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A Comparison of Computer Mastery Testing Models When Pool Characteristics Vary 

 

Introduction 

 In computer mastery testing the issue of the optimal classification method has periodically 
been examined.  Kingsbury and Weiss (1983) compared the sequential probability ratio test (SPRT) 
procedure with a sequential adaptive Bayes (SAB) procedure (referred to as Adaptive Mastery 
Testing (AMT) by Kingsbury and Weiss).  The SPRT method used in the Kingsbury and Weiss 
study delivers a single fixed sequence of items to all test takers using a binomial probability model 
and a likelihood ratio-based stopping rule, where only the test length varies among test takers.  The 
sequential adaptive Bayes procedure is adaptive in the sense that item selection is individualized for 
a given test taker.  The method is IRT-based with items selected to maximize information at the 
provisional ability estimate.  Because the set of items administered to an individual may vary in the 
amount of information provided,  percent Bayesian confidence bands (using Owen’s (1969, 
1975) restricted Bayesian updating procedure) are constructed around the posterior mean using the 
posterior standard deviation for ability after item i.  If the cut score is not contained in the interval, 
testing stops and the individual is classified as a master or nonmaster.  Otherwise, testing continues 
up to some maximum test length.  If the maximum test length is reached, testing stops and the 
individual is classified based on the relative relationship of the estimated ability to the cut score.  
The Kingsbury and Weiss results suggested that the Bayesian procedure was more efficient than the 
SPRT procedure.  However, the methods were not strictly comparable as implemented since a 
binomial probability model was used with the SPRT procedure and an IRT probability model was 
used with the SAB. 

 Spray and Reckase (1996) compared two similar methods for computer mastery testing. In 
their study, the likelihood ratios used by the SPRT procedure are computed using an IRT probability 
model rather than the binomial probability model used by Kingsbury and Weiss (1983).  The single 
fixed sequence of items presented to every test taker was ordered with respect to the amount of 
information at the cut score ability level.  Their version of Kingsbury and Weiss’ Bayesian 
procedure used the Bayesian confidence interval stopping rule, but it did not select items adaptively.  
Instead, the same fixed item presentation sequence chosen for the SPRT procedure was used here as 
well.  This modification will be referred to as a sequential Bayesian (SB) procedure (not adaptive 
with regard to item selection). With average classification error rates matched, average test lengths 
could be compared to determine which method was more efficient.  Spray and Reckase found the 
SPRT method required fewer items, on average, than the sequential Bayes method. 

 Vos and Glas (2000) compared variations of what they referred to as adaptive sequential 
mastery tests (ASMTs) with sequential Bayesian mastery tests similar to those studied by Lewis and 
Sheehan (1990) and Smith and Lewis (1995, 1996, 1997, 1998), where item (or testlet) selection was 
random.  In the first of their variations, items were selected that maximized information at a cut 
score (similar to the SPRT method).  A second variation selected items that maximized information 
at the provisional estimate of ability (similar to AMT).  The third variation used Bayesian decision 
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theory to select items and was primarily directed at balancing losses due to misclassification with the 
cost of testing.  Items were selected such that the variance of the difference between mastery and 
non-mastery losses was minimized.  This is a Bayesian decision rule that considers information at 
both the current ability estimate and the cut score.  They found little difference among the methods 
when the Rasch model was used, but found the third variation of the ASMT method to be more 
efficient when the 3PL model was used.  One limitation of this study is that the item parameters 
were independently drawn from a standard normal distribution for each simulated test taker, thus, 
mimicking item selection from an infinite item pool.  This situation may mask effects that occur due 
to the limitations found in finite item pools.  For example, selecting items at a test taker’s provisional 
ability estimate may be most efficient when decisions are made quickly based on short tests.  
However, as test length increases, more items that are increasingly distant from the provisional 
ability estimate are likely to be administered, thus degrading the benefit of selecting items that are 
most appropriate for the test taker.  Here the finiteness of the item pool interacts with the selection 
algorithm.  

