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Abstract 

 
 The sequential probability ratio test (SPRT: Wald, 1947) and adaptive mastery 
testing (AMT: Kingsbury & Weiss, 1983) have been shown to be effective termination 
criteria for computerized classification testing (CCT: Kingsbury & Weiss, 1983; Reckase, 
1983; Spray & Reckase, 1994; Lin & Spray, 2000).  The SPRT and AMT were originally 
designed for only two classifications, such as “pass” and “fail” (Kingsbury & Weiss, 1983), 
but can be expanded to three or more classifications (Weiss & Kingsbury, 1984; Spray, 1993; 
Eggen & Straetmans, 2000).  However, all research that has been done with the multiple 
cutscore CCT has utilized only dichotomous item response theory models.  A procedure has 
been proposed (Lau & Wang, 1998; 1999; 2000) to modify the SPRT to accommodate 
ordered polytomous IRT models such as the partial credit model (Masters, 1982) and the 
generalized partial credit model (Muraki, 1992).  These models potentially increase the level 
of information provided by an item across the ability scale, which is increasingly important as 
the number of classifications increases.  This study investigated the applicability of 
polytomous item response theory methods to CCT for multiple cutscores.  The relative 
efficiency of the procedure as compared to the dichotomous multiple cutscore CCT, as well 
as a comparison of termination criteria and item selection criteria, was investigated in a 
monte carlo simulation study.  It was found that the advantages of testing efficiency, 
evaluated by the average test length and percentage of correct classifications, for two-
classification CCT are even greater for three-classification CCT.  CCTs with the SPRT 
termination criterion utilized fewer items than AMT while being matched on observed 
accuracy. 
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Chapter 1: Introduction 
 
Ability and achievement tests are an important part of modern society, serving many functions.  
One of the chief functions is the use of an ability or achievement test to make a decision regarding 
examinees with regards to a cutscore, a specific score on which the decision is based.  Testing 
applications that are intended to classify examinees into mutually exclusive categories are known 
as classification tests.  Usually, this is a dichotomous decision with only two possible outcomes, 
such as the ubiquitous case of pass/fail, which requires a single cutscore to make the 
classification, though some applications call for multiple cutscores.  Many classification tests are 
high-stakes tests, where the decision carries important consequences such as graduating high 
school or being able to practice one’s chosen profession.  Because of the extensive amount of 
high-stakes classification testing, it is important to ensure that the tests are as efficient and 
accurate as possible.  This study investigated methods of designing computerized tests that 
maximize efficiency and accuracy for both two classifications and three classifications. 
 Classification tests are most often administered to assess the extent of learning or mastery.  
The accompanying nomenclature reflects the aim of the test, which is to determine if a student has 
learned enough of the material to pass the test and be deemed a “master,” or fail and be classified 
as a “nonmaster.”  Yet classification tests are applicable in any case where the purpose is to divide 
a sample of examinees into ordered groups.  For example, job applicants might be described as 
having a distribution of qualifications, with higher qualified applicants having greater education, 
experience, intelligence, or job knowledge.  It is beneficial for the hiring organization to easily 
classify applicants along this continuum into those applicants worth offering positions, and those 
for whom it would not be as sensible to offer a position.  Likewise, a psychological clinic might 
wish to divide applicants along the depression continuum into those who are clinically depressed 
and those who are not.  However, as the most common application is the simple pass-fail or 
master-nonmaster case, this will be the example terminology generally used herein for the two 
classification situation. 
 Two of the most visible types of classification tests, which provide a ready example, are 
licensure and certification tests.  These are pass/fail tests that assess a person’s ability to perform 
certain tasks or work in a certain profession.  Licensure and certification tests are similar in form 
and construction, and are therefore often referred to collectively as credentialing tests, but have an 
important distinction in legal context and purpose.  Licensure refers to requirements imposed by 
law for entry into a profession.  Such tests are mandated in an effort to protect the public in 
situations where lack of qualifications could lead to public harm.  Medical doctors require 
licensure for just such a reason, as well as many other professions.  However, a situation is 
possible where licensure is required by law even though malpractice of the profession has no 
detrimental effect on the public. In such case, government has established licensure status by a 
profession that wishes to restrict entry of others into the profession.  For example, a test must be 
passed to obtain licensure to be a florist in the State of Louisiana (Sullum, 2004), though the 
consequences of an incompetent florist are much less dire than an incompetent doctor.  
Certification tests, on the other hand, are voluntary.  In this case, the credential is administered by 
a board or commission representing the best interests of a profession, but the credential is not 
required to work in the profession.  Certification is intended to provide public knowledge of a 
higher level of knowledge and skills.   
 An even larger portion of testing in society can be considered classification testing if tests 
are included which are designed to result in scores that are later classified into groups.  For 
example, many norm-referenced tests are later used to make decisions, such as a college 
establishing a minimum score on an entrance exam to distinguish students that meet expectations 
for admission.   
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Multiple Cutscore Classification Testing 
 While many classification tests are designed for only one cutscore with two 
classifications, some are designed to classify examinees into three or more groups ordered on an 
underlying continuum, which entails multiple cutscores.  For instance, in the two examples used 
above, a third group might be defined in between the two classifications, such as “partial master,” 
or “moderately depressed.”  There are several reasons for using multiple cutscores.  The “partial 
master” classification would be useful for identifying a borderline group that does not have 
requisite mastery of the material, but would likely achieve that level with a small amount of 
retraining.  For example, students could be classified with a placement test into those students 
who need remedial training, those who belong in a mainstream class, and those who warrant 
accelerated instruction.  A human resource director in charge of hiring decisions might wish to 
classify examinees into those who would likely fail at the job, those who would likely perform 
adequately if put on the job immediately, and those who might perform adequately after some 
training.   
 Another type of multiple-cutscore test is for evaluation purposes, both of examinees and 
educational programs.  The National Assessment of Educational Progress (NAEP: Loomis & 
Bourque), also known as the Nation’s Report Card, is an example of this type of test.  The NAEP 
classifies examinees into four categories, often called competence levels: Below Basic, Basic, 
Proficient, and Advanced.  This obviously serves to identify characteristics of each student, but 
not all students are tested because its primary purpose is to evaluate the quality of education in 
certain schools, districts, cities, or states by assessing the percentage of students in each 
classification. 
 An important issue in testing for multiple cutscores is the strain that multiple cutscores 
introduce to the testing procedure.  In two-classification testing, the region of ability where the 
test needs the greatest number of items to make a decision, and still has reduced accuracy in 
classifying examinees, is near the cutscore (Spray and Reckase, 1994).  If a test has three or four 
classifications (two or three cutscores), the number of examinees that need a high number of items 
increases (Spray, 1993).  This therefore increases the average number of items needed across the 
population, which in turn increases the number of items needed in a bank for effective test 
administration without overexposure of items. 
 The development of classification tests for multiple cutscores is similar to that of two-
classification tests.  For example, the establishment of content areas or writing of items is not 
necessarily affected by how many cutscores there are.  However, the two situations differ in terms 
of specific psychometric methods used to administer and score the test.  While methods such as 
the sequential probability ratio test (Spray, 1993) are generally applicable to both cases, certain 
characteristics must be adapted to the multiple-cutscore situation.  The aspect of classification 
testing for which this is most true is the algorithms employed in computerized classification 
testing. 
 
