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University of Washington

Abstract

Adaptive selection of personality items to inform a neural network 
predicting job performance.

Anne Thissen-Roe

Chair of the Supervisory Committee:
Professor Emeritus Earl Hunt

Department of Psychology

Connectionist or "neural" networks, developed as a model of cognition, are also a general 

statistical model with practical applications. Adaptive testing, traditionally based on item 

response theory, is a way to improve the efficiency of a test. A hybrid system is developed 

that captures the main advantages of both technologies: the modeling flexibility of a 

neural network, and the efficiency gains of adaptive testing. A prototype is implemented 

for the case of a personality assessment used to predict job tenure at a national retail 

chain. Applicants' assessment and subsequent employment data are used to demonstrate 

the prototype's effectiveness. 
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1. Introduction


 Consider the problem of hiring a new employee when several candidates are 

available. It is preferable to get the best available candidate, or at least, to avoid the 

worst. The time and effort spent evaluating candidates have real costs to a business, but 

hiring the wrong person may lead to firing that person and starting the process over. The 

wrong candidate may also steal from the business, be unsafe and risk injury for which the 

business is liable, or expose the business to costly lawsuits.


 A brief assessment related to the job is a way of selecting an above-average 

candidate more than half of the time. Assessments have been used in employee selection 

for decades, but computers can make them even more efficient. With the automation of 

the job application, data entry is removed from the process. At the same time as it records 

applicant data, the computer can score the assessment, and evaluate the candidate 

according to strict rules. Network transmission permits centralized storage and 

continuous or routine monitoring of applications submitted at many locations. This 

process has a number of beneficial side effects, from reduction of paperwork to reduction 

of discrimination.


 Any valid assessment can improve the quality of the hiring decision over none, 

including procedures such as interviews that we may not think of as assessments, but also 

more formal tests. Technological sophistication may improve the quality of the 

assessment, an improvement which is passed along to the hiring decision. Different 

technologies address different problems, but may be difficult to use in conjunction with 
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each other. This paper discusses a case of joining two technologies with different 

functions. Specifically, a neural network is a general statistical model of the predictive 

relationship between assessment and outcome, which allows for nonlinear interactions 

between measures within a broad assessment. Adaptive item section can make a test more 

efficient while minimizing loss of information. The goals of the two methods are not 

incompatible, but using adaptive selection with neural net prediction requires careful 

thought.


 This paper develops a novel method of adaptively selecting items to be used as 

inputs for a predictive neural net. The available data are assumed to be multidimensional, 

nonlinearly interacting, and variable in utility. It is further assumed that there is a real 

cost in time and money associated with gathering each piece of information. The method 

is modular; any of several components can be replaced with a different mathematical 

technique provided certain constraints are met. Unlike earlier systems of computerized 

adaptive testing, in which scoring and item selection were strongly integrated, this 

method can be easily adapted to alternative measurement models. In effect, by combining 

adaptive testing methods with neural networks, I lay the basis for a methodology of 

testing that is more flexible, powerful and efficient than current techniques.


 The remainder of Chapter 1 will briefly review the background information and 

prior research which contribute to this hybrid method in four areas: employment testing 

in general, neural networks, computerized adaptive testing, and assessment structure 

determination for the type of assessment to be used. Chapter 2 introduces the new method 

in mathematical terms; Chapter 3 explains how it may be implemented in a computer 
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program. In Chapter 4, the method is implemented for the case of an assessment used to 

predict job performance at a national retail chain. Actual applicant and employment data 

are used to demonstrate the method's function.

1.1. Employment Testing


 Employees differ. This is assumed to be self-evident. There are qualities of the 

employee, as well as of the work and the work environment, that lead to different 

outcomes after hire, such as productivity, positive behaviors, off-task behaviors, 

workplace theft and even violence. The overarching purpose of all predictive methods is 

to anticipate one or more of these outcomes in an applicant before hiring, so that a 

negative outcome may be avoided or a positive outcome achieved.


 Various attempts to predict employee behaviors have focused primarily on 

predicting two components: competence to do the job, and inclination to do the job. 

Performance measures may be separated into measures of maximal performance, under 

which the employee is particularly motivated for the testing period, and typical 

performance, which reflects both ability and inclination under ordinary conditions (see, 

e.g., Ployhart et al, 2001; Turner, 1978). Which type of performance is important may 

depend on particular job conditions. For example, a cash register operator can be slow 

most of the time and still be considered a good employee, if he picks up the pace to keep 

up with busy times. Estimating both types of performance, however, calls for knowledge 

3



of both the employee's ability and personality. An assessment may predict one or the 

other, or both.


 The most common class of pre-employment assessment is not what an applicant 

might think of as a test at all. A fair amount of biographical information is gathered about 

a job applicant for administrative purposes, and this "biodata" may be used 

opportunistically to predict success or misbehavior on the job. Biodata may include 

identifying information, demographic information, information about the applicant's 

employment history, information about education or credentials, or information about 

conditions such as veteran status. This is a broader definition than used by Schmidt and 

Hunter (1998), who distinguish inquiries into job experience and education from the set 

of all other questions which may be asked. This distinction may not be salient to an 

applicant when biographical measures used are widely varied.


 Biodata may be used to screen applicants quickly for minimum qualifications, 

such as possession of necessary documents or being old enough to legally work. It may 

be disregarded for legal or ethical reasons, such as to avoid unfair discrimination against 

groups, but retained in order to track company demographics, to receive tax credits, or 

simply to pay the employee. Finally, biodata may be useful in assessing an applicant's 

competence to do a job, through credentials or job history, and an applicant's behavioral 

tendencies, also through employment history. Having held a series of related jobs may be 

a good sign, but getting fired from each one is probably not.


 In a meta-analysis across numerous samples and several specific criterion 

measures, Schmidt & Hunter (1998) give a validity of 0.35 for biodata in predicting job 
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performance, and lower validities for job experience, educational level, and a measure of 

training and experience. It is difficult to accept such a value without further qualification, 

as the utility of biodata no doubt reflects the choice of biodata. Biodata may act as 

surrogates for constructs such as general mental ability or ambition, which may be 

measured more specifically.


 For the purposes of this paper, it is assumed that some biodata will be collected 

during the process of application, in order to be passed on to the hiring manager or 

payroll office, and it may or may not be opportunistically used. In the interests of 

maintaining applicant dignity and privacy, additional life history inquiries, such as the 

parental discipline items referenced by Schmidt & Hunter (1998), will not be considered.


 A more traditional type of pre-employment assessment is the skills test, and it has 

close cousins in the knowledge test and the work sample. This group of tests involves 

direct measurement of the applicant's preparation to do the job. A work sample, for 

instance, is a rated performance of a selection of job tasks. While the applicant may be 

more motivated than the hired employee, a demonstration of skill or knowledge still 

predicts best performance. Predictive validities of 0.54 for work samples and 0.48 for 

job-related knowledge tests were found in meta-analysis, much higher than the validity of 

0.18 given for number of years of experience alone (Schmidt & Hunter, 1998).


 Skills tests and work samples are not applicable to untrained or inexperienced 

workers, nor are they good for "unskilled" jobs, where most of the population possesses 

the necessary skills or can easily learn them. They are most appropriate to skilled crafts 

such as carpentry, butchery, welding, and mechanical repair. Similarly, knowledge tests 
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are only applicable when the applicant has had training, education or experience which is 

pertinent to the job and not near-universal. (Schmidt & Hunter, 1998)


 A second class of test is the ability or aptitude test. These tests can be used with 

applicants who are expected to be trained in job-specific skills after they are hired. While 

there are many possible ability tests, including ones to measure physical characteristics 

such as visual acuity or strength, the most common ability tests measure either general or 

specific mental abilities.


 General mental ability tests have been shown to predict how fast and how well an 

employee learns a job (Hunt, 1995). Schmidt and Hunter (1998) found validities ranging 

from 0.23 to 0.58 depending on the complexity of the job, leading the authors to conclude 

that tests of general mental ability were the most valid and least costly of all broadly 

applicable selection procedures. The more complex the job, the higher the validity. Over 

the long term, general mental ability was more important than years of experience, and 

correlated with skills tests and work samples (Schmidt & Hunter, 1998; Hunt, 1995).


 Tests of specific mental abilities, such as spatial ability, memory, and reasoning, 

are also used in practice. These tests typically load heavily on a general ability factor, but 

contribute some unique variance (Carroll, 1993).


 In low-complexity jobs, where competence to do the job can generally be 

assumed, the relative value of inclination to do the job increases. Motivation may come 

from both internal and external influences. Some influences are stable, including 

expectations of consequences, perceived norms, interests, and personality traits. Others 

are affected by day to day conditions and may be difficult to predict.
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 The measurement of personality traits in a work context has been extensively 

discussed. The set of personality traits that are relevant to job performance is distinct 

from the set of traits which together fully describe a person. Although many researchers 

are familiar with small sets of broad personality traits which characterize individual 

differences in a general sense, such as the Big Five, these factors are sometimes 

considered to be the top level of a hierarchical model. A broad factor such as 

Conscientiousness, when closely studied, encompasses related but distinguishable 

components such as achievement orientation and diligence. More than one level of that 

hierarchy is of use in the context of employment testing.


 Tests of conscientiousness, in its Big Five form, have proven useful for selecting 

employees. Conscientiousness has a direct, rather than moderated, relationship with job 

performance, and may predict integrity, responsibility, honesty and reliability, all 

components of inclination to do a job (Matthews & Deary, 1998; Schmidt & Hunter, 

1998; Barrick & Mount, 1991). Specific integrity tests have been used to reduce the 

likelihood of counterproductive behavior on the job, and may have a higher correlation 

with performance than broad conscientiousness tests (Schmidt & Hunter, 1998). Not all 

integrity tests are equal. They may be overt or covert, the latter being closer to tests of the 

conscientiousness trait (Wanek et al, 1998).


 Some personality attributes are useful for selecting employees for particular 

classes of jobs, but not all jobs. Managers and salespeople both have jobs that call for 

interaction with new people on a regular basis, an aspect of the job which is either not 

present or not prominent in many other professions. For these professions, extraversion is 
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predictive (Barrick & Mount, 1991). Extraversion has components of sociability and 

ambition, but also tends to reflect general activity level, any of which might be expected 

to influence performance on some jobs. Scarborough (2005) reports effects of several 

extraversion-related constructs, including assertiveness and the expectation that one can 

influence others, on the performance of employees making sales calls. The same study, 

however, found an effect of emotional resilience, which contradicts earlier findings of no 

effect of emotional stability (Barrick & Mount, 1991).


 It may be inferred from the above discussions that "job performance" is not a trait 

or behavior, but rather a composite of behaviors influenced by a potpourri of traits. While 

ability measures may have positive manifold, personality measures are not necessarily 

correlated with each other or with ability. The predictions to be made by the system 

described in this paper are further complicated. Job tenure is not, strictly speaking, a 

performance measure. Tenure may be defined by performance, in that unsatisfactory 

performers may be fired, but it may also be limited by the employee's comfort with the 

work and environment. Comfort may or may not be related to performance. There are 

also more general issues concerning criterion measures, which set the stage for the use of 

sophisticated statistical models such as neural networks.


 As a measure validates or fails to validate against a criterion, so does the theory 

by which it was developed or chosen. Because of the time scale and stakes involved, 

experimental manipulations are limited; laboratory conditions can generally not 

adequately approximate a long-term job environment. Although some manipulations are 

possible (such as selection based on a test, or assignment to different training or working 
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conditions), most validity studies linking a psychological trait to an occupational outcome 

are correlational. Causality is commonly assumed from temporal order, but strong 

evidence for causation is rare.


 Correlational data are subject to uncontrolled variance. Statistical techniques may 

be used to correct for obvious sources, but not all sources are obvious. These conditions 

present challenges for modeling, not the least of which is that the presence of noise on at 

least the order of the effect size can obscure the effect in any visual evaluation.


 As in many fields of psychology, historically, small sample sizes have been more 

typical than large ones. Data gathering was effortful and costly. It required the 

cooperation of employees and managers in assigning time to processes which were not 

relevant to operating a business, such as filling out surveys. Data sets in the hundreds or 

thousands of cases were available, but even those might not have the power to detect 

small effect sizes. In recent decades, meta-analyses were able to extract results from these 

smaller studies.


 Compounding the problem of uncontrolled variance, the available criterion 

measures were, and indeed still are, often poor representations of the variable of interest, 

such as secondhand or retrospective reports (Steinberg et al, 2000).


 Recently, large-scale warehousing of business data has become feasible. This has 

led to "data-mining" operations in numerous fields of study, in which data collected for 

the purpose of business are sifted through for theoretically interesting relationships. 

Marketing research, for example, may compare purchasing profiles of different 
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demographic groups, or link the frequency of one type of purchase to the frequency of 

another. Datasets of this type may have cases in the millions, if one case is a person.


 Data mining is typically exploratory, and has sometimes been written off as a 

form of dustbowl empiricism. The practical utility of a relationship may, for example, 

lead to the acceptance of an ad hoc theory. On the other hand, by the nature of 

exploratory analysis, relationships may be discovered which were not expected, or which 

were too subtle to detect in smaller traditional studies. Confirmatory studies, such as 

determining the predictive validity of an assessment, also benefit from the larger sample 

sizes.