 The studies above differ in ways that make direct comparisons difficult.  The major issues 
seem to revolve around the algorithm used for item selection (maximum information at the cut score 
or maximum information at the ability estimate) and the stopping rule (SPRT or Bayesian 
confidence intervals).  The present study seeks to compare these methods of item selection and  
stopping rules under various pool configurations and cut scores .   

Method 

Procedures investigated 

 Two item selection criteria were examined: 1) selecting items that maximize information at 
the cut score, and 2) selecting items that provide maximum information at the provisional ability 
estimate.  In addition, two stopping rules were examined, 1) the likelihood ratio and 2) Bayesian 
posterior probability.  The crossing of these factors produced four methods:  

1. Sequential Likelihood Ratio Method (SLR) – Likelihood ratio stopping rule, with 
items selected to have maximum information at the cut score. 

2. Sequential Bayes Method (SB) – Bayes posterior probability stopping rule with 
items selected at the cut score. 

3. Sequential Adaptive Likelihood Ratio method (SALR) - Likelihood ratio stopping 
rule, with items selected to have maximum information at the provisional ability 
estimate. 

4. Sequential Adaptive Bayes (SAB) method - Bayes posterior probability stopping rule 
with items selected to have maximum information at the provisional ability estimate. 
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The item selection rules and the stopping rules were separated so that cross combinations could be 
examined1. 

 The Bayesian posterior probability method investigated here is modified slightly from the 
one proposed by Kingsbury and Weiss (1983).  Kingsbury and Weiss used Owen’s (1969, 1975) 
restricted Bayesian updating procedure, where simplifying normal posterior forms were assumed. 
The present version uses the actual posterior distribution of an individual’s ability estimate with a 
non-informative prior.  For the SAB a 99 percent confidence interval around the provisional ability 
estimate was used.  This was operationalized in the following manner.  If 99.5 percent of a test 
taker’s posterior probability fell above the cut score, she was passed.  Similarly, if 99.5 percent of 
the test taker’s posterior probability fell below the cut score, she was failed.  

 The likelihood ratio tests were investigated setting the hypothesis error rates equal (α = β), 
with the indifference region around the cut score (d) set at ± .202.  The values for α (and β) were 
adjusted to match error rates for SAB, and thus, will change from one condition to another.  (See 
appendix for more details on both stopping rules.) 

Pool characteristics 

 The simulations conducted for this study utilized item parameter estimates from a large 
pool of items assembled for a certification test using computerized adaptive delivery  Four 
different sub-pools of items were sampled from the large pool.  All sub-pools contained 251 
items. This size was chosen to be roughly representative of pool sizes for many actual 
certification tests.  The advantage of sampling all sub-pools from a larger pool of items is that it 
circumvents scaling issues that would come into play if the items were taken from different tests 
independently scaled.  It also allowed for better control of average item discrimination across 
conditions.  (See Table 1 for summary statistics for the different item distributions.) 

 The item difficulties in the original pool were well distributed across all ability levels 
between ± 3.0.  The a-parameters in this pool were fairly well distributed conditional on item 
difficulty with the following exception.  For easier items, the conditional distributions of the a-
parameters tended to have fewer highly discriminating items. This characteristic of the larger 
pool was reflected in the sub-pools where many items were drawn from the easier portion of the 
item difficulty distribution.  (For example, see Table 2 for the normal, peaked at -.60, and  
uniform distributions.) 

 The distributional form of the item difficulties in the sub-pools was as follows (also see 
Table 3): 

 
1 Option 3, the SALR, has never been explored to our knowledge and we are not necessarily advocating its use.  We include it 
for completeness.   
2 Other hypothesis error rate and indifference region combinations could have been used to arrive at the same classification 
error rates.  This occurs because the hypothesis error rate and the indifference region can offset each other, e.g., raising the α and 
β error rates while shrinking the width of the indifference region by a comparable amount will yield the same average 
misclassification error rate.   
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1. An approximately normal distribution of item difficulties (b-parameters) centered at an 
ability of -.55 