 
Computerized Classification Testing 
 The proliferation of the personal computer in the 1990s has led to a large portion of 
examinations, especially high-stakes classification examinations, being administered by computer.  
This includes education (Eggen & Straetmans, 2000) and professions as varied as nurses (O’Neill, 
Marks, & Liu, 2006), architects (Braun, Bejar, & Williamson, 2006), and accountants (Buchanan, 
Vucinic, Rigos, & Gleim, 2004).  While some classification tests delivered by computer are 
merely computerized administrations of conventional fixed-form tests, where each examinee 
receives a fixed number of items administered in a fixed order, the application of the computer 
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allows for the design of much more technologically sophisticated tests.  The technological 
advancement that is available with computers, but not with conventional paper-and-pencil testing, 
is variable-length testing.  In variable-length testing, not every examinee receives a test of the 
same length.  Instead, an effort is made to administer fewer items by administering items one at a 
time and terminating the test after a specific criterion has been reached.  Those examinees who 
quickly distinguish themselves as easily classifiable after a small number of items are then 
classified without the administration of more items.  This saves time and effort for both the 
examinee and the computer, allowing the testing of more examinees in a given amount of time.  
This benefit has important financial consequences when considered across thousands or hundreds 
of thousands of examinees. 
 The most widely known form of variable-length testing is computerized adaptive testing 
(CAT: Weiss & Kingsbury, 1984; Thissen, 2000).  CAT not only adjusts the length of the test for 
each examinee, but also uses information on that individual examinee, in the form of their past 
responses to items with known parameters, to adaptively select each item. Item difficulty is 
matched with examinee ability, so that a highly able examinee does not waste time with very easy 
items, and an examinee with lower ability is not faced with items of high difficulty.  The test is 
often terminated when the examinee’s conditional standard error of measurement (CSEM) falls 
below a predetermined value, though other criteria may be applied.  This makes for tests that 
typically use 50% as many items (Weiss & Kingsbury, 1984) as a fixed-form conventional test.   

CAT is a general term that refers to variable-length tests that use adaptive item selection, 
whether the test is used for classification or not.  A computerized classification test (CCT; Lin & 
Spray, 2000) is a variable-length computerized test that is specifically designed for examinee 
classification.  CAT and CCT overlap.  Some CCTs are adaptive; however, there are efficient 
CCTs that do not use adaptive item selection.  Variable-length tests can also be constructed with 
algorithms for random item selection and sequential item selection.  Sequential selection is a 
nonrandom algorithm that intelligently selects items, such as the selection of items to maximize 
information at a cutscore point, but does not make use of information for each individual 
examinee. 
 The construction of a variable-length CCT requires the specification of three main 
characteristics: 
 
 
1.  An item bank calibrated with a selected psychometric model 
2.  An item selection algorithm 
3.  A termination criterion. 
 
CCTs can be categorized by the methodologies they use within the test to address these three 
design characteristics.  Since CCT research began, there have been many procedures proposed, 
varying in the methods specified for each characteristic.  The large number of possible 
permutations, as well as the interaction of characteristics, precludes the statement of one 
procedure as the most efficient. 

The primary method of CCT categorization is the termination criterion.  There are three 
available termination criteria: adaptive mastery testing (AMT; Kingsbury & Weiss, 1984), the 
sequential probability ratio test (SPRT; Wald, 1947), and Bayesian decision theory (BDT; van der 
Linden, 1990).  AMT constructs confidence intervals around the current trait estimate using an 
estimate of the examinee’s conditional standard error of measurement after each item.  The SPRT 
makes a decision between simple competing hypotheses, such as mastery and nonmastery.  BDT 
gives the test user choices of various loss structures and functions, and classifications are made by 
attempting to minimize loss. 
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The item selection method provides a secondary type of categorization. Variable-length 
tests can be divided in two ways, based on how the next item is selected: random vs. intelligent, 
and sequential vs. adaptive.  These two dichotomies delineate methods on the same criterion – 
item selection – in an overlapping fashion.  Random item selection assumes that the items are 
more or less equal and therefore randomly selects the next item to administer to an examinee.  A 
more complex approach is to acknowledge that item characteristics, such as item difficulty, might 
vary, and an attempt is made to instruct the computer to intelligently select the “best” item to 
administer next to the examinee.  The definition of “best” is often defined by the maximization of 
some psychometric function (e.g., item information) chosen by the test user, but there are many 
strategies for this.  These include the use of prior information on the examinee or population 
(Rudner, 2002), item information in a region (Eggen, 1999), item information at a point such as 
the cutscore (Spray & Reckase, 1994), and the current trait estimate (Reckase, 1983). 

With CAT (Weiss & Kingsbury, 1984), items are selected to match the examinee’s trait 
level as estimated during the test and therefore must take into account individual examinee 
information, such as the response vector on all items administered, at a given stage of the test.  
The psychometric function to be maximized includes parameters for the examinee.  Sequential 
tests, on the other hand, do not use examinee information, and item selection is either random 
(Ferguson, 1969) or based on information not related to the examinee.  Sources of this information 
for intelligent sequential tests include Bayesian loss and utility structures (Rudner, 2002; see also 
Lewis and Sheehan, 1990; Vos, 1999), item information at the cutscore point (Spray and Reckase, 
1994), global or regional (Kullback-Liebler) item information (Eggen, 1999; Rudner, 2002), and 
mutual information (Weissman, 2004).  Therefore, CAT involves only those methods of 
intelligent item selection that utilize information on a given single examinee; whereas all other 
intelligent methods are subsumed under sequential testing, along with random item selection.   

Certain item selection methods are often used with certain termination criteria.  Of the 
three commonly used families of termination methods, sequential Bayesian procedures are 
traditionally used with the assumption of random item selection (e.g., Vos, 1998) and AMT 
procedures are traditionally adaptive (e.g., Kingsbury & Weiss, 1983).  Although the SPRT was 
originally random (Ferguson, 1969), it is now used with intelligent item selection, both 
sequentially and adaptively (Eggen & Straetmans, 2000).  It is a misconception to believe that the 
three families must be completely adaptive or sequential, random or intelligent; they are defined 
by the termination criteria involved, not by item selection. 

The choice of psychometric model also presents an important option to the test user.  
While an efficient CCT can be designed with classical test theory (Frick, 1992), most CCT 
research has focused on the application of dichotomous item response theory (IRT: Embretson & 
Reise, 2000).  The exception to this is Lau and Wang (1998; 1999; 2000), who used a polytomous 
item response theory model, which allows for partial credit in examinee responses.  IRT is based 
on the premise that the relationship between an examinee’s ability or achievement level and the 
probability of a response can be described by a logistic or cumulative normal mathematical 
function known as the item response function (IRF).  With dichotomous IRT, the only response 
considered in the function is the correct or keyed response.  With polytomous IRT, all responses 
are considered, such as an item where each of the incorrect responses receives some form of 
partial credit. 