 Despite the availability of large samples, there remain intrinsic problems with the 

type of data available. The criterion is no less vulnerable than the predictor. In fact, it may 

be more so. The variable of interest may be as broadly defined as "job performance" or 

"incidence of counterproductive behavior", or may be much more specific. However, 

these quantities are often not measured at all, and if they are, are subject to flaws that 

lower their reliability (Steinberg et al, 2000; Scarborough, 2005).


 Managers' evaluations of employees are subject to the influences of irrelevant 

factors (e.g. personality factors on an ability judgment), halo effects, leniency, severity, 

and central tendency. There may be implied incentives in place for good reports. On the 

other hand, the average incumbent employee is probably better than the average 

candidate, and so their scores may be lowered by comparison with available examples. 

Empirical performance records such as cash register speed or sales volume may be 

compromised by low compliance, as well as effects of time of day, season, and co-worker 
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performance. Even hire and termination records may be incomplete or inaccurate due to 

manager noncompliance (with corporate rules, in this case) or administrative delays.


 Restriction of range is a further problem which is not corrected by sheer sample 

size. If a valid test is used for selection, its apparent correlation with criteria measured 

only on the selected population will drop. There are statistical corrections for this effect 

(Lord & Novick, 1968), but they are dependent on several assumptions which are often 

violated in practice, and others which are difficult to check. When possible, it is best to 

"try out" a test on an applicant population and validate it before it is used to select 

anyone; on the other hand, even this procedure is compromised if any selection process is 

in use which correlates with the outcome of the test. A different test may be such a 

process, but so may the informal judgment made by a hiring manager (Autor & 

Scarborough, 2004). Because the uncorrected validity coefficients are conservative, they 

may be considered a minimum for realized validity.


 It may be considered a benefit of large-scale automated standardized assessment 

that it is easy to detect subtle effects of applicant characteristics. For example, thousands 

of cases give plenty of power to test for discrimination against protected groups, or even 

differential item or test functioning. Regional differences are apparent; even site-to-site 

differences within a city are relevant. However, the proliferation of such findings is also 

an indication of overall data quality. Unless given meaning in terms of psychological 

constructs, these incidental findings obscure the relationship between assessment score 

and outcome.
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 No efforts to reduce extraneous, measurement-induced variation in the predictor 

or criterion data will make the model fit well if the test is based on the wrong 

psychological model. Researchers always run the risk of this, but have compounded the 

problem by putting all the eggs in one basket. Overwhelmingly, researchers relating 

personality to occupational performance have tested linear models. The reasons for 

selecting a linear model include simplicity, comprehensibility, ease of computation and 

relatively low sample size requirements. A linear model can be easily translated into a test 

scoring algorithm, possibly involving weighted sections. Some psychological theories 

specify a linear or proportional relationship for stronger reasons, but others do not. In 

order to account for more of the variation among employees, it may be necessary to adopt 

nonlinear statistical models and more complex modes of scoring tests.

1.2. Neural Networks


 One type of mathematical model worth considering is the artificial neural 

network. Inspired by the behavior of nerve cells, neural networks perform distributed 

computations across numerous "nodes". Neural networks are not just a model of human 

cognition; they can be used as a general statistical model to predict an outcome or set of 

outcomes from a set of inputs.


 Artificial neural networks are computationally intensive, but well within the 

capacity of cheap modern computers. They are also adaptable to a wider range of actual 

functional relationships between independent and dependent variables than classical 
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statistical techniques in the industrial psychologist's toolkit, such as linear multiple 

regression. They are able to systematically "learn" directly from data in the absence of 

extensive human interpretation. They do not require, for example, that the salient 

interaction effects be pointed out to them beforehand.


 We shall not concern ourselves greatly with the similarities between artificial and 

biological neural networks. One reason for this is that there are many differences which 

place limits on the obvious analogies. Artificial neural networks have developed utility 

without being a high fidelity representation of a biological neural network such as the 

human brain. They are typically much less complex, having on the order of 10^3 units 

rather than 10^11 (Scarborough, 2005). Computation of each unit occurs on a different 

time scale, by a factor of as much as 10^6. The function of each artificial node is 

restricted by comparison to the possible processes carried out by the corresponding 

biological neuron. Nodes record inputs and transmit outputs in a synchronized manner, 

whereas neurons fire asynchronously (Hertz, Krogh & Palmer, 1991). Finally, the brain 

learns by chemical changes that occur when sequentially linked neurons fire together, a 

process known as long-term potentiation. While there are neural network learning 

methods, such as the Hebb rule, which approximate this, other methods such as 

backpropagation do not (Crick, 1989).


 A second reason to dismiss consideration of biological neural networks is that the 

human brain is not the ideal toward which we would have our computer programs aspire 

(cf., Hunt, 2002). Artificial neural networks here are used in the context of employment 

outcome prediction. The perfect employment test is probably not a simulation of a human 

13



being briefly reviewing a job application. Human beings make errors, fail to perceive 

large patterns, fail to perceive salient details, and exhibit systematic biases. The purpose 

of employment testing is to alleviate these problems, not to replicate them.


 When used in their capacity to model statistical patterns, rather than emulate 

human thinking about patterns, artificial neural networks (henceforth "neural networks") 

can be of use to industrial psychology. Thus far, use has been limited, but reasonably 

successful. Garson (1998) notes, "Neural networks may outperform traditional statistical 

procedures where problems are unstructured, involve incomplete information, are 

ambiguous, and involve large sets of competing inputs and constraints, provided the 

researcher can accept approximate solutions." This appears to be a fair description of the 

social sciences. Further, two primary requirements of neural networks, namely large data 

sets and fast computers, are no longer difficult to find.


 Neural networks in industrial and organizational psychology usually operate in 

two modes: classification and prediction. Elsewhere in science and engineering they are 

also used for pattern completion, control, and constraint satisfaction (Garson, 1998), but 

these uses have not appeared in the domain of organizational psychology. 


 Classification is of use for some organizational applications. For example, Somers 

(2000) used a self-organizing map to categorize employees in a hospital setting into four 

groups based on measures of organizational commitment. Follow-ups showed different 

patterns of behavior between these groups, but the modeling took place prior to 

measurement of the outcome variables and was descriptive in nature. Such exploratory 
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contexts are ideal for clustering and classification techniques. This paper, however, 

focuses on prediction.


 A neural network operating in this mode may predict either continuous or discrete 

variables. The latter form may also be called classification, in the sense that the neural net 

is learning an existing categorization, but this is not to be confused with the classification 

methods described above. Unlike those methods, the neural network does not invent a 

classification according to the structure of the inputs, but rather attempts to describe the 

structure of the outputs in terms of the inputs.


 In this context, traditional alternatives to neural networks include discriminant 

analysis and linear regression (Garson, 1998, pp. 81-82). Both of these techniques can be 

defined as neural nets on which restrictions have been imposed, special cases, but they 

have advantages related to their simplicity. They have been extensively studied and are 

well known. Their parameters are computed explicitly in a single step using linear 

algebra. Both the models and the resulting parameters are easily explained.


 On the other hand, unrestricted neural networks better describe nonlinear 

relationships and interactions and may thus explain more criterion variance. This has 

been demonstrated repeatedly, including in organizational research. For example, biodata 

or personality variables appear to predict turnover better when the method used is a 

neural network than when multiple linear or logistic regression are used (Dempsey et al, 

1995; Somers, 1999). Further, neural networks are more robust than linear discriminant 

analysis where data may be missing, a common condition in industrial psychology 

(Collins & Clark, 1993).

15




 Neural networks address a need for arbitrary nonlinear multivariate modeling in 

organizational contexts, as well as in other areas of psychology. The reason this need 

exists can be explained with two propositions. One proposition is that not all relationships 

between meaningful psychological measurements are linear in nature. The second 

proposition is that because linear methods have been readily available, those relationships 

which can be described well by a line or plane are likely to have already been studied and 

described, compared to those which cannot. The set of linear true relationships has been 

tapped into by investigation, and the set of nonlinear true relationships has barely been 

touched.


 When should a researcher consider linear modeling to have failed? When low 

effect sizes and lack of significance occur, the usual suspects are various forms of 

measurement error, including poor reliability of measures, and the moderating effects of 

additional variables. However, a weight of accumulating evidence, such as repeated 

fruitless efforts to improve measurement, may indicate a misspecified model. When the 

components of the model make both theoretical and "common" sense, the next suspect is 

the mathematical form of the model (Scarborough, 2005). Further evidence may come 

from residual plots and other visual diagnostics, but the relationship may not be easily 

perceived because of its still-small effect size, or it may require multiple predictor 

dimensions.


 As an example in organizational psychology, consider job satisfaction and job 

performance. It is intuitively obvious that the two should be related, and yet many studies 

have failed to find a clear relationship. One recent study found a nonlinear relationship 
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between those two variables and either role conflict or job involvement. In the space 

defined by role conflict and job satisfaction, or job involvement and job satisfaction, there 

were regions in which the effect of job satisfaction on job performance was strong -- very 

nearly a step function. In other areas, however, there was little effect of small changes in 

either predictor variable on job performance. In this case, measuring a variable such as 

job satisfaction across a wide range, or over the wrong narrow range, would lead to a 

lowered slope in a linear fit (Somers, 2001). Under the assumptions of the linear model, it 

is irrelevant whether the experimenter measures the right range of a given variable, so a 

solution leading to more consistent and theoretically sensible effect sizes was not 

apparent.


 Scarborough (2005) recommends that the assumption of linearity, inherent to 

most psychological studies, be subject to empirical test. Such a test would evaluate the fit 

of the linear model by comparing it to an arbitrary nonlinear model such as the neural net, 

rather than being an error-prone visual assessment conducted by the experimenter.


 For the problem at hand, it is convenient that a neural network will model either a 

linear relationship or a nonlinear relationship equally well. The form of the model is not 

as important as the quality of the resulting predictions. It is possible that in predicting a 

given employment outcome, even a neural network will discover only linear 

relationships, and a linear regression model would predict the outcome just as well. 

Experience suggests it is likely, however, that at least one of the variables has a region of 

particular sensitivity, an optimal point, or a non-additive interaction with another. 

Therefore, the more flexible model, the neural network, will be used.
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1.2.1. Network architectures


 There are several architectures under which neural networks may be constructed. 

Not all of them are discussed here. Specifically, the architectures can be divided into two 

broad classes based on the type of problem which they are designed to solve, and the type 

of training they undergo.


 The first type includes networks that produce feature maps, clusters, and other 

descriptions of the data without reference to a criterion. They are trained by unsupervised 

learning, that is, also without reference to a criterion. While useful for some purposes, 

such as the organizational commitment study mentioned above, these networks do not 

meet our needs when, prior to hiring an employee, we wish to predict outcomes on the 

job.


 The second type are trained to predict a criterion, using examples where the 

criterion as well as the predictors have been measured. This process is known as 

supervised learning, because it requires a "supervisor" to check the network's prediction 

for each case at each step of training and send back a description of errors made. The 

parameters of the network are then adjusted to reduce the error. In this way, the network's 

predictions are tuned to the data.


 Supervised learning may be considered a one-step form of pattern recognition, as 

opposed to the classical two-step form in which feature extraction precedes prediction 

according to features (Haykin, 1999). Other than behaviorists who treat the brain as a 
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"black box," psychologists typically use the second form; we first define constructs, and 

second develop a theory of how those constructs lead to observed behavior. Neural 

networks do not require the specification of meaningful constructs. Multilayer networks 

do perform an additional step of feature extraction beyond that involved in measuring the 

inputs, but the only labelling of the features is the equation relating them to the criterion.


 Not all architectures within this category are useful for our purpose, but many are. 

One limitation on the architectures is that they must be feed forward networks. That is, 

information flows in only one direction (excluding error data during training), from the 

inputs toward the outputs. The alternative is a recurrent architecture, which has one or 

more loops internally, such that internal components of the network may contribute to 

their own states. A recurrent network thus has a "memory" for one or more previous 

rounds of calculation. In addition to being mathematically intractable for certain 

purposes, such a memory is not a desirable property in the context of employee selection. 

It is not fair to a job applicant to base the hiring decision partly on one or more previous 

applicants, without the possibility of reciprocation. The fact that exactly this kind of 

comparison may occur in interview situations is not relevant; it should not be emulated.


 There are several types of feed-forward architecture. We will consider only one 

example, the multilayer perceptron, but the results generalize.


 The perceptron is a classic form of neural network, and the multilayer perceptron 

is a homogenous evolution. It is relatively transparent mathematically.


 The multilayer perceptron is composed, as its name implies, of layers of nodes. 

Each node is an identical functional unit, described below, which accepts inputs and 
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produces an output. The outputs from the nodes on one layer are the inputs to the nodes 

on the next layer.