2. An approximately normal distribution of item difficulties (b-parameters) centered at an 
ability of .01 

3. A truncated distribution of difficulty composed of the 251 most difficult items from the base 
pool 

4. An approximately uniform distribution of item difficulties (b-parameters) between ± 3.0 

Simulation Procedures 

 The test taker ability distribution is taken from an actual testing population for a certification 
test.  The distribution is unimodal, centered approximately at a theta of zero.  The distribution of test 
taker ability was fixed for all methods and sub-pools investigated.  For each method and sub-pool 
three cut scores were investigated: -.60, .00, and 1.3.  These corresponded to population pass rates of 
72.4, 49.4 and 9.5, respectively.  A minimum test length of one item and a maximum test length of 
90 items was adopted. The delivery unit was limited to the item.  Content constraints were 
intentionally ignored because they would obscure the results of the study.  Similarly, exposure 
control was not used since it would tend to obscure any differences between the methods.  We 
followed Spray and Reckase (1996) by matching the procedures on average classification error rate, 
then examining average test length.   

Simulations 

 Data were generated for 10,000 simulated examinees according to the distribution of 
examinees found in the testing population.  Specifically, 10,000 values of  were drawn from the 
population distribution.  For each , 251 item responses were generated using the 3PL model and 
item parameter estimates form the sub-pool.  A different data set was generated for each pool 
configuration. Each method was applied to the same data set within a pool configuration.   

Matching error rates 

 The matching of error rates was accomplished by first establishing the error rate for the 
Sequential Adaptive Bayes (SAB) method with α set equal to .01.  The other methods were then 
matched to this error rate by adjusting the α level through an iterative process.  

Results 

 Table 4 presents the overall classification error rates, and average test length by pool 
distribution, cut score, item selection method and stopping rule.   In general, the classification error 
rates tend to be higher when the cut score is near the center of the ability distribution, where more 
test takers are located, and lower when the cut score is further out in the tail of the distribution, 
where fewer test takers are found.    
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Testing efficiency 

 Normal item distribution centered at -.55.  For the normal item distribution centered at -.55, 
the likelihood ratio stopping rule had the shortest average test length for all three cut scores.  
Moreover, item selection method had little effect on mean test length for this stopping rule. For a 
comparable item selection method, the likelihood ratio stopping rule achieved shorter test lengths 
than the posterior probability rule by a difference of between 7 and 14 items. 

 For the posterior probability method, selecting items at the cut score (SB) produced the 
shorter mean test length when the cut score was below the mean (-.60, 72.4 percent pass rate).  
However, when the other cut scores (.00 and 1.3) were used, selecting the items at the ability (SAB) 
produced shorter test lengths by 4 and 13 items, respectively). 

 Normal item distribution centered at .01.  For the normal item distribution centered at .01 
the SLR method had the shortest average test length for all three cut scores.  The SAB method 
produced the longest tests at a comparable classification error rate.  For a comparable item 
selection method, the likelihood ratio stopping rule achieved shorter test lengths than the posterior 
probability rule by a difference of between 4 and 11 items. 

 Truncated item distribution.  For the truncated item distribution the SLR method again had 
the shortest average test length for all three cut scores. For the extreme cut score (1.3), selecting 
items at the cut score produced shorter tests, on average, than selecting items at the ability estimate 
regardless of stopping rule.  At this cut there was little difference between the SB, SALR and SAB 
methods.  Controlling for item selection method, the likelihood ratio stopping rule produced 
shorter average test lengths than the posterior probability method.  Differences ranged from less 
than one item (1.3 cut score, with item selection at ability) to almost 14 items (-.60 cut score, with 
item selection at the cut score). 

 Uniform item distribution.  The pattern observed for the uniform distribution is similar to the 
other sub-pools for the lowest cut score (-.60).  The likelihood ratio stopping rule obtains shorter 
average test lengths than the posterior probability stopping rule when method of item selection is 
controlled for.  Also, item selection at the cut score produces shorter average test lengths than when 
items are selected at the ability.  