Because polytomously calibrated items provide more information across a wider range of 
ability than dichotomously scored items, fewer items are generally needed to make classifications 
with polytomous IRT than with dichotomous IRT.  This early research on CCT with polytomous 
IRT examined only the two-category case, but the multiple-cutscore case offers the possibility of 
even greater superiority of polytomous IRT CCT over dichotomous IRT.  This is because the 
multiple cutscore case requires more information across a greater range of ability, because 
examinees are evaluated in reference to two or more cutscores rather than a single point.  
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Polytomous IRT offers just that, presenting an alternative to increasing item bank size, which has 
great practical importance.  Rather than face the expense of developing a larger item bank to 
perform multiple-cutscore CCT, a smaller item bank that is polytomously calibrated might be just 
as effective.  This also reduces the average number of items needed to classify examinees, which 
saves testing time, an important issue in large-scale testing programs such as the NAEP, which 
tests millions of students across the United States. 

Other choices that represent practical issues are often encountered during the development 
process.  For instance, many CCTs have a truncation rule that prevents the CCT from 
administering every item in the bank if the termination criterion is never able to make a 
classification.  Additionally, many testing programs are concerned with the overexposure of their 
items to the candidate pool, and institute some form of exposure controls into the item selection 
process.  Options such as these are ancillary rather than necessary, but do serve very important 
purposes for the testing program.  

 
 

How CCT Works 
A CCT can be conceptualized as a test that operates in “rounds” rather than being given in 

one large block, as occurs with a paper-and-pencil test where the examinee is simply given a large 
number of items and must complete them all.  The general idea is that an item or group of items 
(testlet) is selected at the beginning of each round, the examinee responds to what is presented, 
and the computer uses the responses to evaluate if the examinee can be classified.  The 
termination criterion provides the quantitative basis for this evaluation.  If the examinee can be 
classified, the test is terminated.  If the termination criterion cannot make a decision, the process 
repeats itself with another round. 

The following is an example of the interaction between an examinee and a computer in 
the administration of a CCT.  The examinee is presented one item, which is answered.  The 
computer immediately scores the item and checks to see if the termination criterion leads to a 
decision regarding the examinee’s classification.  This is not likely to occur after only one item, so 
the computer proceeds to the next round and selects another item to administer.  The examinee 
responds to this item, and the termination criterion is evaluated again.  If the examinee is not able 
to be classified, a third item is administered.  This process continues until the termination criterion 
classifies the examinee, the item bank is exhausted, or a truncation rule such as a maximum test 
length is reached.  Because the termination criterion and item selection process operate efficiently, 
the termination criteria are sometimes able to make classifications after only a few items (Spray & 
Reckase, 1994). 

It should be noted that CCTs considered in this study assume that the test is composed of 
single-best-answer multiple-choice items that are selected one at a time.  Some research has used 
testlets (Lewis & Sheehan, 1990; Sheehan & Lewis, 1992), or pre-bundled sets of items, but these 
are used less often for CCT.  There also exist computerized tests for examinee classification that 
use sophisticated item formats such as performance scenarios (Braun, Bejar, and Williamson, 
2006), but the methodologies used in constructing such tests are substantially different.  In the 
future, procedures might be proposed that combine the two approaches, but currently no research 
has explored the use of alternative item formats with CCT methodologies such as IRT-based item 
selection and termination criteria.  Such procedures would be highly efficient. 

 
 

Purpose 
 The general purpose of CCT research is to identify specific methods that maximize the 
efficiency of the CCT.  While a CCT can make a classification after only a few items, such as for 
examinees whose ability is far above or below the cutscore in the two-classification case, this is 
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not true for the majority of examinees.  In fact, examinees whose ability level is near the cutscore 
might respond to every item in the bank, and the termination criterion will still not able to make a 
classification.  Therefore, the development of more efficient methods helps to reduce the average 
number of items per examinee while retaining high levels of precision and accuracy.  This is 
important because, as mentioned previously, a reduction in testing time per examinee can have 
substantial financial and resource implications multiplied across large numbers of examinees. 

The purpose of this study was to investigate the efficiency and accuracy of simulated 
CCTs under several different specifications, similar to previous research.  Five independent 
variables were considered, each with two levels.  Three variables reflect the three characteristics 
of CCT: termination criterion, item selection algorithm, and psychometric model.  The two 
termination criteria that were compared were the SPRT and AMT.  Two approaches to item 
selection were utilized: estimate-based (adaptive) and cutscore-based (sequential).  The 
advantages of using a polytomous psychometric model over a dichotomous model were also 
examined.  The remaining two independent variables were item bank shape and the number of 
cutscore. 

What separates this research from previous research is the application of polytomous IRT 
as the psychometric model for a multiple-cutscore CCT.  Only Lau and Wang (1998; 1999; 2000) 
have applied polytomous IRT to CCT, and that initial research was limited to the two-
classification case.   Although they found the polytomous model to perform more efficiently, the 
advantage of polytomous IRT should be even greater for multiple-cutscore CCT.  This was the 
primary purpose of the study. 
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Chapter 2: Development of CCTs 
 
 To design a CCT, a test developer must specify a method to address each of the three 
characteristics.  First, a calibrated item bank must be developed, which requires the choice of a 
psychometric model to calibrate the items.  A psychometric model is necessary for a CCT because 
item selection and termination criteria utilize a psychometric model to specify parameters and 
perform calculations.  Next, a termination criterion is necessary to both determine when to stop 
the test and how to classify the examinee.  In CAT, these two characteristics are separate, but the 
termination criteria used for CCT do both simultaneously: the test is terminated when the 
examinee is classified.  Lastly, because a CCT dynamically selects items or groups of items 
throughout the test, a rule for performing this selection must be specified.   
 
 
Psychometric Model 
 There are three main options for the psychometric model to use in designing a CCT:  
classical test theory, dichotomous IRT, and polytomous IRT.   CCTs were first designed with 
classical test theory (Ferguson, 1969).  While it is possible to construct efficient CCTs using 
classical test theory (Frick, 1992), they are more often designed with IRT.  The first application of 
IRT to CCT was Kingsbury and Weiss (1979), who utilized it in the development of the AMT 
termination criterion.  Reckase (1983) later applied it to the SPRT termination criterion. 