 There are at least three layers of nodes in the multilayer perceptron; the classic 

perceptron had only two, input and output. Input nodes are those that represent quantities 

extrinsic to the network; output nodes are those that produce the neural network's 

responses. The multilayer perceptron has additional layers between the inputs and 

outputs, and no direct connections from input to output. These in-between layers are 

called hidden layers. Their states are not typically meaningful in a concrete sense, and 

they are generally not reported, but they greatly increase the modeling power and 

therefore usefulness of the network.


 Minsky and Papert (1969) noted that the classic perceptrons, lacking hidden 

layers, could only distinguish linearly separable sets. This is a severe limitation in terms 

of real-world modeling. Not only must the right information be chosen, it must be 

presented in the right form, be that a ratio, a power of an observed quantity, or some other 

transformation. Consider, for example, the set of points within a radius r of some center 

and those which are outside r, with each point given as a coordinate pair to two inputs. 

Although the condition is simple, a perceptron could not approximate it to any great 

precision. However, in cases such as this where the sets are nonlinearly separable, the 

presence of a hidden layer can allow for an arbitrarily adjusted nonlinear transformation 

into an alternate space where the sets are linearly separable -- for our example, some 

arbitrarily good approximation of radius-angle space.
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 Theoretically, only one hidden layer is required for even the most complex 

relationships. Additional layers sometimes provide a more parsimonious or 

understandable explanation, however. This is most justifiable when the researcher knows 

a priori that there are higher-order relationships present in the data. It is rare to see more 

than three hidden layers in use. (Garson, 1998)


 The default configuration of a multilayer network is to have each node in a given 

layer receive for its inputs the states of all the nodes in the previous layer. This is known 

as being "fully connected". However, if the researcher knows something about an 

overarching structure connecting the inputs, some connections may be "pruned". This 

means that the receiving node only accounts for information from some of the nodes in 

the previous layer. If it is possible to prune a network from a priori knowledge, it is 

advisable to do so, as it cuts down on noise. (Haykin, 1999)


 The method described in this paper imposes what structure is known prior to 

transmission of any data to the neural network. Therefore, pruning is not practical in this 

case.


 The structure of each node is identical, and can be described by the equation: 

� output = ƒ( weights • inputs )� � � � � (1)

where weights and inputs are vectors of equal length, and output is a scalar quantity.


 The node is usually represented diagrammatically with two parts, as in Figure 1. 

The first part is a summation. Specifically, it is a weighted sum of the inputs to the node, 
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represented by the dot product of vectors in the equation above. There is exactly one 

input which does not come from a previous layer; it is always set to unity, and the weight 

by which it is multiplied is known as the bias.

� The second part is the transfer function, ƒ(), which scales and transforms the 

weighted sum into an output. In the simplest case, the transfer function is linear: 

ƒ(x)=ax+b. In this case, the computation of the multilayer perceptron can be reduced to 

matrix algebra and cannot model nonlinear relations between variables (Bishop, 1995).


 A common transfer function is the step function, set equal to 1 above a threshold 

value and 0 (or -1) below it. This is the classic transfer function, and may be implied by 

the use of the term "perceptron"; some recent authors use the term more liberally. Several 

variations on the binary step function exist, including trinary step functions which report

Figure 1. One node of a perceptron.
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0 at the threshold, 1 above and -1 below. Clipped linear functions restrict output values to 

a specific range while maintaining linearity.


 The transfer function need not be monotonic. In some cases, Gaussian 

distributions are used. These are localizing functions, which essentially report whether 

the sum of inputs falls within a particular range.


 For our purposes, the most interesting are a set of functions that are smooth, 

differentiable, and monotonic. This class of functions, the sigmoids, is commonly used. It 

includes the normal ogive, otherwise known as the cumulative normal distribution, 

although that is uncommon for reasons of mathematical tractability. The logistic function, 

when compressed horizontally by a factor of 1.7, falls within 0.01 of the normal ogive at 

all points (Birnbaum, 1968) and is for practical purposes equivalent. A third function, the 

hyperbolic tangent function, is a further rescaling and vertical shifting of the logistic, in 

order that it should range from -1 to 1 instead of 0 to 1 and be antisymmetric around 0 

(Haykin, 1999). This improves the speed and probability of success of the training 

process (Bishop, 1995).


 The multilayer perceptron is one example of a continuous function estimator. 

Provided that it has at least one hidden layer with a nonlinear transfer function, and 

provided sufficient nodes and training cases, a multilayer perceptron can approximate any 

continuous function arbitrarily precisely. This can be shown by the universal 

approximation theorem (Haykin, 1999). In practice, one is typically more concerned with 

overfitting the training data set, including modeling error, than with having too few 
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parameters to fit the real variation. Overfit leads to poor generalization to future data 

points which have errors independent of any of the training cases.


 In light of their ability to model arbitrary continuous function surfaces, three-layer 

perceptrons are excellent for predicting near-continuous data such as revenue per hour, as 

well as job tenure, dollar amount of theft, and other business metrics.


 To predict qualitative or otherwise non-continuous data, one may divide the cases 

at a threshold output level. This results in a classification. (Haykin, 1999, p. 185) If there 

are more than two categories, the network can be trained to produce a separate output for 

the probability of membership in each possible category. This can be used, for example, 

in the prediction of separation reason. However, there are more efficient ways to go about 

it, which may result in better predictions. A multilayer perceptron may have more than 

one output, giving a probability of membership in each category. Similarly, several 

networks may be trained, one for each category; this, however, allows the possibility of 

two categories being predicted. Finally, other network architectures may be better suited 

to categorical prediction.

1.2.2. Useful Properties


 There are several properties of neural networks which will be of use in adaptive 

input selection. These properties are not specific to the multilayer perceptron or to the 

radial basis function, but apply at least across the entire class of feed forward networks 

which are trained by supervised learning.
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 In devising an algorithm to feed information adaptively to a neural network, we 

will be concerned with error of prediction. Specifically, we will be concerned with 

changes in the amount of error. Fortunately, the problem of describing the errors the 

network commits arises naturally in the context of training the neural network. 

Optimizing predictive accuracy requires a means of describing the errors the network 

commits in predicting the training cases. Typically, a scalar error function is minimized 

by a variety of methods. These methods refer to a "performance surface", where the error 

quantity is treated as a function of the adjustable parameters of the network. In the case of 

the multilayer perceptron, the parameters are the weights, including the biases, entering 

each node. In the case of the radial basis function, the parameters also include radii and 

centers of the hidden nodes.


 The error function is usually the sum of squared differences between the actual 

levels of the outcome variable and the corresponding predicted levels in all the training 

cases. Variations include the mean squared difference. The choice of this function was 

based on the assumption that errors will be distributed normally, but the use of the least 

squares method does not require that assumption. According to the Gauss-Markov 

Theorem, the only requirements are that the errors be independent and identically 

distributed with finite mean and variance (Neter et al, 1996). Several alternative 

performance measures have been suggested, including entropy (see, e.g. Bishop, 1995).


 Neural networks have the property of graceful degradation in the presence of 

erroneous data. In the general case, this only means that the functions they fit are 

continuous and thus that small perturbations of inputs result in small perturbations of 
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outputs. However, if a bounded transfer function is used between layers, the neural 

network will still give a similar output even if one or more inputs is replaced with an 

extreme or nonsensical value. This is particularly valuable in mechanical applications 

(Haykin, 1999), but is also useful for our purposes.


 In all cases, it is assumed that there is a value for each input. That may mean that 

a default value is substituted for missing data, or that a random or erroneous value is 

expected. What is important here is that regardless of the value of any given input, the 

other inputs still meaningfully restrict the possible range of the output. The uncertainty of 

the output value decreases monotonically with each input which is known to be valid. It 

also decreases monotonically with the uncertainty of each input, so that if one input is 

restricted to a subset of all possible values, the output is restricted as well.


 In typical applications of neural networks, missing data is not intentional on the 

part of the developer, and values which are not missing (or which are substituted for 

missing data) are considered exact. The missing data may be accomodated either as 

unsystematic, through the network's general robustness, or as a systematic indicator of a 

failure condition. In the latter case, the missing data code is a relevant value in itself, if it 

is available. Unsystematic substitutions for missing data may not result in a distinct code, 

but a random value. This happens, for example, in mechanical systems where input-

generating components may be susceptible to analog "noise", or in electronic network 

communications where single-bit errors may be introduced. This type of substitution is 

less diagnostic; the network only knows there is an error if the value violates the expected 
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relationship between inputs. Even then, it may only be possible to tell that an error is 

present, not identify which input gave the bad value.


 Uncertainty about measured values due to measurement error is typically either 

not accomodated, or implicitly accomodated by the training set. In mechanical 

applications, the error of a particular instrument is likely to be constant over time. It 

simply increases the unaccounted-for variation after the relationship between input and 

desired output is measured.


 In this application, inputs will always be missing by design, although the training 

set has no missing data. Further, some measurements which are entered as inputs have 

error quantities which change over time and which are large enough to change the output. 

A numerical method for estimating the effect of incremental uncertainty in the inputs on 

uncertainty in the output will be discussed.

� Another quantity that will be useful is the sensitivity of an output to an input. This 

is the amount of variation in the prediction that results from small perturbations in a 

given input. If a nonlinear transfer function is used, this sensitivity will vary across the 

values of each input, including but not limited to the input for which it is being 

calculated. For that reason, it is calculated as a partial derivative of the output with 

respect to the input, with all other variables left in the equation (Bishop, 1995; Montaño 

& Palmer, 2003).
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1.3. Computerized Adaptive Testing


 A recent trend in testing has been the transition from paper-and-pencil to 

computerized adaptive testing.


 By definition, a computerized adaptive test (CAT) is any test which meets two 

criteria. The test must be administered by a computer, making it computerized. Further, 

over the course of the test, the examinee's performance influences the items presented. In 

practice, the term computerized adaptive testing has become associated with a much 

more specific concept, a form of computerized adaptive test which estimates a 

unidimensional latent trait according to the principles of item response theory. Over the 

last three decades, CATs of this more specific form have been found to work well and 

have been implemented in large-scale applications. This paper describes a CAT which 

does not adhere to this form, but which meets the definition.


 Computerized tests need not be adaptive, and adaptive tests need not be 

computerized. Individually administered tests may have rules regarding progression to 

more difficult items or discontinuation of a subtest (e.g. classical digit span tests which 

stop when two consecutive errors are made), or they may be informally adaptive, as in 

the case of a teacher's diagnostic questioning of a student. No computer need be involved 

if a human being is there to select the next item.


 Mass-administered paper-and-pencil tests are typically not adaptive. A paper-and-

pencil test, the self-scoring flexilevel test (Lord, 1971), has been proposed which gives a 

harder item following a right answer and an easier item following a wrong answer, 
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provided the examinee correctly follows the choose-your-own-adventure-like cues for 

which item to answer next. There are technical complexities involved in printing such a 

test, however, and examinees can easily render their tests unscoreable by errors in next-

item selection. These issues are alleviated by computer administration.


 Large-scale application of computerized adaptive testing was made possible by 

the mass production of the microcomputer. Segall and Moreno (1999) report that early 

attempts to administer CAT using mainframes were largely unsuccessful; the test taker 

could not count on a prompt response when other users were on the system. Some 

diagnostic and formative classroom applications achieved success (e.g. Braunfeld, 1964); 

the difference may be smaller numbers of test takers, or that Segall and Moreno refer to 

the narrower definition of CAT.


 The United States military initially expected the CAT version of the Armed 

Services Vocational Aptitude Battery (CAT-ASVAB) to require custom-built computers, 

in order to satisfy the requirements of portability, processor speed, and high (for the time) 

graphics capability. But by the time the project was underway, IBM-compatible personal 

computers and early versions of Windows were satisfactory (Segall & Moreno, 1999). 

The technology available has fast exceeded the demands of testing.


 Adaptive testing was an early use of computers in testing, and many authors (see, 

e.g., Wainer, 2000) treat the costs and benefits of adaptive testing as being inextricable 

from those of computer presentation of a test. One book even goes so far as to refer to 

non-adaptive, non-multimedia computer presentations as "page-turners" for tests 

equivalent to their paper-and-pencil forms (Drasgow & Olson-Buchanan, 1999). But with 
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the more recent rise in networking, testing programs have begun to computerize for 

reasons of cheap, instantaneous transmission and score reporting, rapid updating and 

recalibration, and centralized storage of data. Altering the nature of the test to an adaptive 

form is today a separate consideration from simply putting the test online.


 Computerized adaptive testing has been used in numerous educational 

applications, including assessments of both academic aptitude and achievement. It has 

been applied to assessments as varied as a test of tonal memory, which is a component of 

musical aptitude (Vispoel, 1999), a form of the NEO-PI-R (ref Reise & Henson, 2000), 

and an evaluation of headache impact (Ware et al, 2003). Because the development of a 

CAT is involved and costly, most of the non-research applications have been large-scale 

projects, however, measuring examinees numbering at least in the thousands.


 Employment testing applications of CAT have included the CAT-ASVAB as well 

as several certification examinations (see, e.g., Bergstrom & Lunz, 1999). The online 

testing company Brainbench (http://www.brainbench.com/) exclusively uses adaptive 

forms of its numerous skills and certification tests. Zickar et al (1999) developed a 

computerized adaptive math test for applicants for a State Farm programmer-analyst 

position, joining it with a straightforward collection of biodata; State Farm's main 

concern was test security, justifying the expense of CAT for a small population.