 Some interesting limitations of the methods are observed for the middle cut score (.00).  
While the SLR method still produces the shortest average test length, the SAB method obtains the 
second shortest average test length of those that could be evaluated.  In addition, for the SALR 
method it was not possible to reduce the classification error rate to be comparable to the other 
methods even for average test lengths approaching the maximum test length.  (The mean test length 
listed applies to the minimum attainable error rate which is also given.)  

 At the extreme cut score, the SAB method produced the shortest average test length.  When 
items were selected at the cut score, neither of the stopping rules could obtain sufficiently low 
classification error rates to be comparable to the conditions when the items were selected at the 
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ability.  In this case, as in the others like this, lowering alpha levels produced tests that had longer 
average test lengths, but did not improve classification error rates.    

Stage of classification 

 For each combination of pool distribution, cut score and method, Table 5 shows the stage 
(item) when the first decision was made, the percentage of decisions made through the tenth stage 
(item 10), and the percentage of decisions made after a test of maximum length (90 items.  In 
general, the posterior probability stopping rule tends to begin classifications a couple of stages 
earlier than the likelihood ratio stopping rule.  The SALR method tends to make many fewer 
decisions through stage 10 than the other methods.  However, by the last stage of testing, when a 
classification decision is required, both likelihood ratio methods make many fewer decisions than 
the posterior probability methods.  For the uniform sub-pool (where applicable), both likelihood 
ratio methods tend to make fewer early and fewer late decisions than the posterior probability 
methods. 

Discussion 

 Two methods of item selection (maximum information at the cut and maximum information 
at the ability estimate) crossed with two stopping rules (likelihood ratio and posterior probability) for 
a variable-length mastery test were examined for four different configurations of item sub-pools 
(normal centered at -.55, normal centered at .01, a truncated sub-pool of the most difficult items, and 
a uniformly distributed sub-pool.  For both of the normal and the truncated sub-pools, the SLR 
proved to be the most efficient method for cut scores of -.60 and .00, yielding the shortest average 
test lengths after controlling for classification error rates.  At the most extreme cut score (1.3), the 
SLR method produced the shortest average tests in the normal (.01) and truncated sub-pools, but was 
found to do no better than the SALR method in the normal (-.55) sub-pool.  The posterior 
probability stopping rule generally tended to be less efficient for these sub-pools.  

 The pattern observed for the uniform distribution is similar to the other sub-pools for the 
lowest cut score (-.60).  The likelihood ratio stopping rule obtained shorter average test lengths 
than the posterior probability stopping rule when method of item selection was controlled for, 
and item selection at the cut score produced shorter average test lengths than when items were 
selected at the ability estimates.  At the middle cut score (.00), the SLR method was the most 
efficient.  The other methods did not differ from each other.  At the extreme cut score (1.3) the 
SAB method produced the shortest average test length.  When items were selected at the cut 
score for this case, neither of the stopping rules could obtain sufficiently low classification error 
rates to be comparable to the conditions when the items were selected at the ability.  This was 
also observed at the cut score of .00 for the SALR method.  In these cases, lowering alpha levels 
produced tests that had longer average test lengths, but did not improve classification error rates  

 The different methods showed different patterns of the stage at which test takers were 
classified.  The posterior probability stopping rule tended to begin classifications a couple of stages 
earlier than the likelihood ratio stopping rule.  The SALR method tended to be conservative in the 
early stages, classifying many fewer test takers through stage 10 than the other methods.  However, 
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at the last stage of testing, both likelihood ratio methods make many fewer decisions than the 
posterior probability methods.  For the uniform sub-pool (where applicable), both likelihood ratio 
methods tended to make fewer early and fewer late decisions than the posterior probability methods. 



Comparison of Computer Mastery Models 

 

 

8 

 

References 

Kingsbury, G.G. & Weiss, D.J. (1983).  A comparison of IRT-based adaptive mastery 
testing and a sequential mastery testing procedure.  In D.J. Weiss (Ed.), New horizons in 
testing.  New York: Academic Press. 

Lewis, C. & Sheehan, K. (1990).  Using Bayesian decision theory to design a computer 
mastery test. Applied Psychological Measurement, 14, 367-386. 