Recent CCT research has focused on the use of dichotomous IRT (e.g., Eggen, 1999; 
Eggen & Straetmans, 2000; Thompson & Weiss, 2006).  This is due to several reasons.  First, 
item banks for current-day large-scale testing programs are often calibrated with dichotomous 
IRT.  Second, IRT item parameters provide an efficient method for specifying the parameters of 
the SPRT and are necessary for the estimation of ability (θ) and the conditional standard error of 
measurement for AMT (Kingsbury & Weiss, 1983).  Moreover, IRT enables the use of item 
information functions, which are applied in highly efficient algorithms for item selection in CCT 
(Spray & Reckase, 1994). 
 There are three commonly used dichotomous IRT models.  This study used the three-
parameter logistic model (3PL), an IRT model commonly applied to multiple-choice data for 
achievement or ability tests when examinee guessing is likely.  With the 3PL, the probability of an 
examinee with a given θ correctly responding to an item is (Hambleton & Swaminathan, 1985, 
Eq. 3.3) 
 

)](exp[1
)](exp[

)1()|1(
iji

iji
iiji bDa

bDa
ccXP

−+

−
−+==

θ
θ

θ   (1) 

where  
ai is the item discrimination parameter, 
bi is the item difficulty or location parameter, 
ci is the lower asymptote, or pseudoguessing parameter, and 
D is a scaling constant equal to 1.702 (in this study) or 1.0.   

 The three dichotomous IRT models are described by the number of parameters used in the 
equation.  The 3PL is as presented above.  The two-parameter logistic model assumes that ci = 0.0, 
meaning that there is no guessing involved in the response to the item.  Such a model is 
appropriate for measuring personality or other psychological traits when guessing is not 
applicable.  The one-parameter model assumes that all items have equal discrimination, and uses 
only the bi parameter to describe items.  For achievement and ability type data, where examinee 
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guessing is a near-certain possibility, the three-parameter model is the most appropriate of the 
dichotomous IRT models when sample size allows, hence its selection for this study. 
 The 3PL models the interaction between an examinee and a single item by describing the 
probability of correctly responding as a function of θ.  The function that describes this relationship 
is an IRF.  An example of a 3PL IRF is shown in Figure 1, with a = 0.99, b = 0.0, and c = 0.25.   
The probability of correctly responding is low for examinees with low θj, for instance -2.0, but 
does not drop below c = 0.25, as this is the probability of guessing the correct response on a four-
option multiple-choice item.  The probability increases with θ, but cannot surpass the upper 
asymptote of 1.0. 
 
 
 

Figure 1: Three-Parameter Model IRF 

 
 While there might be four or five options presented to the examinee, the item is still 
scored only as incorrect or correct with dichotomous IRT, ignoring the possibility that information 
could be provided by responses to the incorrect options.  Polytomous models make use of this 
possibility by modeling the response for each option, rather than simply the probability of 
responding correctly or incorrectly.  Many polytomous models exist, and most assume a definite 
order of response options.  Some of them are intended for Likert-type rating scales (e.g., Andrich, 
1978), while some were designed to model achievement items with discrete steps, awarding 
partial credit for the steps (e.g., Masters, 1982; Muraki, 1992).  These imply a strict ordering of 
response categories, they might not be appropriate for all multiple-choice data, in which case a 
model such as the nominal response model (Bock, 1972) is appropriate.   
 The generalized partial credit model (GPCM; Muraki, 1992), which allows discrimination 
values to vary, defines the probability of an observed response X out of the possible responses x as 
(Embretson & Reise, 2000, Eq. 5.8) 
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where  

ai is the item discrimination parameter of item i, 
bij is the category boundary parameter for boundary j of item i, 
r is the number of response categories, and 
M is the number of (r -1) boundaries between the response categories. 

Note that the number of boundaries between response categories M is always one less than the 
number of categories r.   
 The GPCM is based on the assumption that the responses are ordered such that examinees 
with increasing ability will respond with an option higher in the order.  For example, a math item 
might require several different calculations to be performed in a specific order, and the options 
presented to the examinee reflect the numbers that an examinee would arrive at after completing 
each step.  This is advantageous because not only does it provide the opportunity for partial credit 
scoring, but also makes for highly plausible item distractors.  
 The GPCM is a divide-by-total model, where the probability of each category is 
calculated by dividing by a total summed value; obviously, the probabilities for each of the 
response categories conditional on θ must sum to 1.  It can also be interpreted as an adjacent 
categories model.  The boundary parameters bij represent the points on θ where the category 
response functions of adjacent categories cross, or where it becomes more probable that the 
response will be in the next category. 
 An example of a GPCM IRF is shown in Figure 2, with a = 0.99, b1 = -1.35, b2 = 0.0, b3 = 
1.35.  The IRF models the probability of responding to one of the four options as a function of θ.  
Examinees with very low θ such as -3.00 or -2.00 are likely to respond to option 1, while 
examinees with very high θ such as 2.00 or 3.00 are likely to respond to option 4.  The adjacent 
categories conceptualization is demonstrated by the first boundary; for θ below b1 = -1.35 it is 
more likely that the response will be for option 1, while above it is more likely to be for option 2.   
 For instance, suppose the item was a mathematics item that involved the completion of 
several steps to obtain the correct final answer.  Examinees of very low θ (up to -1.35) are not 
likely to be able to complete any steps, and are therefore likely to respond with a response (option 
1) that reflects this stage.  More able examinees (-1.35 to 0.0) are likely only able to complete the 
first step, and are therefore more likely to respond to the option (option 2) that contains the answer 
after that first step.  Examinees with θ between 0.00 and 1.35 are likely to get past the second 
step, or select option 3, and examinees with θ above 1.35 are likely to obtain the correct answer 
(option 4). 
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Figure 2: GPCM CRFS for item with a = 0.99, b1 = -1.35, b2 = 0.0, b3 = 1.35 

 
 As is evident from the previous paragraph, the advantage of the GPCM over the 3PL is 
that the item can differentiate among examinees of a wide range of θ levels.  The ability of the 
item to differentiate peaks at the b values, such as the item in Figure 2 differentiating between 
examinees likely to choose option 1 vs. option 2 at b1  = -1.35.  There is a specific function that 
quantifies this differentiating ability, called the item information function, also known as Fisher 
information (FI).  FI, the traditional conceptualization of item (and test) information in IRT, is 
broadly defined as the conditional slope squared divided by the conditional variance, or (Lord, 
1980) 
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The item information function for the 3PL is specifically defined as (Embretson & Reise, 2000, 
Eq. 7 A.2) 
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and the item information function for the GPCM is defined as (Ostini & Nering, 2005) 
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where Tj is the scoring function (e.g., 1, 2, 3, 4).  
 FI is an index of the amount of scoring precision contributed by an item or test at a given 
θ level.  It is inversely proportional to the conditional standard error of measurement function 
(CSEM; Embretson & Reise, 2000),  
 

 ∑
=

=
n

i
ICSEM

1
)(1 θ        (6) 

 
which is an index of the amount of error at a given θ level after n items.  Because information is  
based on the function’s slope, for a dichotomously scored item it peaks at bi, where the slope is 
the greatest.  For the same reason, items that have higher discrimination parameters will have 
more information at that point. 
 The IIFs for the two example items are shown in Figure 3, with a = 0.99, b = 0.0 for the 
3PL, and a = 0.99, b1 = -1.35, b2 = 0.0, and b3 = 1.35 for the GPCM.  This figure demonstrates 
how much more information is offered by a polytomous model over a dichotomous model (Ostini 
& Nering, 2005).  It is for this reason that the GPCM should offer substantial advantages for 
multiple cutscore CCTs. 
  