 Adaptive testing has several advantages over conventional testing, particularly 

when computers ease the computational burden. These advantages are above and beyond 

those conferred by computer administration.
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 First, CAT allows more even measurement across the entire range of a trait. A 

conventional ability or skill test, for example, typically contains items that are easy, 

moderate and difficult. Almost all the items provide information about an examinee of 

moderate ability. However, an examinee of high ability who demonstrates proficiency on 

the moderate items can be expected to answer the easy items right; they provide no 

additional information because they have zero variance. Similarly, an examinee of low 

ability can do nothing more than guess wildly at difficult items, adding noise to any 

estimate of their ability. The result is that the standard error of measurement is not 

constant across the range of ability, as classical test theory would suggest. Error is 

inflated and reliability is decreased for high or low ability examinees.


 CAT uses early items to target the difficulty of later items. An examinee who 

shows proficiency early on will receive more difficult items than one who answers the 

first few items incorrectly. This means that examinees at either end of the ability range 

answer few non-informative items, and more informative items. These "extra" hard or 

easy items reduce the standard error of measurement in the high and low ability ranges. 

The CAT is still not likely to produce exactly the same standard error of measurement in 

the same number of items for every examinee, but it will be closer to that ideal than the 

conventional test. (Thissen, 2000)


 These effects are not limited to ability; an analogy can be made to any 

unidimensional construct. Ability is convenient in that the terminology is familiar.


 By the same mechanism, adaptive testing is faster than fixed-sequence testing for 

the same precision of measurement. Even the paper flexilevel test halved the length of 
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administration for ostensibly the same depth of measurement. Computerized tests, given 

a variety of items, may achieve excellent performance after asking a small number of 

questions. (Mislevy & Bock, 1989)


 These advantages are in areas affected little, or not at all, by neural network 

prediction. Neural network prediction does reduce the effect of irrelevant items in 

scoring, but it does not entirely eliminate them from administration. It is reasonable to 

say that it would be a disadvantage of neural network prediction if it could not be used 

with adaptive testing, and vice versa.


 In order to consider the technical issues involved in using CAT in conjunction 

with neural network scoring, it is necessary to understand the mechanics of a traditional 

CAT. Components may then be systematically replaced, without changing the broad 

principles of operation. There are two components that will be of particular interest. One 

is the item selection algorithm, according to which the next item is chosen. The other is 

the scoring rule, a mathematical procedure according to which the examinee's item 

responses are converted to a score. If the scoring rule is a neural net, how does the item 

selection algorithm need to change?


 The traditional form of a CAT is an assessment devised to measure a 

unidimensional construct such as (but not limited to) ability. The principles of item 

response theory may be applied to both item selection and examinee scoring.

� The test measures a single latent trait, on which the examinee's true score is θ. An 

approximation of θ, θ , is available at any given time; θ  is used to select the next item 

according to its difficulty (and possibly other parameters). A convenient feature of item 
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response theory is that the item and the examinee may be placed on the same scale. An 

informative item is therefore one whose information function is high in the neighborhood 

of θ . The information function is defined as the derivative of the probability of a keyed 

response with respect to θ, and therefore it can also be said that an informative item is one 

for which a small difference in the latent trait makes a large difference in observed 

response. In the simple case of items which conform to a one-parameter logistic model, 

the most informative item is the one whose "difficulty" most closely matches θ .

� The preceding description has been vague in order to accomodate several similar 

scoring rules, each of which correspond to a slightly different item selection algorithm. 

One school of thought is descended from the practice of maximum likelihood estimation; 

another traces its roots to Bayesian inference. The primary difference, not affected by 

technological capabilities, is whether θ  should be calculated conservatively according to 

assumed population parameters, or purely according to the examinee's responses. 

Recently, the estimator most often used for θ is the expectation a posteriori (EAP) value, 

which unlike the maximum likelihood value is robust to bimodality and other 

distributional anomalies that may arise. (Bock & Mislevy, 1982; Thissen & Mislevy, 

2000)

� In any case, once the item is selected and responded to, the distribution from 

which the examinee is assumed to come is updated according to the scoring rule. At first, 

the examinee is assumed to come from the distribution of all examinees, which may be 

constant (as in the case of maximum likelihood estimation), normal with zero mean and 

unit standard deviation, or an arbitrary distribution corresponding to a known population 
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subset. After one item, the examinee is assumed to come from the distribution of all 

examinees who made one particular response to that item. After the second item, the 

distribution is restricted by two responses, and so on. The process of updating from one 

distribution to the next amounts to a convolution of the existing distribution with the 

characteristic curve for the given response, where the characteristic curve is the function 

relating θ to the probability of giving that response. (Wainer & Mislevy, 2000) θ  is 

recalculated from the new (posterior) distribution; in the case of the EAP, it is the mean.


 In all variations of the traditional form of CAT, the scoring rule and the item 

selection algorithm are intertwined with and optimized to each other. In order to use a 

scoring rule which is not based on item response theory, an item selection algorithm must 

be devised to match it. Not all scoring rules have the mathematical conveniences of item 

response theory, such as the examinee and the item being on the same scale. However, 

functional equivalence is possible.


 There is one additional variation on the scoring rule that has been extensively 

studied, including in employment contexts, and which is worth some attention. 

Computerized adaptive testing is occasionally applied to situations in which only a pass-

fail judgment is required, not a relative score which may be compared to other 

examinees. This may well be the case in an employment setting, where the test may be 

used as an early screening, followed by more intensive evaluation. However, if the cutoff 

score is known in advance, it is more efficient to target the items to maximally 

discriminate at the cutoff level, not at the examinee's probable ability level. The cutoff 

never changes, so there is no reason to make the test adaptive at all. (Wiberg, 2003; 
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Zickar et al, 1999) If additional information may be useful, but there is a threshold value 

which is important, Bergstrom & Lunz (1999) call for a CAT with an item pool 

distributed such that most of the items measure near the threshold. That way, it is still 

possible to identify an outstanding candidate, but ones who are near the threshold are 

measured with a high degree of precision. It is not necessary to know how far below the 

threshold a candidate falls, merely to be certain that the candidate did fall below 

threshold.


 Wiberg (2003) and Bergstrom & Lunz (1999) are concerned with mastery testing, 

where the cutoff score is relatively permanent, and thus do not discuss what to do when 

the threshold is subject to revision after the item pool is fixed, a situation that may come 

up in employment contexts. If an employer may lower or raise the threshold depending 

on the availability of job applicants during a given time period, then targeting the entire 

item pool to the cutoff score is shortsighted. Targeting a given test, however, may be a 

viable option.


 The cutoff argument, while presented as unidimensional in the context of mastery 

testing, may be generalized to the prediction of category membership in multiple 

dimensions. In general, it is advisable to consider whether there are regions of latent trait 

space where information is more valuable; otherwise, one implicitly assumes equal value 

throughout that space.

35



1.4. Subtests and Scoring Considerations


 A major difference between the tests typically converted to computerized adaptive 

form and assessments of personality in the prediction of employment outcomes is that the 

latter are typically not unidimensional. Recall that job performance and job tenure are 

composite criteria, influenced by several variables. An assessment may involve several 

corresponding variables, particularly if biodata are used.


 In scoring such a multidimensional test, it is useful to know what dimensions are 

being measured. This is not only for the purpose of interpretation; it anticipates the need 

for diagnosis when, for example, a social change leads to the erosion of validity. If 

interpretation is to be done, the theoretical expectation that certain items will measure 

certain constructs must be verified empirically. When the dimensional structure of the 

assessment is understood, unidimensional subscales may be constructed such that they 

exhibit internal consistency.


 The use of subscales both complicates and simplifies our later task. From the 

perspective of a neural net, a well-constructed scale reduces largely redundant 

information to a single estimate with less noise. This reduces the number of training cases 

needed and may improve performance, because the data points are located in a lower-

dimensional space (Bishop, 1995). However, the trait estimate produced by a subscale is 

qualitatively different from a direct representation of an item; it is continuous and comes 

with an uncertainty, whereas an item response is categorical and concrete. Either the 

applicant chose "1" or he did not. For this reason and the length of application, a subscale 
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requires differential treatment by the selection algorithm to be developed. Nevertheless, 

efficiency of training outweighs elegance of the selection algorithm. We will use 

subscales where it is possible and reasonable.


 It may seem evident that the most straightforward way to determine the 

dimensionality of a set of items is through factor analysis. Factor analysis is, however, 

only one of several methods. It may not be the most appropriate method for item-level 

personality data. Factor analysis assumes the items are continuous, and many of its 

significance tests further assume the responses are normally distributed, but a more likely 

case is that each item has only a few discrete possible responses. This case leads to 

underestimated loadings and overestimates of the number of factors present (Embretson 

& Reise, 2000, p. 308). It is also subject to a form of indeterminacy which is likely in this 

type of application. Doublet factors, or constructs which are represented only by two 

items and which are not correlated with other factors, can result in improper solutions 

(negative variances) or solutions which do not accurately reproduce the underlying 

structure (McDonald, 1999, p. 180-181), and thus cannot be expected to replicate in 

independent datasets.


 Wanek, Sackett and Ones (1998) used an alternative method to explore the 

dimensionality of seven integrity tests. First, two industrial psychologists independently 

sorted the test questions into groups by content and attempted to name each group. They 

compared the group names resulting and settled on nomenclature, then came to a 

consensus about item placement, entirely without reference to examinee data. Finally, 
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reliability was calculated for each resulting subscale and items with intraitem correlations 

consistently below 0.1 were dropped.


 Variations on the exact method can be easily imagined. The significance, however, 

is that empirical exploratory methods may be entirely bypassed when the theory linking 

item content is strong. It is also worth noting that Wanek et al did not bypass the 

confirmatory evaluation of internal consistency, nor further assessments of convergent 

validity. Those confirmatory evaluations were considered valuable, even when the 

exploratory analyses were not.


 When criterion data is available, a third method may be used, as demonstrated in 

the development of the California Personality Inventory. "...[D]evelopment of the CPI 

made no reference to factor analysis. Instead, the method of criterion-keying was used: 

items were chosen on the basis of their ability to discriminate criterion groups." 

(Matthews & Deary, 1998; p. 23)


 This method is unconventional in psychology, where construct validity may be 

favored over criterion validity. Criterion-keyed traits may disagree with those which are 

gleaned from factor analysis, and may or may not achieve high reliability. The 

Occupational Personality Questionnaire did, but some tests which predict occupational 

outcomes may do so by predicting several intermediate behaviors which all contribute to 

that outcome. (Matthews & Deary, 1998; Hunt & Paajanen, 2003)


 Cluster analysis is another set of methods related to factor analysis. Items can be 

clustered according to correspondence across individuals. Methods such as agglomerative 
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nesting may produce a useful atheoretical guide toward linking items. As with criterion-

keying and content-based sorting, empirical validation is still called for.


 Any of the four methods described above can be used in conjunction with each 

other to provide converging evidence for the dimensional structure of a test. All but factor 

analysis were used in the development of the subscale structure covering the majority of 

the assessment used in this investigation. Final decisions about inclusion and exclusion of 

items were made on the basis of incremental reliability and expert judgment regarding 

content. An example where expert judgment overrode reliability involved the high 

correlation of a risk-taking item with several sociability items in a population of athletes. 

The correlation was not expected to generalize.


 Provided that each scale is defined without distinguishable subsets of items which 

are more intercorrelated, constituting a local independence violation, the subscales can be 

assumed to correspond in a one-to-one fashion with latent traits of the examinee. (Lord & 

Novick, 1968; cf., McDonald, 1999, p. 257) This is in contrast with the entirety of the 

assessment, which predicts a single employment outcome but contains more tightly-

coupled scales within itself. Thus, for each subscale, a latent trait (or item response 

theory) model may be applied to its items.


 A number of researchers have suggested extensions of IRT models to 

multidimensional tests. These methods allow each item to provide what information it 

has available to the estimate of the examinee's placement on each dimension, in contrast 

to having several independent measures of the different dimensions. Muraki and Carlson 

(1995) developed a form of factor analysis which assumes that polytomous items call for 
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a linear combination of several latent traits. That is, each item has a "direction of 

measurement" vector in a space defined by several traits, and can be described by a one-

dimensional curve along that vector. Embretson and Reise (2000) discuss a "non-

compensatory" model in which several abilities are required to solve a problem. In 

contrast to Muraki and Carlson's model, the non-compensatory model does not predict 

that an examinee high on one quality can make up for a low score on another. This model 

cannot be described by a one-dimensional curve along a "direction of measurement" 

regardless of perpendicular position. We will not use either of these methods, however, 

because the neural net is capable of the representing such a model, while less intrinsically 

constrained.


 The latent trait model focuses on shared variance among a set of items. That 

shared variance is considered to be the best measure of the underlying trait. Sum scores 

and more complex trait estimates discard unique variance which is not common to the set 

of items as a whole. This has two consequences.


