; the item either passes or fails the exposure screen: If r ≤ ei
then item i passes and is administered; otherwise it fails and is not considered again for
administration to the examinee. If the first evaluated item fails the exposure screen, then
the next most informative item is considered for administration. A new random number
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is drawn, and the exposure screen is repeated. This screening process is repeated until a
candidate item passes.

The exposure control parameters ei are specified prior to testing, and are calculated
through a series of computer simulations. The assigned ei values are dependent on a target
ceiling exposure value T , and on an assumed trait distribution f(θ). The use of the exposure
control parameters ensures (in expectation) that the exposure rates of the most used items
will not exceed the target ceiling rate T in a population with trait distribution f(θ). In
practice, the target ceiling exposure rate T is often set to a value between 1/10 and 1/3,
ensuring that the most used items are not administered to more than 1/10 or 1/3 of the
examinee population.

A conditional version of the Sympson-Hetter approach has been suggested for use in
situations where it is important to maintain a target ceiling exposure rate for homogenous
subpopulations of examinees. Over narrow ranges of θ, the unconditional approach can
provide higher than desired exposure rates for some items, higher than the target T specified
for the overall population. The conditional approach remedies this problem by using a vector
of exposure parameters for each item (ei1, ei2, ...), where the exposure parameter used eij
is specific to both the item i, and to a narrow trait-range indexed by the subscript j. This
trait-range is associated with the value of the provisional trait estimate. The conditional
approach helps ensure that the exposure rates of the most used items do not exceed the
target ceiling rate T ; this assurance is made without requiring any specific assumption
regarding the form of the trait distribution f(θ).

Other methods intended to further reduce item exposure are commonly used in con-
junction with the Sympson-Hetter exposure control method. Two such methods include the
simultaneous and sequential use of multiple item pools. In the case of simultaneous item
pool use, examinees are randomly assigned to two or more distinct (non-overlapping) item
pools. These item pools serve the same function as alternate test forms in conventional
testing. In the case of sequential item pool use, the item pool is continuously updated or
replaced over a period of days, weeks, or months, thus making sharing item content among
examinees less profitable.

Inevitably, the choice of any CAT exposure control method requires a consideration of
the effects on measurement efficiency and test-development costs. (Measurement efficiency
is defined as the ratio of test-score precision to test-length.) In general lower maximum
item exposure rates result in either lower measurement efficiency, or in higher test devel-
opment costs associated with larger or more numerous item pools. When making decisions
about exposure control algorithms, including decisions about target maximum exposure
rates and the number or size of simultaneous or sequential item pools, test developers have
considered the unique compromise pressure placed on their exams. As part of the evalu-
ation process, test developers typically perform extensive simulation analyses to examine
the consequences of exposure control algorithms on measurement precision (for fixed-length
tests), and on test-lengths (for variable-length tests). These considerations have led some
high-stakes developers to set low target maximum exposure levels at 0.10 and frequent
item-pool replacement schedules (of just several weeks), and have led other test developers
to use somewhat higher targets of 1/3 in conjunction with two or three simultaneous pools
replaced at five-year intervals.
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D. Content Balancing

Test developers have been compelled in many cases to depart from strict precision
considerations when designing and implementing CAT item selection algorithms. These in-
clude cases, where for example, the item pool consists of items drawn from different content
areas of a more general domain (e.g., math items drawn from algebra and geometry). In such
instances, item selection algorithms which maximize precision may not administer properly
balanced tests, resulting in test scores which have questionable validity. To help ensure ad-
equately balanced content across examinees, constraints can be placed on the adaptive item
selection algorithms (e.g., constraints that ensure equal numbers of administered algebra
and geometry items).

The most basic approach to content balancing spirals the sequence of item adminis-
tration among key content areas. For example, math items would be administered in the
order: (1) algebra, (2) geometry, (3) algebra, (4) geometry, and so forth, where each item
represents the most informative item (passing the exposure-control screen if used) at the
provisional trait level among items in the given content (i.e., algebra or geometry) domain.

Although the spiraling approach is adequate for a small number of mutually exclusive
content areas, this approach is poorly suited for situations where more complex content con-
straints are desired. Consider the case where for example, items are classified along several
dimensions simultaneously, and as a result do not fall into mutually exclusive categories. In
such cases, methods such as the Weighted Deviations or Shadow Testing approaches can be
used. These approaches are designed to maximize precision while attempting (in the case
of the former method), or forcing (in the case of the latter method) adherence to specified
content constraints.