Figure 3: IIFs for Dichotomous (3PL) and Polytomous (GPCM) models 

 
 

The primary reason that item information is useful in the design of a CCT is that it provides a 
criterion by which to evaluate items and gauge to what extent they will help the CCT make a 
decision.  The exact method by which this evaluation is performed is what distinguishes item 
selection methods.  However, since item selection methods also depend on termination criteria to 
some degree, CCT termination criteria will be discussed first. 
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Termination Criteria 
 As discussed previously, there are three termination criteria commonly used with 
variable-length CCT:  the SPRT, AMT, and BDT.  Because not as much research has investigated 
BDT, it involves a greater amount of arbitrariness, and has not been used with intelligent item 
selection, it was not considered in this study.  The SPRT and AMT have been more often used as 
termination criteria (Parshall, Spray, Kalohn, & Davey, 2006; Thompson, 2007a). 
 

The Sequential Probability Ratio Test 
 The SPRT (Wald, 1947) is a simple test of the likelihood ratio between two competing 
hypotheses such as the mastery or nonmastery of an examinee.  The SPRT was originally 
developed for use in quality control studies.  The purpose was to sequentially sample single items 
from a lot of products (e.g., light bulbs) until the researcher was sufficiently confident that the lot 
would pass or fail quality control standards.  Parameters had to be specified concerning the 
probability of drawing defective or working light bulbs, given that the lot was good or bad.  This 
was structured as a simple hypothesis test: 
 

H0 :  p = p0        (7) 
 
H1 :  p = p1               (8) 

 
where p is the proportion of defective light bulbs in the given lot, p0 is the proportion of defective 
light bulbs below which the quality level is considered acceptable, and conversely p1 is the 
proportion of defective light bulbs above which the quality level is deemed unacceptable.  The 
region from p0 to p1 is known as the “indifference region” (IR).  It is so named because the bounds 
are chosen so that it does not matter which decision is made for true proportions within this region 
– the costs and consequences associated with misclassification error in either direction are 
minimal.   
 The two bounds of the IR are used to formulate a ratio of likelihoods, the likelihood of 
observing d defective light bulbs out of a bad lot with a total sample t, to the likelihood of 
observing d defective light bulbs out of a good lot: 
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 This ratio is then compared to two decision points, A and B.  The complete computations 
of A and B are very complex, so Wald (1947) suggested as approximations 
 

Lower decision point = B = β / (1 − α)    (10) 
 
Upper decision point = A = (1−β)/α    (11) 

 
where α is the nominal probability of accepting H1 when H0 is true, and β is the probability of 
accepting H0 when H1 is true.  If the ratio is less than or equal to B, H0 is accepted with error rates 
approximately β∗ = β/(1−α).  If the likelihood ratio is greater than or equal to A, H1 is accepted 
with error rates approximately α∗ = α/(1−β).  If the likelihood ratio is somewhere between A and 
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B, another light bulb is sampled.  Although Wald claimed these to be valid approximations, the 
original equations (Wald, 1947) might now be of practical use, given the speed of computers. 
 Of course, if p, the true proportion, is somewhere between p0 and p1, it is then difficult to 
statistically show it is below p0 or above p1.  It might not be possible to make a decision either 
way with error rates equal to the given α and β.  Therefore a truncation rule must be imposed to 
keep the procedure from infinitely sampling without ever making a decision.  Normally, this is 
done by just choosing the closer hypothesis after sampling a certain number t of light bulbs (e.g., 
50) which is assumed to be large enough that adding to the sample would add an insignificant 
amount of information, or at least small enough that it would not offset the cost of increasing the 
sample.  For instance, suppose that a decision could usually be made after sampling 20 bulbs, with 
p0 = 0.10 and p1 = 0.20.  If 50 bulbs had been sampled with 9 defective, then p would be 0.18.  At 
this point, a decision would be made to simply choose the 0.20 hypothesis because it is closer than 
0.10, even if the likelihood is not sufficiently high for the SPRT to make a decision.  Another 
option is to truncate the procedure, but not make a classification. 
 The terms p0 and p1 were selected to correspond with the hypothesis testing notation of H0 
and H1.  However, the SPRT has been extended to multiple cutscores, which entails more than 
two probability values being used.  The points can be numbered sequentially starting at 1.  This 
numbering is done on the θ metric, as well as the proportion metric.  Therefore, this notation will 
generally be used in the current study. 

Ferguson (1969) applied this procedure to variable-length classification testing.  Instead 
of taking light bulbs one at a time and making the decision to pass, reject, or continue testing the 
lot, test items could be selected randomly, one at a time, and a dichotomous decision made 
concerning the examinee based on the examinee’s responses.  In this application, correctly 
answering an item is analogous to drawing a defective light bulb from the lot. The hypothesis H1 
is that the examinee is a master and knows the correct answer to p proportion of the items, with p 
equal to p2, the minimal proportion of items that a true master should know.  The hypothesis H0 is 
that the examinee is a nonmaster and that p is equal to p1, the maximum proportion of items that a 
true nonmaster will know.  The likelihood ratio is expressed after n items:  

∏

∏

=

−

=

−

== n

i

X
i

X
i

n

i

X
i

X
i

ii

ii

qp

qp

unonmasterL
umasterLLR

1

1
11

1

1
22

)|(
)|(

.    (12) 

 
where  

p2i is the probability of a master correctly responding to item i, 
q2i is (1 –  p2i), 
Xi is the observed response, and 
u is the observed response vector. 

The value for each item i can be the same, or allowed to vary from item to item.  The situation is 
inverted from the original application because a lot with a low proportion of defectives is “good,” 
but an examinee with a high proportion of correct answers is “good.” 
 Ferguson (1969) was the first to apply the SPRT to a classification testing situation.  
Ferguson’s research investigated the development of a computer-assisted test for a program of 
individually prescribed instruction for young mathematics students.  Modules of instruction on a 
topic were adaptively administered, with a mastery test administered after each module to 
determine the next step in the branching procedure.  Rather than have a conventional test for each 
module, these sequential tests randomly drew items from a bank until the SPRT made a pass-fail 
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decision.  Although this procedure makes the questionable assumption that all the items are 
equivalent or parallel, the module branching procedure and the sequential tests at the end of each 
module together reduced testing time and number of items by about two-thirds, as compared to 
completing conventional tests on all the modules.   