 First, the reduction of a set of items to a superior measure of their shared variance 

is the reason that a trait estimate can be used as a form of compression of the item 

responses. If the latent trait is what predicts the outcome, then unique variance of each 

item is just noise. The principle of local independence implies that the noise is random 

and will, on average, cancel out.


 Second, the removal of unique variance may remove useful variance. Citing the 

multidimensional nature of job performance, Hunt and Paajanen (2003) advocated 

heterogeny in the test as a whole, including shorter and less internally consistent scales, 
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in order to better sample the range of personality traits affecting a performance measure. 

Further, it is possible that an item response may be driven by both a trait which other 

items also measure, and a second trait which is linked to the criterion but not measured 

by other items.


 In order to preserve useful unique variance, as well as justify the assumption of 

local independence, items which appeared to be internally complex or which did not link 

strongly to scales were scored individually, not entered into scales.
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2. A hybrid selection algorithm


 Up to this point, this paper has described prior research and background 

information. From this point forward, I will present my dissertation research in which I 

have developed a combination of neural network modeling and adaptive testing. 

Although each of these approaches has been researched separately, the combination of 

the two is to the best of my knowledge completely new. This chapter describes in 

mathematical terms how to combine neural network modeling and adaptive testing.


 Previous computerized adaptive tests have depended on item response theory for 

parameter selection and to guide item selection. Previous neural networks used in 

employee selection have assumed that all input data is present, or is missing completely 

at random. In order to reap the advantages of both adaptive testing and neural network 

scoring, a new set of rules are needed to govern which items are presented and omitted, 

and to interpret the output of a neural network whose input data is missing in ways 

constrained by present data. One major purpose of this paper is to propose such rules; the 

other is to show that they work as designed.


 The following section develops an adaptive selection algorithm which is suited to 

a test scored by a neural network for a single criterion. In computerized adaptive testing, 

the item selection algorithm and the parameter estimation algorithm may be separated 

from the rest of the mechanics of testing. It is not necessary for these parts of the program 

to know about the content of the test, the specifications of the computer, or specific user 
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behaviors such as mouse movements. A fully operational program for adaptive testing 

must address these issues, but that is beyond the scope of this paper.


 The algorithms here will be described in the language of mathematics. A 

subsequent section will outline the structure of a program to carry out these functions. 

Because of the ultimate goal of constructing an operational system, approximate solutions 

will be given in some cases to improve computational efficiency; although elegant 

solutions may be described, these approximations will be preferred.


 Any item selection algorithm has three basic functions, each of which evaluates 

according to a rule. First, there must be a rule for selecting the first item, such as "Present 

item #1" or "Present the item with a difficulty closest to the mean ability level in the 

population." This may be a special case of, or separate from, the second rule, which 

governs how subsequent items are selected when some information is known about the 

examinee.


 The third rule governs when to stop presenting items, and may be as simple as 

"Stop presenting items when ten items have been presented." Alternative stopping rules, 

however, may include a maximum standard error with which an examinee may leave the 

test. When the examinee is measured to that precision or better, the test ends. (Thissen & 

Mislevy, 2000) Some authors have argued in favor of fixed-length tests rather than fixed-

precision tests, on the basis that an examinee who fails the test after a small number of 

items may feel that he has not been measured adequately to justify his failure, particularly 

in high-stakes contexts (see, e.g., Bergstrom & Lunz, 1999). This argument is not 

relevant to all testing circumstances, however. Either way, when the stopping rule 
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executes, the testing program must be able to produce a score (or at least a pass-fail 

judgment) and a measure of either reliability or error of measurement.


 This chapter will primarily be concerned with the second rule, the continuing rule 

or next item selection algorithm. Before acceptable specific rules for a selection 

algorithm may be devised, however, it is necessary to consider the estimation procedure, 

which maintains the score and error estimates.


 Specifically, it is necessary to observe the behavior of the estimates produced 

when some of the input data are held constant and others vary, representing the situation 

in which some values are uncertain. A series of increasingly complex examples will be 

presented to illustrate these behaviors. 


 In all of the examples that follow, a neural network is trained on a list of B biodata 

variables such as credentials and job experience ("biodata"), a list of I Likert-scaled or 

multiple choice items ("items") which may take on any of V integer values, and a list of S 

continuous-valued scales ("scales") with mean zero and standard deviation one. All 

adaptation will occur in the items and scales. The biodata questions will always be 

presented, as to do otherwise might be to ignore legal or functional requirements. To 

achieve maximum benefit from the adaptive process, the biodata questions will be 

presented first.


 The neural network has a three-layer perceptron architecture; alternate 

architectures will require some re-derivation. Specific requirements of the neural network 

architecture will be noted.
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2.1. Example 1: All data present but one item

� In this particular case, all data is presented to the fully trained neural network 

except for one item, i ∈ {1, 2, ..., I}. Disregard for the moment how this one item was 

chosen to be omitted. Assume also that the biodata can be represented by a vector B of 

integers, and that the information resulting from the administration of S scales can be 

represented by an S-dimensional vector θ̂ . That is, both are point estimates recorded with 

no uncertainty. Despite the estimation notation, θ̂  here is the final value, equivalent to the 

value on which the neural net was trained, and may as well be the true value because its 

uncertainty has been discarded.


 The item may take on any of V values, leading to V different input patterns which 

may be presented to the neural network if the last item is presented. Each of these V input 

patterns will cause the neural net to produce an output; these outputs may be the same or 

different. Select one value of this item, vi. Then vi has a probability

� pvi=P(vi| θ̂ , B, vj≠i) � � � � � � � � (2)

where vj≠i is the vector of the I-1 known item responses. Given each complete input 

pattern, the neural network produces a value y. It follows that the distribution of 

predictions output by the neural network will have Y≤V possible values, because two 

input patterns may generate the same output pattern, but each input pattern results 

deterministically in a single output pattern. The probability of output y, drawn from this 

Y-valued set, will be 
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� py=P(y)= pvi*P(y|vi, θ̂ , B, vj≠i). � � � � � � (3)

P(y|v) is, in this case, a binary value: is the output of the neural net equal to y given the 

specified input values, including vi? The probability notation is used for consistency with 

subsequent examples.


 Two descriptions of the output distribution are needed for either the next-item 

procedure or the stopping rule to evaluate. The first is a point estimate of a measure of 

central tendency, such as the mean value in continuous cases or the most likely value in 

discrete cases. When the stopping rule executes, this value will be returned as the score. 

An estimate of measurement precision is also needed; the next-item procedure to be 

developed will depend on changes in this quantity. The variance of the output distribution 

serves this function in continuous cases, and is mathematically convenient. In our 

example case, the mean corresponds to 

� ∑
y
 (y*py) � � � � � � � � � (4)

and the variance is 

� ∑
y
 ((y*py)2)-(∑

y
 (y*py))2. � � � � � � � (5)


 Although the mean given above is equal to the network's prediction of the 

criterion, the variance is not representative of the imprecision of that prediction. It is a 

measure of the uncertainty surrounding the examinee's final score if the examinee 

completed the entire assessment. This variance may be added to the variance of the 
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criterion expected for examinees whose final scores are equal to that mean value; the 

result is the expected variance of the criterion given the current best prediction.

2.2. Example 2: Two items missing


 With the presentation of the last item thus modeled, consider the presentation of 

the second-last item from the pool. This item has V possible values vh, and for each of 

these, the V values of the remaining item lead to several possible outputs as described 

above. Define Y now as the set of possible outputs resulting from the V*V possible 

response combinations to the two remaining items. We may still say that vh has a 

probability 

� pvh=P(vh| θ̂ , B, vj≠h,i). � � � � � � � � (6)

Simillarly, each possible output still has probability 

� py= pvh*P(vi| vh, θ̂ , B, vj≠h,i)*P(y| vh, vi, θ̂ , B, vj≠h,i). � � � � (7)

While this equation appears unfriendly, it may be simplified considerably if certain 

assumptions are met. Two cases are both likely and useful to consider.

� In the first case, the I items which are not members of subscales are uncorrelated. 

This is the ideal case from the standpoint of the neural net; it means all redundancy has 

been accounted for by the use of the subscales. If the stand-alone item responses are 

statistically independent of each other and of the subscales. then P(vi| vh, θ̂ , B, vj≠h,i) will 

be equal to P(vi|B); this distribution of responses will be constant regardless of how many 
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or how few other responses have been made. P(vi) could be independent of B, but this is 

not of great import as B is known prior to administration of the adaptive test.


 In the second case, the I items are related to each other and to the scale scores 

only by a common factor, which may be a nuisance variable. (If the common factor is not 

a nuisance variable and the correlations are strong, CAT based on testlets and item 

response theory may be a better solution.) This is the case if, say, the items are 

susceptible to social desirability ("faking") effects. Examinees may be more or less 

inclined to present themselves favorably. This results in low but positive correlations 

between items in the socially desirable direction, even if those items are not all oriented 

the same direction in terms of the criterion. In this case, analytic computation of the 

outcome distribution is less straightforward, but still better than the general case.

2.3. Example 3: Many items missing


 By induction, the formulae developed for one and two missing items may be 

extended to the case of an arbitrary set of items missing. Define Ik as the set of item 

responses known, and Iu as a set of responses that may be made to the remaining items. 

Then 

� py=P(y| θ̂ , B, Ik)= ∑
Iu

(P(y| Iu, θ̂ , B, Ik)*P(Iu | θ̂ , B, Ik)). � � � � (8)
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 Analytic evaluation of the mean and variance of the expected outcome 

distribution becomes impractical quickly, particularly in the case where inputs may be 

correlated. A numeric approximation can be constructed with arbitrary precision.


 The method of multiple imputations, attributed to Rubin (1987), was developed to 

handle missing data in statistical models. It calls for the substitution of "plausible values" 

in place of missing data, rather than a default value such as the mean of each distribution. 

Plausible values are random numbers which are scaled to the input ranges or recoded to 

the input values, and then filtered according to the input distribution. Computation based 

on this substitution is imputation; the "multiple" part of the method comes in when the 

computation is repeated with numerous sets of plausible values. Multiple imputations 

give an approximation of the expected outcome distribution.


 In a procedural sense, the use of imputation operates as follows. Two random 

numbers, drawn from a uniform distribution between zero and one inclusive, are 

generated for each item which is missing. The first is converted into an admissible value 

for an item response. The second is compared without transformation to the expected 

probability of that item response. If it is lower, the value is accepted as plausible; if it is 

higher, it is discarded and new values are drawn.


 The preceding description implies that each value is accepted or rejected 

separately. This is the case if and only if the remaining items are assumed to be 

independent of each other when conditioned on the known values. This is true if the items 

are actually independent, and approximately correct when the items are related only by a 

common factor. In the latter case, the expected distributions of each item are adjusted 
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based on the level of the common factor estimated from the observed data. Whether this 

adjustment is made based on item response theory, linear regression, or another technique 

is of little importance so long as this correction is small.


 If the items are not conditionally independent of each other, plausible values must 

be accepted or rejected  jointly. This is much more computationally intensive. Also, in 

this case, representing the joint probability distribution is complex and requires very large 

amounts of data; Zhou (1998) recommends using a neural net as the filter device, trained 

to predict the plausibility of sets of values.


 Once an acceptable set of plausible values has been obtained, the observed and 

plausible values are fed to the neural net as inputs, and an output value is calculated. This 

procedure is repeated, each time with a new set of plausible values, for a specified 

number of iterations N. The result is a sample of N data points drawn from the 

distribution of output values which may be expected for this examinee. The mean and 

variance of this sample estimate the mean and variance of the theoretical distribution, and 

may be used in their place for the selection algorithm's calculations.

2.4. Error of measurement, and a candidate item selection algorithm


 With these procedures, at any given time during the test, an estimate is available 

of the error of measurement, not from the true score or the actual employment outcome, 

but from the value which would be obtained if the entire test were administered. This 

error is expected to decrease monotonically as additional items are administered, and 
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becomes zero when the last item is completed. It is possible and useful to quantify this 

decrease.


 Let item i be any item, but not the last available. Let Ik be the set of responses to 

items administered; Ik may be the null set. Let Iu be the responses that will be given if 

and when each additional item is administered, not including i. The incremental reduction 

in variance due to administering a shorter test when item i is administered is equal to 

� Var(current)-∑
i
 pvi*Var(with vi) 

� = ∑
y
 ((y*P(y| θ̂ , B, Ik))2)-(∑

y
 (y*P(y| θ̂ , B, Ik)))2

� � -∑
i
 (pvi*(∑

y
 ((y*P(y| θ̂ , B, Ik, vi))2)-(∑

y
 (y*P(y| θ̂ , B, Ik, vi)))2)). � � (9)


 Solving this equation requires estimation of V+1 variances by separate 

imputation. One is the current variance; the other V are estimates of what the variance 

will be if the examinee selects one available response.


 On the basis of this model, a candidate rule for selecting subsequent items may be 

proposed. The rule may be stated as, "Choose the item which, in expectation, reduces the 

variance of the output by the greatest increment."