Owen, R. J. (1969).  A Bayesian approach to tailored testing.  (Research Bulletin 69-92).  
Princeton, New Jersey: Educational Testing Service. 

Owen, R. J. (1975).  A Bayesian sequential procedure for quantal response in the context of 
adaptive testing.  Journal of the American Statistical Association, 70, 351-356. 

Smith, R. & Lewis, C. (1995, April).  A Bayesian computerized mastery model with multiple 
cut scores.  Paper presented at the annual meeting of NCME, San Francisco. 

Smith, R. & Lewis, C. (1996, April).  A search procedure to determine sets of decision 
points when using testlet-based Bayesian sequential testing procedures.  Paper presented at 
the annual meeting of NCME, New York. 

Smith, R. & Lewis, C. (1997, April).  Incorporating decision consistency into Bayesian 
sequential testing.  Paper presented at the annual meeting of NCME, Chicago. 

Smith, R. & Lewis, C. (1998, April).  Expected losses for individuals in Computerized 
Mastery Testing.  Paper presented at the annual meeting of NCME, San Diego. 

Spray, J. A. & Reckase, M. D. (1996). Comparison of SPRT and sequential Bayes 
procedures for classifying examinees into two categories using a computerized test.  Journal 
of Educational and Behavioral Statistics, 21, 405-414. 

Vos, H. J. & Glas, C. A. W. (2000).  Testlet-based adaptive mastery testing.  In W. J. van der 
Linden and C.A.W. Glas (Eds.), Computerized Adaptive Testing: Theory and Practice.  
Dordrecht: Kluwer Academic Publishers. 



Comparison of Computer Mastery Models 

 

 

9 

 

θ

Appendix 

The Likelihood Ratio Decision Criterion 

The likelihood function for  based on a response pattern θ

( )nuuu ,,, 21=′u  

for n items may be written as 

n

i

u
i

u
i

ii PPL
1

1)](1[)()|(
=

−−= θθθ u
, 

where  denotes the item response function for the ith item to be administered. )(θiP

If our cut score on the  scale is , we define two hypothesis values for : θ cθ θ

dc −=θθ 0  

and 

dc +=θθ1 , 

with  specified as a minimum difference from the cut score.  In other words, the interval from 
 to  is considered to be an indifference region.  The likelihood ratio criterion is then defined as  

0>d
1θ0

)|()|()( 01 uuu θθ LLLR = . 

For values of this criterion sufficiently greater than unity, we will pass a candidate, while for values 
sufficiently close to zero the candidate would be failed.  In this study, we treat the two types of 
classification errors symmetrically.  In this case, the critical values for the likelihood ratio test may 
be written as a function of , a theoretical error rate at the two hypothesis values,  and  for a 
sequentially administered test of potentially unlimited length: 

LRα θ θ0 1

( )LRLRLR αα −= 10  

and 

( ) LRLRLR αα−= 11 . 

The Likelihood Ratio decision rule after administering n items is 
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1. Pass if LR ; 1)( LR>u

2. Fail if LR ; 0)( LR<u

3. Otherwise, continue testing. 

If the maximum test length has been reached, the final decision rule is given by 

1. Pass if 1θL ; )|()|( 0 uu θL≥

2. Fail if 0θL . )|()|( 1 uu θL>

(In practice, for reasons of convenience and numerical precision, all tests are carried out using the 
natural logarithm of the likelihood ratio.) 

 

The Posterior Probability Decision Criterion 

We begin by identifying a set of quadrature points on the  scale: θ

*
qθ , for . Qq ,,1=

We introduce a prior, or population probability distribution for  on these points, denoted by θ ( )*
qp θ .  

After administering n items, and observing a response vector u, we compute a posterior distribution 
for  using Bayes’ Theorem: θ

)
( ) ( ) ( )

( ) (∑
=

= Q

q
qq pL

pLp

1

** |

||
θθ

θθθ
u

uu

. 