Epstein and Knerr (1977) performed real-data simulations of sequential tests with the 
SPRT on data from military performance testing, finding that non-intelligent sequential testing 
reduced average test length (ATL) by about two thirds.  Real-data (or post hoc) simulation is a 
research methodology that uses responses of real examinees to real items to simulate variable-
length tests, as opposed to monte carlo simulation, which uses completely artificial (model-
generated) data.  Similar to Epstein and Knerr (1977), Kingsbury and Weiss (1983) made the 
comparison of the SPRT to conventional tests in a parameter recovery real-data simulation with 
three conditions of maximum test length: 10, 25, and 50 items.  The random SPRT procedure used 
provided a mean reduction in ATL of 12% for the 10-item case, 48% for 25 items, and 69% for 50 
items.  Phi correlations between conventional test classifications and observed variable-length test 
classifications with the SPRT method were comparable with conventional tests; with a 50-item 
maximum, the correlation was 0.867 with the SPRT and 0.875 with a conventional test.  However, 
the accuracy of the random SPRT method in the 50-item maximum condition decreased to 0.571 
when IRT item parameters varied between items, demonstrating the relative inefficiency of the 
procedure when items are not equivalent but equivalence is assumed.  Frick (1989) also did a real-
data simulation, finding that the sequential tests agreed with the conventional tests 98% of the 
time, while using only one-fifth as many items.  The differences between the results of these three 
studies of randomly sequential tests might possibly be attributed to variance in item characteristics 
and practical constraints, but it is evident that CCTs with random item selection and the SPRT 
criterion are quite efficient. 

 
 

SPRT Parameter Specifications 
These findings suggest that even when items are assumed to be parallel, sequential testing 

with the SPRT is considerably more efficient than conventional tests.  However, in most cases it is 
not appropriate to assume that items are more or less equivalent.  Furthermore, more advanced 
methods of specifying the parameters might give values of p1 and p2 farther apart for each item, 
causing the procedure to converge to a decision at a faster rate.  For instance, suppose the cutscore 
score is 60%, with p1 = .50 and p2 = .70. In addition to allowing these two parameters to vary 
between items, other methods might estimate p1 = .40 and p2 = .80 for a given item simply by 
making use of the data from a pilot or calibration study to get a better estimate, as discussed 
below.  Items such as these will cause the likelihood ratio to diverge more quickly.  Therefore, 
most of the research in the last two decades has used more sophisticated specifications of the p1 
and p2 parameters.   

There are two alternative methods for specifying p0 and p1 for each item, one using the 
IRF from IRT, and the other utilizing classical test theory difficulty parameters for classified 
subgroups of masters and nonmasters in a standardization sample.  Linn, Rock, and Cleary (1972) 
were the first to explore this idea of subgroup classical difficulty parameters with a real-data 
simulation using random item selection.  Linn et al. used half of their sample to calibrate classical 
difficulty parameters for two subgroups on each item.  Instead of p1 and p2 being the same for 
each item, they were now the proportion of the “nonmasters” (lower half of the calibration group) 
and “masters” (top half) who correctly answered each item.  Their results showed that sequential 
testing with the approach would reduce the number of items required for making a mastery 
decision by about fifty percent.  Unfortunately, no information was provided regarding the 
distribution of either the items or the examinees, so no conclusion can be drawn concerning 
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whether the non-intelligent item selection impeded the efficiency.  If the item characteristics did 
not vary to a great extent, the selection procedure would have had little impact.   

Frick (1989; 1990; 1992) and Rudner (2002) also used a simple two-subgroup design of 
Linn et al. (1972) to estimate the SPRT parameters.  However, Frick extended the SPRT to an 
adaptive testing procedure conceptually similar to that of Reckase (1983), but based it on item 
statistics from classical test theory rather than IRT.  The item selection criterion was an item 
utility index that employed the difference between p1 and p2, as estimated by empirically sampling 
true masters and nonmasters for each item.   

Weitzman (1982a, b) followed Linn et al. and estimated the parameters by taking the 
proportion of examinees in each subgroup that correctly answered each item.  However, these 
studies were different in that they used four subgroups rather than two for the calculation of the 
statistic, even though the final classification was only pass/fail.  The likelihood ratio statistic used 
was 
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where Pik is the proportion of examinees in the standardization sample within quantile k who 
correctly responded to item i and K* is the quantile group directly above the cutscore point.  The 
term Xi is the observed item response: 1 if correct, 0 if incorrect.  This equation simply represents 
an expansion of the SPRT to having more than one parameterization subgroup above or below the 
cutscore, while still using a single cutscore.  The numerator is the mean likelihood of the 
subgroups above the cutscore, while the denominator is the mean likelihood of the subgroups 
below the cutscore.  As will be seen later, the SPRT can also be expanded from multiple 
subgroups for parameterization to having more than one cutscore, providing classification into 
multiple ordered categories.   
 The most important aspect of this research was that Weitzman (1982b) employed three 
methods of intelligently sequential item selection.  Two of these selected items based on classical 
discrimination indices, while the third chose the next item by determining which remaining item 
was most unrelated to those already administered.  These will be discussed below in the section on 
item selection strategies.  This was the first attempt at nonrandom item selection with the SPRT.  
Unfortunately, Weitzman did not capitalize on the most important observation of this research--
that the likelihood ratio will diverge to a decision quickly when the items maximize the difference 
between the probabilities used by the likelihood ratio. Later research on item selection (e.g., Frick, 
1992; Lin & Spray, 2000; Eggen, 1999) addressed this. 

This subdivision into quantiles was done in an attempt to eliminate the IR, since 
Weitzman suggested that one reason Linn et al. (1972) had erratic error rates was that the SPRT 
was only meant to classify examinees outside the IR, but the examinees inside the IR were used in 
the calculation of observed error rates.  A real-data simulation (Weitzman, 1982a) was conducted 
and led to the conclusion that the differences between observed and nominal error rates were 
small enough to be due mostly to sampling error.  However, observed error was still greater than 
nominal error.  One possibility for this was that only four quantiles were used, providing little 
more specificity than two groups.  Reckase’s (1983) approach applies a continuum by utilizing the 
IRF, which much more accurately reflects the relationship between ability and performance on 
items than quantiles, though Reckase’s method still oversimplifies the assumed model by 
examining only two points on the θ continuum.   
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Reckase (1983) proposed the currently most sophisticated method of specifying SPRT 
parameters using IRFs.  He suggested that the IR should be conceptualized on the latent trait (θ) 
metric rather than the proportion-correct metric.  A cutscore must be chosen on the θ metric, or 
calculated by converting the proportion-correct cutscore pc to its equivalent cutscore θc using the 
test response function.  The test response function (TRF) models the expected proportion of items 
in a test that an examinee would respond to correctly as a function of θ.  This is analogous to 
averaging the IRF for each item in the test.  To convert pc to θc, suppose θ = 0.1 corresponds to a 
proportion correct of 0.60 with the TRF, as shown in Figure 4.  If the proportion of correct items 
required to pass the test in conventional test is 0.60, then θc = 0.1.   