 Computationally speaking, this requires a form of look-ahead procedure. For each 

remaining item, estimate the incremental reduction in variance, delta-variance, according 

to the formula already given. Choose the item with the highest delta-variance. Then 

discard the list; once another item is administered, the second-most-informative 

remaining item may not become the most useful. This situation does not require a 

violation of local independence to exist.
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 If there are Iu items remaining, the incremental reduction in variance must be 

estimated for each one. Although each incremental reduction calculation requires V+1 

error variance estimations, the look-ahead procedure only requires Iu*V+1, because the 

current variance estimate may be re-used. Nevertheless, because each estimation by 

multiple imputation involves a large number (say, a thousand) neural network predictions, 

the procedure is computationally demanding. Nor is it amenable to pre-computation, 

because of the complex relationships that may exist between items and biodata. A look-up 

table for a five-item-long test from an item pool of thirty might easily have over twenty-

four million cases, and that number scales exponentially with the length of the 

assessment.

2.5. Uncertainty in latent trait values

� Thus far, the scales have been represented only as a point estimate, a vector of S 

exact values. No attention has been paid to how those values were calculated, or how 

many items have been asked from each scale. Because the scales are known to measure 

univariate constructs, it makes sense to estimate them using item response theory. One of 

the advantages of IRT-based estimation is the ability to report the error associated with 

such an estimate, or even a probability distribution for the location of the true latent trait 

value. Let us consider the latter possibility. For S scales, arbitrarily correlated, θ̂  is now 

replaced by an S-dimensional continuous probability distribution, 

� pθ(x)=P(θ=x), � � � � � � � � � (10)
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that is, the likelihood of the true trait values being x, conditioned on responses already 

made.

� The distributed form of θ̂  carries through the calculations demonstrated 

previously. The output values y are now not a list of exact values that may be produced, 

but a genuinely continuous distribution of unknown form. The mean of y becomes 

� E(y)= ∫
-∞

∞
 (y*py) dy / ∫

-∞

∞
  y dy. � � � � � � � (11)

The variance is 


 Var(y)=E(y2)-E(y)2. 
 
 
 
 
 
 
 
 (12)

The sums over possible values of missing data must be integrated across all values of x 

before comparison, complicating the analytic form further. The difficulty of 

approximation by the method of multiple imputations is nearly unaffected, however. In a 

numeric approximation, an integral is just another sum, and this extension simply calls 

for the inclusion of the elements of θ̂  on the list of plausible values to be drawn.

� Because the latent traits measured by the scales are arbitrarily correlated, the 

candidate plausible values x for each θ̂  vector should be drawn and filtered 

simultaneously, according to their joint probability distribution function pθ(x). However, 

the joint probability distribution function may not be known, particularly if 

multidimensional IRT methods are not used to model the items. The misfit of the implied 

joint function that results from drawing plausible values independently should be 

evaluated on a case by case basis. Where correlations between scales are low or not well 
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known, the degree of misfit may be no greater than that which stems from the assumption 

of an incorrect distributional form.


 Let us return to the general discussion. Incorporating uncertainty in scale values, 

as is implied by representing them as distributions, permits a wider range of values of y 

by spreading out the formerly discrete possibilities along a continuum. It is fair to assume 

that as the uncertainty in the trait estimate increases, the uncertainty in the output will 

also increase, or at least not decrease.


 At any point during the administration of the items in a given scale, that 

distribution may be passed along to the neural net. (In practice, most if not all neural net 

programs cannot accept a distribution of values as an input, but the algebraic form allows 

it.) As more items have been presented, the distribution becomes narrower; the error of 

measurement of that trait becomes smaller. If some subset of the items in a scale are to be 

presented, regardless of the mechanism, it is worthwhile to consider the incremental 

effect of input uncertainty on output uncertainty.

� For simplicity, first consider the case where all items have been administered. 

Recall that the change expected in the output per unit change in a given input is the 

sensitivity to that input, and that the sensitivity ∂∂–yx  s is calculated as the partial derivative of 

the output with respect to that input. The exact analytic form of ∂∂–yx  s varies according to the 

form of the neural network. For any neural network with one hidden layer, define aj as the 

activation of a hidden node, wj as the weight of the connection between hidden node j and 

the output, and wij as the weight of the connection between input node i and hidden node 
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j. Define g(a) as the transfer function of the output node, and ƒ(x, B, I) as the transfer 

function of a hidden node. Then 

� ∂
∂–yx  s = (∂∂–ya  j)(∂∂–yx  js) = g'(a) ∑

j
 (wj* wij*ƒ'(x, B, I)). � � � � � (13)


 It follows that the variance in the output which is attributable to uncertainty in the 

input is 

� σi2 = ∫ ∫
x
 pθ(x)*(∂∂–yx  s(x, B, I))2*(xs-E(xs))2 dx. � � � � � (14)

The incremental effect of administering each remaining component item to any of the S 

scales may be compared by computing V hypothetical pθ(x) distributions, passing them 

through this formula, and comparing the averaged results to the existing scale-attributable 

variance, in much the same way as the effect of administering a stand-alone item was 

calculated. However, this places a computational premium on having the scales. An 

approximation can ease the computational burden greatly, while still being unlikely to 

result in the choice to administer an uninformative item.

� If the uncertainty in the scales is small relative to the variation in scale scores 

across the population, it may be assumed that the output as a function of x is closely 

approximated by a hyperplane in the vicinity of E(x), where pθ(x) is high. This will 

certainly be true after some items have been administered, and may be true initially due 

to information from the biodata. The explicit scale-attributable variance function may be 

simplified with some loss of information by substituting E(x) into ∂∂–yx  s(x, B, I) instead of 
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integrating across plausible values. The resulting scalar value may be multiplied by the 

incremental reduction in scale variance for an estimate of scale-attributable variance.


 A more complex case is more likely. This is the case in which some stand-alone 

items have not been administered, and yet the incremental effect of uncertainty of each 

scale score is still needed. Assuming either the independence or common-factor cases for 

item intercorrelations, the exact formula requires weighted summation across the possible 

values of Iu according to their conditional likelihood, as well as integration across x.


 The approximate formula may be estimated by the method of multiple 

imputations, or, because an estimate of uncertainty of this value is not required, a point 

estimate of Iu may be used. E(Iu) may be an obvious candidate, following the use of E(x). 

However, recall that the elements of Iu are responses to items which may be ordinal or 

even categorical. In either of those cases, the arithmetic mean may be an inadmissible 

value, or result in an output which is not actually "in the middle." The modal value of Iu 

is more appropriate. In both the independence and common-factor cases, this value may 

be easily obtained by taking the value of each element with the highest conditional 

probability.

2.6. A better item selection algorithm


 The approximation of the effect of scale uncertainty on output uncertainty leads to 

a next-item selection rule, but it is not complete. It begins and ends at the level of the 

scale. That is, the selection algorithm accepts an estimate of reduction in scale variance 
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for each scale, and returns a decision about which scale, if any, to "spend" an item on. It 

does not control which item within the scale is administered, or consider how that 

reduction in variance may be achieved. Under this rule, a subordinate function must 

administer an item, return a posterior distribution as a component of x, estimate the 

reduction in scale variance from administering the next item (but not do so), and make a 

standing request for permission to actually administer that item.

� If the posterior distribution is to be estimated using IRT from some form of 

unidimensional item model, it makes sense to use a traditional CAT to select the items 

within the scale. A CAT maintains a posterior distribution, which in the classic case is 

usually a list of values of pθ associated with values of θ. It selects the next item based on 

a maximum posterior precision method, and estimates the variance of the posterior 

distribution after that item is administered based on a look-ahead procedure. The estimate 

can be carried out once, without reference to what happens between when it administers 

one item and the next, because a traditional, unidimensional CAT does not accept 

information from other scales. This is a feature, not a bug; it simplifies item modeling. 

Altogether, this estimation of scale variance reduction is computationally cheap.


 The candidate rule for first and subsequent item selection may be revised into a 

cyclic procedure as follows: "For each scale, retrieve the expected reduction in variance 

from administering the next item, and multiply it by a point estimate of the sensitivity. 

For each stand-alone item, obtain the expected reduction in variance by simulating each 

possible outcome. Choose the item or scale which, in expectation, reduces the variance of 

the output by the greatest increment when one item is administered. If an item is chosen, 
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administer it and update Ik. If a scale is chosen, the subordinate CAT should administer 

the pre-selected item, update x, select another item for maximum posterior precision, and 

'try out' the next item to obtain the expected reduction in scale variance. The subordinate 

CAT should retain this value."

2.7. Modularity


 Although this selection procedure has been developed in a relatively specific 

context, many features of the context may be changed without fundamentally altering the 

selection algorithm.


 All of the mathematics above have been derived without reference to any specific 

mechanics of the neural net, other than example sensitivity functions. In fact, this 

procedure does not require that the predictive function be a neural net. Any mechanism 

will do if its output is a continuous, analytically differentiable function of the continuous 

inputs given any values of the discrete inputs. These are the functions well-modeled by 

neural nets, but no part or form of neural net calculations, nor any mechanism of fitting 

the model, is required for the technique to work. Note that some models can be 

considered special cases, which simplify the calculations -- sometimes to the point where 

the test is no longer adaptive. Multiple linear regression is one such model type.


 The rationale for using subscales where items exhibit local dependence has been 

given, but subscales may simply be omitted if the item pool is appropriate. In some cases, 

testlets may be used instead of subscales, if the item content calls for it. These are 
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arbitrarily scored groups of locally dependent items which are always administered 

together. The selection rule for items can easily be adapted to penalize testlet-associated 

reduction of variance proportionally to the length of the testlet.


 If subscales and/or testlets are used, stand-alone items may be omitted. This can 

easily occur in more theoretically well-defined areas of testing, such as academic 

assessment. This simplifies calculations considerably; the predictive relationship is 

essentially a guide to arbitrating between several univariate CATs competing for an 

examinee's time. In this case, however, building a fully multivariate CAT with joint 

estimation may be more effective.


 Biodata, or rather, a pre-existing classification of the examinee which contributes 

information to item selection, is not necessary for this procedure. In applications other 

than an employee selection context, it may be considered more appropriate to use only 

population characteristics as a prior distribution. This decision has been made before in 

educational contexts (Mislevy et al, 1992)
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3. Implementation and program structure

For a computer to administer a test, the structure of the test must first be programmed. 

This requires us to make explicit not only the mathematics of scoring but the functional 

operations of choosing and presenting items, recording and processing data. This chapter 

will discuss the structure of a program which administers an adaptive test. A prototype 

system was constructed according to this structure, and the results of its use will be 

shown in the next chapter.


 First, let us consider the general architecture of such a program in terms of 

processes, as shown in Figure 2. The processes described are an extension of the three 

rules from Chapter 2: the starting rule, the continuing rule, and the stopping rule.


 The starting rule is as follows: Begin a new log. Administer any fixed content, one 

item at a time, then go to the continuing rule.


 Administering fixed content is, of course, its own trivial loop: Administer a 

biographical item. Is there another biographical item? If so, repeat. If not, go on. 

However, the structure of the fixed content administration may be much more complex 

than this without any effect on the final product; it is also not of particular interest.


 The continuing rule is cyclic: Test for the stopping condition. If the stopping 

condition is satisfied, go to the stopping rule. Otherwise, select an item according to the 

item selection rule. Display the item, record a response and update the relevant internal 

structures. Estimate a score according to the scoring rule. Then, go to the continuing rule.
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Figure 2. Architecture of the program, from a process standpoint.
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 Recall that the stopping condition may be the attainment of a specified precision 

or length of test, or another testable proposition. Regardless, when the condition is 

satisfied, the procedure for stopping is administrative. Report the score to the hiring 

manager. Thank the applicant. Save the log files.


 The complexity of the CAT lies one level down, in the item selection rule and the 

scoring rule. Recall the item selection rule from Chapter 2. "For each scale, retrieve the 

expected reduction in variance from administering the next item, and multiply it by a 

point estimate of the sensitivity. For each stand-alone item, obtain the expected reduction 

in variance by simulating each possible outcome. Choose the item or scale which, in 

expectation, reduces the variance of the output by the greatest increment when one item 

is administered."


 The scoring rule may be stated more simply. "Estimate the mean outcome if this 

applicant is hired, by feeding the neural net the known responses and different plausible 

values of the remaining data."


 Another way to look at the architecture of such a program is to consider the flow 

of information between functional units, each of which maintains or accesses some data 

structures and performs specified functions. This view, as shown in Figure 3, displays 

more of the complexity inherent in CAT, and particularly in a hybrid CAT. Each box 

represents a functional unit, labelled with a name and then in some cases the primary data 

structure maintained by that functional unit. Each arrow represents the flow of 

mathematically important information. Requests and function calls are not shown.
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Figure 3. Architecture of the program, from a data flow perspective.
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 It is worth noting that the same structure, constructed for a traditional IRT-based 

CAT, has one fewer unit and four less connections. The neural network is not present and 

the item selection rule is not connected to the scoring rule. The remainder of Figure 3 is 

consistent with any computer-administered test, although in some cases where minor 

variation may be expected, choices have been made in order to be consistent with the 

simulation implementation. For example, the stopping rule may be a specified precision, 

a score may be reported to the applicant, or an error of measurement may not be available 

(as in the case of a fixed test).