Using this distribution, we can find the posterior probability that  will lie below (or above) the cut 
score : 

θ
cθ

( )∑
<

=<
cqq

qc p
θθ

θθθ
*:

* |)|Pr( uu
 

and 

)|Pr(1)|Pr( uu cc θθθθ <−=≥ . 
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θ * =θ

To describe a symmetric decision rule based on this posterior probability, we first introduce a 
theoretical error rate, .  The Posterior Probability decision rule after administering n items may 
then be formulated as follows: 

B

1. Pass if Pr(θ ; 2/)| Bc αθ << u

2. Fail if Pr(θ ≥ ; 2/)| Bc αθ <u

3. Otherwise, continue testing. 

(This rule is comparable to the more traditional formulation: evaluating the location of  relative to 
a  Bayesian confidence interval.  It has the advantage over that approach of 
allowing the easy introduction of unequal error rates for the two types of classification errors, as can 
also be done for the Likelihood Ratio procedure.) 

cθ

B

If the maximum test length has been reached, the final decision rule is given by 

1. Pass if Pr(θ ½; ≥≥ )| ucθ

2. Fail if <Pr(θ ½. >)| ucθ

Although a population prior distribution for  was available for our study, and was used in the 
simulations to draw samples of  values, we used a uniform prior (  for all q) to 
compute the posterior distributions for this decision rule.  This choice is consistent with our earlier 
work on Bayesian mastery testing, and may be justified on grounds of fairness to candidates. 

θ
Qp q /1)(



Comparison of Computer Mastery Models 

 

 

12 

 

Table 1  

Summary Statistics for Item Parameters in the Various Pools 

a b c 

Distribution Mn SD Mn SD Mn SD 

Normal (-.55) .70 .19 -.55 .69 .22 .06 

Normal (.01) .72 .20 .01 .71 .21 .06 
Truncated .73 .19 .70 .73 .20 .06 

Uniform .69 .20 -.11 1.39 .20 .06 
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Table 2 

Distribution of a-Parameters by Pool Configuration 

a-parameter Normal (-.55) Normal (.01) Truncated Uniform 

.35 17 12 8 25 

.45 26 31 30 29 

.55 29 25 29 28 

.65 58 48 45 56 

.75 41 39 43 32 

.85 40 42 43 40 

.95 25 33 32 21 

1.05 15 21 21 20 
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Table 3 

Distribution of b-Parameters by Pool Configuration 

b-parameter Normal (-.55) Normal (.01) Truncated Uniform 

-2.9 0 0 0 4 
-2.7 0 0 0 0 
-2.5 0 0 0 8 
-2.3 1 0 0 8 
-2.1 2 0 0 5 
-1.9 4 1 0 8 
-1.7 7 2 0 11 
-1.5 11 3 0 11 
-1.3 14 4 0 11 
-1.1 20 8 0 11 
-.9 26 14 0 11 
-.7 26 20 0 11 
-.5 29 23 0 11 
-.3 29 27 26 11 
-.1 21 21 21 11 
.1 22 28 28 11 
.3 15 25 25 11 
.5 10 23 24 11 
.7 7 20 23 11 
.9 4 14 24 11 

1.1 2 8 20 11 
1.3 1 4 15 11 
1.5 0 3 14 11 
1.7 0 2 9 9 
1.9 0 1 6 6 
2.1 0 0 9 9 
2.3 0 0 4 4 
2.5 0 0 1 1 
2.7 0 0 0 0 
2.9 0 0 2 2 
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Table 4 
Classification Error Rates and Mean Test Lengths by Item Selection Method and Stopping Rule 

Sub-pool Item 
Distribution 

Cut Score 
(theta) 

Item Selection 
(Max Info) 

Stopping Rule  Name  Classification 
Error (%) 

Mean Test 
Length 

Alpha 

Normal        -.60 Cut LR SLR 5.01 24.57 .1180
Centered -.60 Cut  Post. Prob. SB 5.01 34.88 .0118 

at -.55         
        
       
        

        
        
       
        

        
        
       
        

         
        
        
        

        
        
       
        

        
        

-.60 Ability LR SALR 5.01 25.70 .1300
-.60 Ability Post. Prob.