 
Figure 4: Transforming pc to θc   

 
 

After a cutscore point θc is specified, two values are chosen above (θ2) and below (θ1) the 
cutscore to delineate the indifference region.  These are often equal to θc plus or minus some 
arbitrary constant δ, such as 0.5, though it is not necessary for the region to be symmetrical.  
Some confusion exists in the literature as to the notation of the IR and the meaning of δ, as some 
researchers consider it the symbol for the cutscore.  For example, Lau and Wang (1999) use the 
two symbols θc and δ interchangeably, rather than defining a single symbol, while what should be 
δ is given no symbol at all. 

The size of the IR does matter, however, as the results in Reckase (1983) found that a 
larger IR, as compared to a smaller one, requires fewer items and commits errors closer to the 
nominal rates.  This is due to the fact that a greater disparity between points on the θ metric 
transforms to greater disparity between points on the proportion-correct metric, as observed by 
Weitzman (1982b).  Greater differences between p1 and p2 cause the likelihood ratio to diverge 
quickly.  Therefore, the value of δ should not be chosen completely arbitrarily.  Yet relatively so 
little attention has been paid to the size of the IR that some researchers have actually introduced a 
confound by setting different IR widths for different methods (Jiao, Wang, & Lau, 2004), which 
can severely and adversely affect ATL for those methods with smaller IRs. 

The values for the p1 and p2 parameters are the probability of an examinee with a true θ 
level equal to θ1 or θ2 correctly answering the item, which corresponds to the probability of a 
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minimum true master or a maximum true nonmaster.  These are computed by means of the IRF, as 
is illustrated in Figure 5.   

 
Figure 5: Transforming θ0 and θ1 to p1 and p2 with a dichotomous item and a single cutscore 

 
 

In this example, the cutscore is 1.5 and δ is 0.5, so θ1 = 1.0 and θ2 = 2.0. The probability 
of a correct response is calculated at these two points on θ, with the resulting probabilities in this 
example p1 = 0.75 and p2 = 0.875.  These two probabilities are utilized by the SPRT, and the 
SPRT makes a decision more quickly if there is a greater disparity between the two.  The effect of 
increasing IR width is obvious in the example; inputting two more disparate points on θ will 
always produce two more disparate points on P(X). 

This use of IRT provides more accurate specification of the parameters, allows direct 
application of large IRT-calibrated item banks, and indirectly enables the item selection method to 
utilize IRT.  Reckase (1983) selected the next item by choosing the most informative item at the 
current examinee θ estimate, and demonstrated that this extension of the SPRT worked efficiently 
by means of a monte carlo simulation where the examinees were generated but the item 
parameters came from a real pool. 

In conclusion, three methods are available for the specification of the p1 and p2 
parameters.  The original SPRT testing method defines these as the proportion of items that 
should be answered correctly by a maximally incompetent and minimally competent examinee, 
respectively. This assumes that items are equivalent.  Alternatively, the researcher could take a 
calibration sample of defined masters and nonmasters, and then calculate the classical difficulty 
parameter separately for the two subgroups.  Lastly, the indifference region can be originally 
defined on the θ, or latent trait, metric, and then converted to the proportion metric using the item 
response function.  The last of these methods, possibly because of the predominance of IRT in 
recent measurement research, has superseded the others in use.  Unless explicitly stated otherwise, 
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all the SPRT research reviewed in the present paper makes use of Reckase’s IRT-based method 
for specifying p1 and p2.  
 
 
Robustness of the SPRT 

Using IRT parameters for the SPRT requires relatively large samples (250 examinees or 
more) and can result in parameter estimates that vary due to the parameter estimation procedures 
and competing IRT models that might or might not be appropriate for a given set of data.  Reckase 
(1983) was the first to investigate the effect of possible IRT-related errors on classifications with 
the SPRT.  One of the conditions in that study was to determine simulee responses under the 3PL 
model, but to use the  1PL for the simulated testing procedure.  This was to determine if 
oversimplification of the procedure and assumed model could adversely affect the performance of 
Reckase’s IRT-based adaptive test with the SPRT.  He concluded that using an incorrect IRT 
model did matter, because the number of items required to make a decision was roughly twice as 
large as the case in which the testing procedure and examinee responses were both modeled by 
the.  Moreover, the specification of an incorrect model lowered the cutscore point by 1.5 θ units, 
making the test much easier to pass.  Additionally, even when the same model was used to 
simulate and score the SPRT, the 3PL performed better than the 1PL, suggesting that selection of 
a model should be justified.  Kalohn and Spray (1999) also used the 3PL to simulate responses in 
a monte carlo study but the 1PL to make classifications with the SPRT, finding similar results to 
Reckase (1983).  

Jiao and Lau (2003) investigated the same effect, but expanded the scope.  Instead of only 
assuming the 3PL as the true and the 1PL as the misspecified model, both of these along with the 
2PL were crossed to obtain all comparisons.  The research was divided into three studies, one with 
each of the three models defined as the true model.  The effect of misspecifying the remaining two 
as the correct model was then simulated, along with two levels of item exposure constraints and 
two levels of length constraints.  The item exposure constraint used was referred to as stratum 
depth, where items are selected from a sample of the most informative items rather than the single 
most informative item.  For example, if the stratum depth is five, then the next item is randomly 
selected from the five most informative items with respect to the item selection criteria. 

The only case with observed error rates above nominal levels was when the 3PL was the 
true model, supporting the findings of Kalohn and Spray (1999).  Error rates were below nominal 
levels when the true 3PL model was used, but when this was relaxed to a 2PL, Type I errors 
shrank disproportionately while Type II error rates rose above nominal levels.  When the 1PL was 
imposed, Type II errors increased to over three times the nominal values.  Error rates were 
unaffected by the four study conditions, which only increased ATL.  This research (Reckase, 
1983; Kalohn & Spray, 1999; Jiao & Lau, 2003) supports the use of 3PL and cautions against the 
use of the 1PL unless it is strongly justified empirically. 

One other choice to be made when IRT is used, in addition to the number of parameters, 
is whether to use a unidimensional or multidimensional model.  Employing a unidimensional 
model when a multidimensional model is appropriate oversimplifies the testing procedure and 
could have detrimental effects on its efficiency or accuracy.  Spray, Abdel-fattah, Huang, and Lau 
(1997) explored how to formulate a multidimensional SPRT to examine this issue.  The problem 
with this endeavor was how to specify p0 and p1.  With an IRF on a single dimension, this is not 
difficult (e.g., Reckase, 1983).  But a two-dimensional IRF imposes the question of whether the 
parameters should be specified along one of the axes of the dimensions or one of the infinite 
number of lines that pass through the origin with an angle between the axes.  Using one of these 
lines through the origin for SPRT purposes imposes a new cutscore line, perpendicular to the 
vector and intersecting it at whatever point on the vector is chosen for the cutscore (Spray et al., 
1997).  The procedure is then biased against examinees with vectors quite different than the one 
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chosen to calculate the SPRT parameters, and the cutscore point/line changes with the vector that 
is selected.  