 Each of the functional units will be described in greater detail below.

3.1. Applicant Interface


 The applicant interface has few, simple functions. It must allow the applicant to 

begin the test, which means telling the sequencer to initialize and the log keeper to open a 

new file for the applicant. The applicant should also be able to abort the test in an 

incomplete state if necessary. The interface is not obliged to be nice to the applicant in 

this case, but should at least reset itself for the next applicant.


 Mostly, however, the applicant interface is there to present items, instructions, and 

information such as legal statements, and to allow the applicant to respond to open-ended 

as well as menu-type items. It must record the applicant's responses and response 

latencies to the logs, as well as passing the responses to the sequencer.

64




 Beyond having enough screen space to display the whole item, the applicant 

interface is not subject to many restrictions. To avoid interfering with the measurement 

being attempted, it should be simple and clear. It may be necessary to prevent the 

applicant from multitasking, or requiring the computer to multitask. There are 

performance reasons for dedicated attention on both sides of the keyboard; performance 

issues will be discussed further at the end of this chapter.

3.2. Sequencer


 The sequencer is responsible for deciding when to invoke the starting, stopping, 

and continuing rules, as well as organizing the events within the continuing rule. The 

sequencer keeps a running count of items, or keeps track of the error of measurement, as 

required by the stopping condition. It is also the primary source of data to be sent to the 

logs: the date and time started, the sequence number of the current item, the identifier and 

content of the item chosen, and the applicant's score.


 When this CAT is implemented in a procedural language, the sequencer function 

calls and dismisses the item selection rule and scoring rule each time the continuing rule 

loops; it is thus unfortunately responsible for maintaining, disseminating and recovering a 

number of major data structures that it otherwise does not use, such as the posterior 

distribution vectors. It is more convenient for the purposes of discussion to associate 

those data structures with specific functional units at the "back end" of the program; I will 

borrow from object oriented programming to refer to different functions and persistent 
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data structures attached to agents such as the item selection rule. This is intellectual 

sleight of hand; I will also speak in procedural terms when it is more convenient to do so.


 In the continuing rule loop, the sequencer tests the stopping condition. If the 

condition is not met, the sequencer asks the item selection rule for the next item and 

waits. Upon receiving an item identifier, it reports it to the log, tells the applicant 

interface to get a response, and waits. Upon receiving a response from the applicant 

interface, it passes the response to the scoring rule, asks the scoring rule for a score, and 

waits. Upon receiving a score, it passes the score on to the logs, then returns to the 

beginning of the loop.

3.3. Logs


 The logs barely require their own functional unit at all. This agent is responsible 

for ensuring that all data passed to it is stored in an organized, safe and secure way. This 

may involve writing to a file, a database, or another structure.


 The logs receive data including item identifiers, responses, latencies, and scores 

on an ongoing basis from the applicant interface and sequencer; in order to comply with 

possible court orders, the data must be recorded such that they cannot be lost even if the 

test is unceremoniously aborted, the power fails, or some other part of the program 

crashes. The current simulation does not achieve this goal, but an operational system 

must.
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3.4. Item Selection Rule


 The item selection rule is invoked by the sequencer. Its basic modus operandi is to 

acquire two pieces of information, make a comparison, and spit out the identifier of an 

item. It does not maintain any data structures of its own from iteration to iteration.


 The two pieces of information it needs are the best possible expected reduction in 

variance due to administering an item, and the same quantity due to administering a scale. 

It does not matter which one it calculates first; they could be simultaneous if the language 

and supporting system permit threading. When both values are known, they are 

compared, and the item associated with the higher value is returned to the sequencer.


 The best scale is chosen according to the method described in Chapter 2. In short, 

the item selection rule asks the latent trait structure for a list of the best items from each 

scale, and the expected reduction in scale variance associated with each one. Then it 

multiplies each by the sensitivity of the output to that input and finds the highest result. 

The sensitivity is not easy to calculate; for some parts it may be easier to run the neural 

network and record the final activations of the nodes.


 The best item is also chosen as described in Chapter 2. This, however, requires 

trying out each possible response to each yet-unadministered item by submitting the 

current responses plus that one to the scoring rule. The variance for all responses to each 

remaining item are averaged, using weights corresponding to response probabilities, and 

subtracted from the current variance (also calculated by the scoring rule) to produce the 
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expected reduction in variance. The best item is the one associated with the highest 

expected reduction in variance.

3.5. Scoring Rule


 The scoring rule may be invoked either by the sequencer or by the item selection 

rule. In these two cases, it behaves essentially the same, but for different purposes. In 

either case it provides a prediction and an error of measurement. The primary difference 

is that the sequencer needs the prediction made for the current state of known responses, 

while the item selection rule asks about a hypothetical set of responses. The sequencer is 

likely to want the error of measurement as a standard error, whereas the item selection 

rule uses a variance, but it is easy to alter either functional unit to reverse the 

transformation if the scoring rule is programmed to only give one type of response.


 The scoring rule maintains a list of what response has been given to each item, 

and the current best prediction with error of measurement. When the sequencer reports a 

new response, the scoring rule determines whether it belongs to a stand-alone item or to a 

scale. If it belongs to a stand-alone item, the rule updates the list. If it belongs to a scale, 

it passes the response on to the latent trait structure.


 In either case, the scoring rule updates its score. It searches the list for default 

values, which represent missing data. A specified number of times, it copies this list and 

fills in where data is missing, according to the rules of imputation: it generates random 

values and filters them according to their likelihood. For the scale values, it asks the 
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latent trait structure to generate plausible values according to the same rules. When the 

copy comprises a complete set of inputs, the scoring rule submits those inputs to the 

neural net and records its response. Once the specified number of responses is 

accumulated, it computes the mean and standard deviation (or variance), records them 

and reports them back to the sequencer.


 The same procedure is carried out when the item selection rule offers a 

hypothetical next response, except that an additional temporary copy of the current 

responses table is generated. This way, the actual current values can be reset at the end, so 

that the hypothetical response is not mistaken for a real one.


 The scoring rule, either on its own (every time) or through the sequencer (once) 

also supplies the final score to the hiring manager.

3.6. Latent Trait Structure


 The latent trait structure, which generally corresponds to the subordinate CAT 

referred to in Chapter 2, responds to either the item selection rule or the scoring rule, 

providing them with two quite different pieces of information. The latent trait structure 

maintains the posterior distribution.


 The item selection rule uses two vectors maintained by the latent trait structure, 

the list of the best next item for each scale and the list of expected reductions in variance 

upon administering one item from each scale. Because these vectors are maintained, they 

need not be calculated at the time they are required. In fact, it is more efficient to update 
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these vectors, as well as the posterior distribution, each time a scale item response is 

passed over from the scoring rule.


 The scoring rule also requires, at a different time, a list of plausible values, one 

for each scale. Plausible values are constructed by the same generate-and-filter method 

used by the scoring rule, using the posterior distribution for that scale to determine the 

likelihood of a given generated value.


 The first time the latent trait structure is invoked, before any items have been 

presented, it generates a prior distribution. This is a different name for the same matrix 

which will later be called the posterior distribution; it need not be kept separate. 

Assuming the joint distribution is not known and the scales are treated as independent, 

this distribution can be written as a matrix with S rows. Each contains Q values, 

representing the height of the marginal distribution at Q quadrature points centered 

around 0, such as every 0.1 from -3 to 3. The heights are generated according to either the 

empirical distribution observed for each pattern of biodata, or a theoretically reasonable 

distribution, such as the normal distribution with its parameters adjusted according to the 

biodata.


 Subsequently, for each response given, the item characteristic curve 

corresponding to that response is convolved with the marginal distribution for the 

corresponding scale. For this to work, the item characteristic curve should be represented 

as a vector of likelihoods according to the same quadrature; the product of each member 

of the two vectors can then be taken. The result is the posterior distribution for that scale, 

and the distribution matrix is updated with the new values.
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 The best next item for a scale s may be chosen by finding the highest expected 

information gain. The expected information gain is approximated as the dot product of 

the sth row of the posterior distribution matrix and each item's information curve. Item 

information curves must, of course, be represented as a vector of heights corresponding 

to the same quadrature.


 For each scale, the expected reduction in variance corresponding to that best item 

is calculated. This is done by finding the exact reduction in variance associated with each 

possible response, and computing a weighted average according to the likelihood of each 

response. This vector, along with the list of best items, is maintained until the item 

selection rule needs it.

3.7. Neural Network


 The neural network is fairly standard, and an out of the box configuration can be 

used. It does not maintain any data structures, although it requires a network of weights 

and biases which it generated in its training period. It takes a standard list of inputs on 

which it has been trained, and returns one or more predictions, one for each outcome it 

was trained to predict. We have not discussed any cases in which there would be more 

than one prediction made in a single run of the neural network. The neural network is 

unaware of uncertainty and does not output an error estimate; all imputation and 

aggregation of multiple trials occurs in the scoring rule.
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 The neural network computation has three parts, of which the middle part is an 

iterative loop. First, it must preprocess the inputs, for example dividing a categorical 

variable into a series of binary variables, one representing each category. The network 

may also need to normalize continuous variables into a small range near zero; if this 

occurs, it must be reflected in the sensitivity calculation.


 Once the inputs are preprocessed, the activations of the neural network nodes may 

be computed, one layer at a time. This can be accomplished in fairly few lines of code, 

being a systematic weighted summation. Finally, the program must read off the value of 

the output node and deliver it back to the scoring rule.

3.8. Optimization


 Even with the speed of modern computers, this system has sufficient complexity 

and makes sufficient demands on raw processing power that issues of optimization must 

be considered. As in the early days of computerized adaptive testing, it is important to 

consider what constitutes an acceptable delay between items, as this limits the 

calculations that may be done at that time. However, the calculations which are necessary 

to make the test effective must be completed within that time. A compromise must be 

developed, weighing the need for processor-intensive procedures against the increase in 

computational demand associated with them. Some suggestions follow for improving 

performance.
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 How much of a delay is permissible? One second? Two? Recall that current tests 

with the same purpose are administered over the internet. Between items, there is already 

a delay associated with data transfer and web page rendering, which does not come as a 

surprise to the applicant. The length of this delay is not measured, and depends greatly on 

the actual internet connection available to the applicant. However, it is likely that an 

additional second, or even few seconds, of processing would be lost in this expected 

delay.


 The choice of a computing language is relevant. Initial prototypes of this CAT 

were developed primarily in the R language, with readability in mind. The neural net was 

the exception. It was already in C and called from R; standard code was generated by the 

neural network module of Statistica 6 (StatSoft, 2003), and it was unnecessary to 

duplicate its function.


 R is an interpreted language, and has a great deal of overhead associated with 

each calculation. For a system which requires a large number of simple calculations, R is 

not efficient. The result of using mostly R was a system that took up to an hour to select 

an item, under moderate requirements, on a mid-range 2004 computer. It was quickly 

decided that it was necessary to port at least the primary functions of the test to a 

compiled language. It was convenient to use C, because of the neural net already being 

programmed in that language.


 The number of imputations required to achieve consistent estimates of the likely 

prediction and error of measurement is likely to vary according to the structure of the 

neural net. One that fits the data well, with a wider range of sensitivity values, will 
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require fewer iterations to achieve reliable results. The prototype system was reduced to 

500 imputations per estimation without incident. It is possible that a lower number would 

have been acceptable.


 Another approximation that may be made more coarse for the sake of efficiency is 

the vector representation of each posterior distribution, item characteristic curve, and 

item information curve. If relatively few items are available for each subscale, it is 

unlikely that any given latent trait will ever be known to the precision normally 

associated with CAT. If fine distinctions on the order of a tenth of a standard deviation 

will never be made because of the items available, there is no particular reason that the 

resolution of the discrete representation should be greater. Two tenths of a standard 

deviation may well be acceptable, if one's interest is only in separating those applicants 

who are high on the trait from those who are low on it. This speeds up every calculation 

involving the posterior distribution, of which there are many.


 There are further optimizations that can streamline the calculation and approach 

the "few seconds" performance necessary. In an operating environment that allows 

threading, the maintenance processes of the latent trait structure, including updates to the 

posterior distribution and the look-ahead procedure that gives the next item and expected 

reduction in variance, may be shunted to a second thread. If a second processor is 

available, as is not uncommon in recent years, it may be used, and the complexity of the 

subordinate CAT need not be as limited.
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4. A simulation study


 The preceding sections have proposed a hybrid, neural net-based CAT. The 

current section describes a prototype system and an experiment to confirm that it has the 

expected benefits of an adaptive test. That is, the test should be shorter with little loss of 

validity; "little loss" will be defined in relation to a uniform or random reduction of the 

test. The test should report its own error of measurement accurately. Finally, the test 

should not administer the same items to all applicants.


 In order to verify that the hybrid CAT meets these requirements, a prototype must 

be developed, including a fully trained neural net. A partial simulation procedure, in 

which data from applicants who took the test under non-adaptive conditions is requested 

one item at a time by the adaptive test, permits immediate comparison within an 

individual of the effect of different testing procedures.