Test developers have placed different levels of emphasis on the issue of content bal-
ancing. Developers of licensure and certification exams for example have tended to produce
CAT exams where content targets and constrains heavily influence item choice. In these ex-
ams, the direct demonstration of the understanding of key facts and concepts is considered
so important that it is not sufficient to infer mastery of one concept from the correct answers
to items assessing more difficult concepts. In some instances, the balanced administration
of items is so important that test developers have opted for a testlet based approach, where
balanced groups or sets of items are selected and administered. Within each group, items
are balanced for content and span a relatively narrow range of difficulty. Thus in the testlet
based approach, the difficulty level of the testlet item-group (rather than the individual
item) is tailored to the level of the examinee.

The issue of content balancing is complicated not only by the question of when to
balance, but by the question of how finely to balance. Inevitably more detailed balancing
constraints will lower the measurement efficiency of the adaptive testing algorithm, with
some constraints having larger effects than others. For example, in a fixed-length test of
high school math skills, the forced administration of a large number of calculus items (that
happened to be difficult because of their advanced content) would degrade precision over the
middle and lower proficiency ranges. Examinees in these ranges would be better measured
by the administration of items of more appropriate difficulty levels, such as those taken from
introductory or intermediate algebra. This example illustrates that the imposition of some
content constraints may actually lead to a significant decrease in precision or measurement
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Table 2: Factors Affecting CAT Measurement Efficiency

Item Pool Characteristics Algorithm Characteristics
1. Size 1. Stopping Rule
2. Item Parameter Distributions 2. Content Constraints
3. Content Coverage 3. Exposure Control

efficiency. Unfortunately, there are no universally accepted rules regarding the optimal
balance between content and measurement efficiency considerations in the construction of
item-selection algorithms. Rather, test developers routinely weigh these trade-off consider-
ations in the context of the specific exam and its intended purpose to arrive at a suitable
approach to content balancing.

E. Time Limits

The imposition of time-limits can in some instances significantly degrade CAT mea-
surement precision, since the effects of time-pressure are not explicitly modeled by standard
item-selection and scoring algorithms. Even in spite of this undesirable consequence, most
high-stakes high-volume testing programs have implemented overall test time-limits for a
number of reasons, including the desire to help reduce excessive test times. In instances
where time-limits have been imposed, most test developers have chosen to implement long
time-limits which provide most or nearly all examinees with an opportunity to answer all
items without feeling rushed.

Although time-limits might be desirable from an administrative standpoint, their use
raises opportunities for gaming and test-compromise in high-stakes testing. Low ability
examinees would be well advised to answer as few items as allowed. Under ML scoring,
these low-ability examinees could capitalize on measurement error, which is greatest for
short tests. Under Bayesian scoring, these same low-ability examinees could capitalize
on the positive bias introduced by the prior, which is also greatest for short tests. To
help discourage such test-taking strategies associated with time-limits, test developers have
implemented various scoring penalties applied to incomplete fixed-length tests. For variable-
length tests, fair and equitable provisions must be made to help ensure that those requiring
longer tests (to achieve the target precision level) are given sufficient time.

VI. Item Pool Development

Characteristics of the item pool (including size, item parameter distributions, and
content coverage) directly impact CAT measurement efficiency and test-score validity. Fur-
thermore, particular characteristics of the adaptive algorithm (such as the stopping rule,
number and type of content balancing constraints, and type and level of exposure control)
can interact with key item-pool characteristics to further affect measurement efficiency and
test-score validity. These characteristics are listed in Table 2.

Large item pools are desirable from several standpoints. First, large item pools tend
to contain a larger set of highly discriminating items which in turn can provide greater
measurement efficiency: greater precision for fixed-length tests, and shorter test-lengths
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for variable-length tests. Second, large pools are more likely to satisfy content balancing
constraints, or satisfy them without severely impacting efficiency. For fixed-length tests,
large pools enable lower exposure levels (for the most used items), and can satisfy these
levels without severely impacting precision. Many test developers have found high precision
levels can be obtained with pools whose size is about six to eight times the test length.