 
SAB 5.01 38.01 .0100

.00 Cut LR SLR 5.75 31.12 .0950
 .00 Cut  Post. Prob. SB 5.75 44.81 .0040 

.00 Ability LR SALR 5.76 31.71 .0850

.00 Ability Post. Prob.
 

SAB 5.75 40.97 .0100

1.3 Cut LR SLR 3.30 19.54 .1230
 1.3 Cut  Post. Prob. SB 3.30 39.62 .0001 

1.3 Ability LR SALR 3.30 19.33 .1410
1.3 Ability Post. Prob.

 
SAB 3.30 26.27 .0100

Normal -.60 Cut LR SLR 5.23 25.08 .1210
Centered -.60 Cut  Post. Prob. SB 5.23 36.16 .0102 

at .01 -.60 Ability LR SALR 5.23 31.00 .0100
-.60 Ability Post. Prob.

 
SAB 5.24 39.27 .0100

.00 Cut LR SLR 5.99 27.99 .0950
 .00 Cut  Post. Prob. SB 5.98 36.48 .0130 

.00 Ability LR SALR 5.97 31.59 .0850

.00 Ability Post. Prob.
 

SAB 5.99 41.02 .0100

1.3 Cut LR SLR 2.81 14.42 .1420
 1.3 Cut  Post. Prob. SB 2.81 19.30 .0180 

1.3 Ability LR SALR 2.80 19.70 .1000
1.3 Ability Post. Prob. SAB 2.82 23.92 .0100
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Table 4 (continued) 
Classification Error Rates and Mean Test Lengths by Item Selection Method and Stopping Rule 

Sub-pool Item 
Distribution 

Cut Score 
(theta) 

Item Selection 
(Max Info) 

Stopping Rule Name  Classification 
Error (%) 

Mean Test 
Length 

Alpha 

Truncated Dist.         -.60 Cut LR SLR 6.55 26.87 .1500
 -.60 Cut  Post. Prob. SB 6.56 40.57 .0104 
        
        
        
        

        
        
       
        

        
        
       
        

        
        
       
        

        
        
       
        

        
        

-.60 Ability LR SALR 6.55 32.95 .1390
-.60 Ability Post. Prob.

 
SAB 6.56 43.54 .0100

.00 Cut LR SLR 6.21 27.33 .1075
 .00 Cut  Post. Prob. SB 6.21 36.78 .0137 

.00 Ability LR SALR 6.21 30.82 .1070

.00 Ability Post. Prob.
 

SAB 6.21 41.99 .0100

1.3 Cut LR SLR 2.54 18.04 .0900
 1.3 Cut  Post. Prob. SB 2.54 22.33 .0090 

1.3 Ability LR SALR 2.54 22.47 .0650
1.3 Ability Post. Prob.

 
SAB 2.54 22.86 .0100

Uniform -.60 Cut LR SLR 5.92 28.84 .1195
 -.60 Cut  Post. Prob. SB 5.93 39.16 .0100 

-.60 Ability LR SALR 5.92 30.05 .1380
-.60 Ability Post. Prob.

 
SAB 5.92 41.71 .0100

.00 Cut LR SLR 6.32 36.44 .0700
 .00 Cut  Post. Prob. SB 6.32 47.29 .0045 

.00 Ability LR SALR 6.35* 43.27* .0500

.00 Ability Post. Prob.
 

SAB 6.32 44.11 .0100

1.3 Cut LR SLR 2.91* 22.16* .0700
 1.3 Cut  Post. Prob. SB 2.90* 33.08* .0010 

1.3 Ability LR SALR 2.85 26.88 .0500
1.3 Ability Post. Prob. SAB 2.86 24.36 .0100

* Results are misleading due to inability to match on classification error rates.  Tests of infinite length would not have resulted in matched 
classification error rates. 
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Table 5 
Percentage of Decisions at Early and Late Stages of Testing 

Sub-pool Item 
Distribution 

Cut Score 
(theta) 

Item Selection 
(Max Info) 

Stopping Rule Name Stage of First 
Decision 

Decisions 
through Stage 

10 (percent) 

Decisions at 
Last Stage (90) 

(percent) 
Normal       -.60 Cut LR SLR 5 32.76 6.45

Centered -.60 Cut  Post. Prob. SB 4 39.06 23.20 
at -.55         

        
       
        

       
        
       
        

       
        
       
        

         
        
        
        

        
        
       
        

       
        

-.60 Ability LR SALR 5 7.71 5.66
-.60 Ability Post. Prob.