 Data from 3,989 employment applications were used for the partial simulation. 

All applicants in the sample were hired at the national retail chain to which these 

applications were submitted; no criterion data was available for applicants not hired, so 

their data could not be used.


 Performance data were collected over one month. The entire sample population 

was employed during that one month period and had been employed for at least one 

month.


 The performance dimension measured was sales productivity. The dollar amount 

of sales attributable to an employee is routinely tracked by the company and compared on 
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a monthly basis to a sales goal. For this study, that dollar amount of sales was divided by 

the number of hours worked to provide a sales-per-hour figure. Sales per hour were then 

normalized within equivalent groups defined by job class, in order to limit the "noise" 

introduced by environmental factors not related to individual personality characteristics.


 Each store employs several sales associates, and one or more cashiers, stockers, 

and managers. Sales associates made up the bulk of the sample, but the other jobs were 

also represented. There is expected to be employee movement between jobs, so it is not 

practical to extensively distinguish between the requirements of one job and those of 

another when considering a candidate for employment.


 Slightly more than half the sample (50.1%) reported being male; 4.6% omitted the 

question. No single race made up the majority of the sample; 39% reported being 

African-American, and 37% reported being Caucasian. 4.7% omitted the question, and 

other races made up the remainder.

4.1. Source tests


 All applicants responded to the same form of the Unicru Sales test, a test designed 

to predict success in floor sales through several behaviors.


 The test was administered in one of two modes. Single-purpose kiosks were 

available inside store locations; the custom devices in the kiosks are referred to as "screen 

phones" (Figure 4). Applicants with access to the Internet could also apply at a Web site, 

and take the test within their Web browsers. The display capabilities of a screen phone are 
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not as sophisticated as those of a Web browser, but the input device is better defined. 

These technical differences required separate implementations of the test, and resulted in 

different user experiences. In addition, the device used to submit an application implies 

one of two test-taking environments: the store to which the application is being 

submitted, and a user-chosen location which likely afforded more privacy and comfort. 

Application mode was retained in order to provide context to other data obtained.


 As its name might imply, the Sales test was expected to predict job performance 

in a customer-facing, selling environment. Dollar value of sales is a reasonable criterion 

measure against which to measure the Sales test.


 Each of the tests measures several traits, on the principle that multiple behaviors 

may lead to the same business outcomes. According to an unpublished technical report, 

the Sales test was designed to measure sociability, dominance, adaptability, optimism, 

and the applicants' own estimates of their on-the-job effort and practical intelligence. 

These traits are implicitly assumed to be compensatory, but in an arbitrary fashion; the 

test was only loosely balanced to have equal numbers of these items, and was refined 

according to empirical correlations. (Paajanen, personal communication, 7/15/2004)

Figure 4. A screen phone.
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 Of the 80 items on the test, 49 were sorted into 7 reliable subscales and validated 

across multiple data sets and multiple organizations. The data set at hand was not used in 

subscale development. The apparent central constructs of the subscales and the expected 

constructs on the tests matched fairly well, but not perfectly. Most significantly, the 

applicants' judgments of their own ability and effort were highly correlated; the 

applicants had a general level of self-efficacy which they expressed on all obviously-

valenced items. Whether this characteristic amounts to the desire to "fake good" or 

merely self-esteem, it was not separable into one opinion about ability and one about 

effort.


 Other constructs, such as sociability, dominance and adaptability, were clearly 

separable. Dominance, in fact, had to be split into separate scales for leadership ambitions 

and leadership-relevant traits, correlated about 0.4. Because of the several distinct scales, 

a one-factor model was not supported for the overall test.


 Thirty-one items remained as unique items after scales were constructed. These 

items represented a combination of items thought to be complex and items that tapped 

underrepresented constructs.


 Of the numerous available biographical data, seven items were chosen according 

to the following pragmatic criteria. The items were required to have a finite (and small) 

number of possible responses, such as those chosen from a list; free response items were 

not allowed. Items about membership in protected classes were not used. Items were also 

not used if they could be used to identify the region from which an application originated; 

it is not useful to know whether New England employees perform better than California 
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employees, because positions must be filled in all regions. Of the items that passed those 

three tests, the highest possible amount of criterion variance they could explain was 

determined by an information theoretic procedure (Chambless & Scarborough, 2002); a 

list was made of those which were informative either singly or jointly. Highly collinear 

items were dropped from the list. Finally, one item was added which had been observed 

to have higher-order effects in a previous sample: application mode. The result was a list 

of seven biographical items.

4.2. Neural Network


 For the present study, the sample was divided into one training sample and two 

holdout samples by independent random assignment of each case. 2,950 applications 

were assigned to the training sample; 648 and 391 were assigned to the holdout 

conditions, for an approximate 75/15/10 split.


 Item parameters were obtained for the scales to be used by the subordinate CAT. 

Data for this process were drawn from a non-overlapping sample of 97,563 applicants at 

a retailer expected to have a similar sales environment. It was anticipated that hires at one 

or both chains might differ on the scale constructs, but applicants were likely to be 

similar.


 The nominal model was applied to each group of items expected to form an 

internally consistent univariate scale. The nominal model is an item response model 

which predicts the likelihood of each of several responses, usually multiple-choice, given 
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the level of a single latent trait (Thissen & Steinberg, 1986). Although the items were 

Likert scales, the nominal model provided a superior fit compared to constrained models 

such as the rating scale model and graded response model.


 A three-layer perceptron was trained on the training sample, using 7 scales, 31 

additional items, and 7 biographical data as inputs, and 12 hidden nodes. The number of 

hidden nodes is not known to be optimal, but is not unreasonable given the number of 

training cases. The network was fully connected; weights were established through one 

hundred iterations of backpropagation, with a momentum coefficient of 0.3, followed by 

refinement through conjugate gradient descent. To avoid overfitting, on each iteration, 

noise was added to the inputs. The noise was distributed normally with mean 0 and 

standard deviation 0.1. The first holdout sample was also used to test whether overfitting 

had occurred.


 After 100 iterations of backpropagation and 21 of conjugate gradient descent, the 

network appeared to have found either a local or global minimum; the fit of the network 

to the data stopped improving noticeably. Overfit was not evident; the correlation with 

actual outcomes was 0.123 in the training sample and 0.121 in the first holdout sample, so 

the network was accepted. The fit of the network to the data was relatively poor for this 

application, indicated by the low correlation in both the training and first holdout 

samples. However, the fit was sufficient that the network weights were likely to be 

meaningful.
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4.3. Method


 The effectiveness of the item selection method was tested on the first hundred 

cases from the second holdout sample, selected sequentially by application date. 

Predictions of per-hour sales were made for these cases under five conditions. In the "all 

data" condition, each case was fed to the neural net with no missing data and its 

prediction recorded. In the two "adaptive" conditions, a mock user interface submitted the 

required biodata items to the CAT, which was then allowed to choose a specified number 

of items (10 or 20) according to its methodology. As each item was chosen, the mock user 

interface reported the actual response to the CAT; a prediction was made without the 

remaining items. Finally, in the two corresponding "random" conditions, an equal number 

of items were chosen at random and the rest considered missing. Estimation in the 

random conditions was performed by the method of multiple imputations, as in the 

adaptive conditions, but the informed item selection routines were disabled.

4.4. Results


 To ensure that this testing process has the expected benefits of an adaptive test, it 

is necessary to ask four questions. First, is a prediction following adaptive selection more 

accurate than one made following the same number of items administered at random? 

Second, is the error of measurement reported by the test program reflective of the actual 

error in estimation of the final prediction? Third, is the test in fact adapting, or simply 
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recognizing that certain items are universally more informative than others? Finally, how 

many items must be administered before the adaptive test delivers a reasonable 

approximation of the prediction made with full information?


 To the first question, it may be conclusively stated that the adaptive item selection 

algorithm results in an improvement over random item administration. The absolute value 

of the difference between predictions in the adaptive and all data conditions was less than 

that between predictions in the random and all data conditions (Table 1; p=0.03 for 10 

items and p=0.0002 for 20). The reported standard error of measurement was lower in the 

adaptive case at ten items and at twenty items (Table 2; p<0.00001 in both cases). 

Correlation with predictions in the all data case was higher for the adaptive case at both 

test lengths (Table 3; p<0.05 in both cases). 


 Is the error of measurement reported by the test program reflective of the actual 

error in estimation of the final prediction? One would expect the absolute differences 

between the test's predictions and the fully informed predictions, divided by the reported 

standard error of measurement, to be distributed with standard deviation one. At both test 

lengths, they were distributed with standard deviation 1.12, indistinguishable from 1 at 

100 cases. In the absence of contradictory evidence, we may assume that the standard 

errors of measurement reported by the program are reflective of actual precision. Oddly, 

the partially informed predictions were biased toward a lower performance than the fully 

informed predictions. This bias may stem from the use of a prior distribution based on the 

applicant population for latent trait estimation in the cases of persons already known to be 

selected as employees. Some selection had been done for better traits, which was not
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Table 1. Mean absolute difference from the "all data" condition.

Test length Adaptive condition Random condition

10 items 0.097 (0.084) 0.116 (0.099)

20 items 0.086 (0.074) 0.115 (0.099)

Table 2. Mean standard error of measurement as reported by the test.

Test length Adaptive condition Random condition

10 items 0.108 (0.017) 0.131 (0.009)

20 items 0.092 (0.020) 0.129 (0.010)

Table 3. Correlation with "all data" condition.

Test length Adaptive condition Random condition

10 0.60 (0.08) 0.21 (0.10)

20 0.70 (0.07) 0.22 (0.10)

taken into account by the test. The bias was lower in the 20-item case than the 10-item 

case, indicating slow convergence.


 Is the test in fact adapting to individuals? It is possible for an item selection 

algorithm to outperform random item administration simply because some items are 

always more useful than others. In order to determine whether this is the case, one must 

examine the frequency of administration of different items. Only one item was given to 
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every applicant at both test lengths, and not always in the same ordinal position. Some 

items appeared relatively frequently, while 21 items never appeared in either condition, 

suggesting that there are some items which are more useful for a broad range of 

applicants than other items. This result suggests that the test is indeed adapting.


 How many items are enough? In a practical situation, a decision must be made 

about how long the new adaptive test must be in order to deliver a reasonable 

approximation of the fully informed result. This decision hinges on what it means to be a 

reasonable approximation. The approximation will necessarily lower the criterion validity 

coefficient of the test, but is a reduction of 0.01 acceptable? 0.02? 0.05?


 Let us assume that the true validity of the test is known to a certain precision, 

based on testing with a holdout sample. Let us then propose a rule of thumb: a reduction 

in validity which is less than the standard error of estimation of the validity coefficient is 

a reasonable approximation. By this rule of thumb, if the fully informed prediction had a 

validity coefficient of 0.20 with an error of estimation of 0.02, an adaptive test's 

prediction must correlate at least 0.90 with the fully informed prediction in order to be 

sufficient. If the neural net were trained to a validity of 0.30 with the same error of 

estimation, the prediction must correlate 0.93 in order to be acceptable.


 In the demonstration case, the neural network was trained to a much lower 

validity, 0.12, atypical in practice. By the rule of thumb, the correlation of 0.70 achieved 

in the twenty-item condition was insufficient even at this level of validity. A longer test, 

for example 30 items, might be needed.
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5. Conclusion


 Over the course of the last three chapters, the mathematics, the architecture, and 

the performance of a computerized adaptive test have been demonstrated. In this 

dissertation, I have initiated the development of computerized adaptive tests that are 

based on underlying neural networks. Although I have focused on one specific 

implementation of this approach and its application to the problem of predicting sales 

performance, the methods here are easily generalized to other problems and alternative 

network architectures.


 From another perspective, a neural network designed to recognize patterns 

leading to positive employment outcomes has been combined with a process that gathers 

the best possible information for improving its prediction, given constraints on the 

quantity of inputs allowable. The resulting hybrid is functioning according to the 

expectations placed on neural networks as well as those placed on adaptive tests.


 It is highly empirical: it can model an arbitrary output function over an arbitrarily 

multidimensional input space. It is efficient: it achieves a much shorter test with relatively 

little loss of precision. It can report its own error of measurement: the error of estimation 

of a prediction can be scaled according to the validity of the prediction to give an error of 

estimation of the outcome. It permits comparison of applicants who did not answer the 

same items: it places them all on a common scale in terms of the predicted outcome, even 

if available item content is changed or the neural model is revised.
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 The neural network-based testing architecture devised here represents a first step 

into the domain of adaptive testing where multiple traits are simultaneously estimated. 

The prototype described in this paper maintains a latent trait structure involving seven 

separate traits, although it does not report a profile of scores. It would only be appropriate 

to report such a profile if each trait were thoroughly tested to attain a high test-retest 

reliability; while that did not occur in the example demonstrated and was not needed for 

the purpose described, it is a possible future case.


 This hybrid, particularly the prototype implementation, is not elegant. It was 

developed for a practical purpose, and its success will be determined upon its ability to be 

used for that practical purpose. Much work must be done before an operational system 

can be deployed to real stores and real managers. This prototype holds promise; only time 

will tell if it is fulfilled.
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