In principle, the ideal item pool contains items with difficulty parameters (bi’s) uni-
formly distributed throughout the θ range, and for the 3PL model contains high discrimina-
tion parameters (ai’s) and low guessing parameters (ci’s). In practice, these ideal parameter
distributions are often difficult to achieve. For some tests, highly discriminating items may
be rare, or may only exist for items with difficulty values that span a narrow range, or for
items of specific content areas. In these cases, CAT algorithms can be very inefficient, re-
sulting in test scores that have low precision over some trait ranges (for fixed-length tests),
or resulting in long test-lengths (for variable-length tests). Consequently, test developers
when possible, have tended to write and pre-test large numbers of items in hopes of end-
ing up with a sufficient number of highly discriminating items of appropriate difficulty and
content.

Standard CAT item selection and scoring algorithms assume that the IRFs for all
items are known in advance. In practice these are estimated from examinee response data.
For the 3PL model, large-scale testing programs have tended to use samples containing 500
or more responses per item to estimate item parameters. Programs that have based their
item selection and scoring algorithms on the 1PL model have typically relied on smaller
sample sizes for IRF estimation. Test developers routinely use conditional (on θ̂) item-score
regressions to check model-fit. This model-fit analysis typically includes an additional check
of dimensionality or local independence assumptions.

Many test developers have found it convenient, especially when developing the first
set of pools to collect calibration data in paper-and-pencil format, since this mode of data
collection is often faster and cheaper than collecting the same data by computer. In these
cases, test developers have attempted to ensure that the use of item-parameter estimates
obtained from paper-and-pencil data are adequate for use when the items are administered
on computer in adaptive format. This assurance has been provided by several studies
which have found inconsequential differences in item response functioning due to mode of
administration (computer versus paper-and-pencil).

Because of the complexity of the interactions between item pool characteristics and
adaptive testing algorithms, and the effects these have on measurement efficiency, test devel-
opers routinely conduct computer simulation studies to fine-tune the adaptive algorithms
and to examine the adequacy of candidate item pools. These simulations take as input
the item parameter estimates of items contained in the pool (a’s, b’s, c’s), and if content
balancing is proposed, the content classification of each item. Then, the consequences (on
precision or test-length) of using the proposed adaptive testing algorithm can be examined
for examinees falling at different trait levels. The output of these simulations are conditional
(on θ) means and variances of the estimated scores θ̂. These simulation studies allow the
effects of different variations of the adaptive algorithms (i.e., changes in content constraints,
pool size, stopping rule, target exposure level, etc.) to be examined and compared. The
outcome of these simulations are often used as a basis for determining the suitability of
candidate item-pools and adaptive algorithms.
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VII. Trends in Computerized Adaptive Testing

In recent years, research on item selection and scoring algorithms has continued.
This includes work on item-selection algorithms intended to provide greater measurement
precision. One class of approaches address the uncertainty regarding the provisional trait
estimates toward the beginning of the test. These include such methods as the global infor-
mation criterion, weighted likelihood information criterion, a-stratified method, and fully
Bayesian approaches. Research has also continued on improved exposure control algorithms
to further guard against test compromise. Another class of item-selection approaches have
been developed to further increase the measurement efficiency of CAT in the context of mul-
tidimensional IRT modeling, where items are selected to maximize the information along
several dimensions simultaneously.

As more testing programs have considered the use of CAT, more attention has been
given to its cost-effectiveness. In addition to the benefits of increased measurement pre-
cision and reduced test lengths, CAT offers a host of other benefits associated with the
computerized administration of test items. These include: immediate and accurate scoring,
minimal proctor intervention, individually timed and paced test administration, standard-
ized instructions and test administration conditions, improved physical test security (no
hard-copy of test booklets are available for compromise), and provisions for handicapped
examinees (large print, audio, and alternate input devices). Many of these benefits, es-
pecially when considered along side the key benefit of increased measurement efficiency,
provide compelling incentives in favor of CAT. But several obstacles have prevented many
test developers from adopting CAT. In addition to specialized software requirements (nec-
essary for test development and administration), CAT also requires considerable resources
for item pool development, and for the purchase and maintenance of computer test-delivery
systems.