 
SAB 4 33.37 25.62

.00 Cut LR SLR 8 12.75 10.74
 .00 Cut  Post. Prob. 

 
SB 6 23.40 37.07 

.00 Ability LR SALR 6 8.87 10.36

.00 Ability Post. Prob.
 

SAB 3 31.10 29.04

1.3 Cut LR SLR 5 60.91 7.28
 1.3 Cut  Post. Prob. 

 
SB 3 62.59 29.44 

1.3 Ability LR SALR 4 55.37 6.27
1.3 Ability Post. Prob.

 
SAB 2 57.19 17.88

Normal -.60 Cut LR SLR 6 33.63 7.45
Centered -.60 Cut  Post. Prob. SB 4 39.37 25.29 

at .00 -.60 Ability LR SALR 7 1.58 9.61
-.60 Ability Post. Prob.

 
SAB 4 28.39 27.04

.00 Cut LR SLR 7 19.96 8.25
 .00 Cut  Post. Prob. SB 4 36.91 25.28 

.00 Ability LR SALR 7 9.73 9.71

.00 Ability Post. Prob.
 

SAB 3 28.79 28.53

1.3 Cut LR SLR 5 64.97 2.86
 1.3 Cut  Post. Prob. 

 
SB 3 68.24 11.86 

1.3 Ability LR SALR 5 38.25 4.98
1.3 Ability Post. Prob. SAB 2 56.37 14.39
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Table 5 (continued) 
Percentage of Decisions at Early and Late Stages of Testing 

Sub-pool Item 
Distribution 

Cut Score 
(theta) 

Item Selection 
(Max Info) 

Stopping Rule Name Stage of First 
Decision 

Decisions 
through Stage 

10 (percent) 

Decisions at 
Last Stage (90) 

(percent) 
Truncated Dist.  -.60 Cut LR SLR 7 32.61 9.33 

 -.60 Cut  Post. Prob. SB 6 34.80 29.84 
        
        
        
        

        
        
       
        

       
        
       
        

        
        
       
        

       
        
       
        
        
        
        

-.60 Ability LR SALR 10 .70 10.59
-.60 Ability Post. Prob.

 
SAB 4 22.26 30.87

.00 Cut LR SLR 7 28.06 8.55
 .00 Cut  Post. Prob. SB 5 36.85 26.22 

.00 Ability LR SALR 9 1.89 8.98

.00 Ability Post. Prob.
 

SAB 3 26.09 29.28

1.3 Cut LR SLR 6 50.86 4.40
 1.3 Cut  Post. Prob. 

 
SB 4 61.04 13.20 

1.3 Ability LR SALR 7 21.50 5.88
1.3 Ability Post. Prob.

 
SAB 4 59.52 13.28

Uniform -.60 Cut LR SLR 5 6.07 9.98
 -.60 Cut  Post. Prob. SB 4 38.25 28.11 

-.60 Ability LR SALR 4 4.38 8.60
-.60 Ability Post. Prob.

 
SAB 3 26.75 29.75

.00 Cut LR SLR 9 2.07 15.41
 .00 Cut  Post. Prob. 

 
SB 7 19.43 36.34 

.00 Ability LR SALR * * *

.00 Ability Post. Prob.
 

SAB 3 25.63 32.92

1.3 Cut LR SLR * * *
1.3 Cut  Post. Prob. SB * * *
1.3 Ability LR SALR 8 7.82 8.80
1.3 Ability Post. Prob. SAB 2 55.64 15.22

* Results are misleading due to inability to match on classification error rates. 
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