Compared to conventional testing paradigms, many high-stakes test developers have
found that CAT requires more test items and greater data demands (for item calibration).
These greater demands for items and data are due in part to requirements of the adaptive
branching strategy, and in part to the change in testing schedule associated with the test
delivery. Conventional exams administered in high or moderate stakes settings are often
associated with periodic test schedules, where substantially different items (i.e., test forms)
are administered on each testing occasion to help reduce instances of cheating. Because
of the large item-pool development costs and the impracticality of administering a large
number of computer-delivered exams on the same day (as is the case with periodic exams),
CAT exams are administered exclusively using on-demand or continuous testing schedules.
According to these schedules, the same items are used over an extended time period. These
continuous schedules by their nature increase the opportunity for test compromise, which is
most effectively countered by large numbers of items–either contained in a few large pools,
or contained in a large number of smaller item pools.

It is noteworthy that increased demands for items and calibration data has been min-
imal for at least one major high-stakes testing program that transitioned from paper-and-
pencil to CAT. This program (the Armed Services Vocational Aptitude Battery [ASVAB]
program) differed from most programs in that its conventional test-version was also given
on-demand, where compromise was controlled though the simultaneous use of a large num-
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ber of alternate paper-based test-forms. It was found that a sufficient level of CAT precision
and security could be achieved by the use of a small number of moderate sized item pools.
The ASVAB experience suggests that a large part of the increase item/data demands typi-
cally associated with high-stakes CAT may be due to the change in testing schedule (from
periodic to continuous), rather than to the demands of the adaptive item selection algo-
rithms.

Research has also intensified on item pool data collection and maintenance proce-
dures. Response data required for the calibration of new items can be easily obtained
by administering these items along with the operational adaptive items. This method of
seeding or interspersing helps ensure that examinees will provide high-quality motivated
responses, and that the item parameter estimates obtained from these response data are
appropriately scaled. Depending on the mixture of tryout and operational items presented
to examinees, this sort of data collection design can raise special challenges for conventional
item calibration approaches. Research has also continued on approaches for phasing items in
and out of item-pools, and the effects of these approaches on precision and other important
item-pool qualities.

Developers have been sensitive to computer literacy levels among their test-taking
populations, and in particular to the literacy levels of particular (possibly economically
disadvantaged) subgroups. In large-scale test development efforts, care has been taken
to ensure that aspects of the computerized test-taking experience do not place particular
subgroups at an unfair disadvantage relative to corresponding subgroups taking paper-
and-pencil versions. Although no consistent subgroup/medium interactions along racial or
gender lines have been identified, attempts have been made none-the-less to mitigate any
possible disadvantage among subgroup members by the use of simple item presentation for-
mats and by clear test-taking instructions. As computers become even more commonplace
and ubiquitous among widely diverse segments of the population, this concern is likely to
dissipate.

With the proliferation of computers in recent years, it would appear that one of the
last major obstacles to CAT has been removed: the availability of computer platforms for
CAT test delivery. However, many high-stakes test developers have been concerned about
context effects associated with different hardware, and testing environments, and possible
interaction effects of these with test-delivery software. For paper-and-pencil tests, test-
performance can be affected by subtle differences in booklet font and layout, and by subtle
changes to answer-sheets. These concerns about context effects have caused at least some
high-stakes test-publishers to go to great lengths to standardize these and other aspects of
the testing experience. In the first instances of large-scale high-stakes uses of CAT, this strict
adherence to standardization carried over to computers, which were also standardized so
that the computer hardware and software were virtually identical across test administrations
for a given exam. This strict adherence to standardization meant that testing could occur
only on specially designated computers. Consequently, their cost was factored into the cost
of CAT testing.

If adaptive testing could be routinely conducted on computers used for other purposes
(and this could be done without loss of precision or validity), then a primary impediment
of CAT testing (i.e., hardware costs) could be substantially reduced. Some test developers
are for example considering the administration of low or medium stakes adaptive tests



COMPUTERIZED ADAPTIVE TESTING 14

over the Internet, thus enabling CAT to be administered on a wide variety of general-
purpose computer platforms. Because of the important role computer hardware plays in
both the economic and psychometric viability of CAT, necessary research on context effects
is likely to intensify in the coming years. This includes research on the aspects of the
computer hardware that influence test performance, and on characteristics of the exam
(such as speededness) and software-interface that might interact with particular hardware
characteristics. Progress in these and related areas is likely to further increase the popularity
of computerized adaptive testing.
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