Given these problems, if a unidimensional SPRT is used to approximate two-dimensional 
data and still performs efficiently, the procedure is then quite robust.  To investigate this, Spray et 
al.(1997) generated item responses with a two-dimensional IRT model, then calibrated the data 
and simulated CCTs with a unidimensional IRT model. The mean overall (α and β) 
misclassification rates ranged from 0.042 to 0.056, which is near the nominal rates employed (α = 
β = 0.05).  Introducing a length constraint (minimum = 60, maximum = 120 items) and an 
exposure constraint (a random selection stratum of 10 items) reduced this already small difference 
to error rates of 0.041, 0.039, and 0.039.  Similarly, error rates for two levels of correlation 
between the latent dimensions (0.0 and 0.5) differed by only 0.010, on average.  An even smaller 
difference was found between conditions that attempted to manipulate dimensionality by 
multiplying discrimination parameters on one dimension to give it more weight. 

The authors suggested that these results imply that the issue of dimensionality becomes 
less important when test constraints are imposed, which is often the case in real-world 
applications.  Since observed error rates were consistently below nominal values, it appears that it 
might be safe to use a unidimensional CCT with the SPRT even when the true latent space is two-
dimensional.  However, note that ATL was not evaluated. 

In the same line of research, Lau (1998) applied the same research method with a slightly 
different formulation of the independent variables.  The specification of the cutscore was the 
same, with intended passing rates of 0.4, 0.6, and 0.8.  The test length constraint was shifted from 
a minimum of 60 and a maximum of 120 to a minimum of 15 and a maximum of 50.  Instead of 
having only two levels of correlation between the underlying dimensions, there were five: 0.0, 0.3, 
0.6, 0.9, and 1.0.  As the multiplication of discrimination parameters had little effect in Spray et 
al. (1997), this was replaced with a unidimensional model as an independent variable.  The 
multidimensional data were calibrated and simulated with both the 1PL unidimensional model and 
the 3PL unidimensional model in an effort to determine if the robustness of the unidimensionality 
violation was moderated by the unidimensional model. 

Lau found that, consistent with earlier work, the error rates were indeed robust to 
violation of unidimensionality; decreasing the correlation between the dimensions merely required 
more items to make a decision.  Similarly, both unidimensional models showed similar patterns of 
results and error rates across other conditions, though the 1PL required about twice as many items 
to make decisions.  The inclusion of a test length constraint did not affect error rates, but merely 
increased ATL.   

Of course, even if the correct model is chosen, there is a possibility that the item 
calibration procedure did not accurately estimate item parameters.  This could adversely affect the 
errors for the SPRT through inaccurate specification of p1 and p2.  Spray and Reckase (1987) 
conducted a monte carlo simulation study in which item banks were created with known 
parameters, responses were simulated using a data set of 2,500 simulated examinees, and item 
parameters estimated from the responses. When averaged across all the other conditions, Type I 
errors decreased from 0.036 to 0.033 when parameter estimation error was present, while Type II 
errors only decreased from 0.032 to 0.031. The ATL rose from 17.6 to 18.7, suggesting that item 
parameter estimation error in the testing procedure might simply require a few more items, but not 
cause error rates to diverge from the nominal rates set a priori.   
 CCTs with an SPRT termination criterion can perform efficiently even when the 
parameters being used are not actually estimated.  Huang, Kalohn, Lin, and Spray (2000) 
investigated the situation where a large item pool is available, but only a small subset has been 
calibrated with IRT while the majority of the items have CCT statistics.  CCTs with classical 
parameters transformed to IRT performed just as accurately as CCTs with the known IRT 
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parameters that were generated for the simulation, while maintaining the same ATL, 
demonstrating that the efficiency of SPRT-based CCTs is quite robust.   

In summary, when computerized classification testing with the SPRT is based on IRT 
item parameter estimates, it seems to be rather robust with respect to the assumptions of the 
underlying IRT models and parameters.  Parameter estimation with a large N affects performance 
very little, as does using the 2PL when a 3PL is appropriate.  The parameters need not even be 
directly estimated (Huang, Kalohn, Lin, & Spray, 2000).  Multidimensionality also had little 
effect when examined, but a much more extensive analysis of this topic is necessary.  In fact, CCT 
and multidimensionality is a topic that has received little attention in general, especially while 
comparing methods of addressing other issues such as item exposure or termination criteria.  For 
example, the numerous problems encountered by Spray, Abdel-fattah, Huang, and Lau (1997) in 
constructing a multidimensional SPRT procedure might not be an issue with the AMT approach.  
One misspecification that does have detrimental effects on test efficiency is the specification of 
the 1PL when the 3PL is appropriate. Considering the proportion of classification testing 
applications that use a multiple-choice format that enables guessing, especially achievement 
mastery testing, using 1PL calibrations with the SPRT is not always appropriate.  
 
 
The SPRT for Multiple Cutscores 

Armitage (1950) and Sobel and Wald (1949) independently developed multiple-cutscore 
extensions of the original SPRT.  The developments were purely mathematical, and were not 
applied to the psychological and educational measurement domain until much later. The bulk of 
multiple-cutscore SPRT research has focused on the basic questions of parameter specification 
and item selection.  Each study used only one of the two procedures (Sobel & Wald, 1949; 
Armitage, 1950) with the exception of Jiao, Wang, and Lau (2004), which compared them. 
 The SPRT was first extended to three categories (Sobel & Wald, 1949), in which case 
there are two cutscores.  Let θ1 represent the maximally competent examinee in the lowest 
category, θ2 represent the midpoint between the two cutscore points, and θ3 represent the 
minimally competent examinee in the highest category.  The procedure then simultaneously tests 
two sets of hypotheses: θ1 vs. θ2, and θ2 vs. θ3.  Armitage (1950) suggested another procedure that 
uses three simultaneous SPRTs to decide between three hypotheses, one for each pair (θ1 vs. θ2, θ2 
vs. θ3, θ1 vs. θ3), and defines the evaluative points differently, so that the point above the lower 
cutscore and the point below the upper cutscore need not be equivalently spaced.  The two are 
then termed θ2 and θ3, while the point above the upped cutscore is θ4. The procedure then tests θ1 
vs. θ2, θ3 vs. θ4, and θ1 vs. θ4. 
 Spray (1993) supported the use of the Armitage procedure as a method for multiple 
cutscores because it can be extended to k categories, as needed by the test user.  However, the 
introduction of more cutscores strains the procedure, causing an increase in ATL and 
classification error.  Spray (1993) noted that because more items are usually required when the 
examinee’s ability is near the decision point, adding more decision points will increase the 
average test length across the sample.   
 Spray (1993) was the first study to examine the multiple-cutscore SPRT, simply to 
determine if it performed within nominal boundaries.  Spray demonstrated with a monte carlo 
simulation study that a CCT with two, three, or four cutscores using Reckase’s (1983) SPRT 
parameter specifications accurately recovered examinee classifications.  Error rates stayed low 
across the ability scale, only peaking at the cutscore points.  They still stayed near nominal levels, 
however, and the stress of two, three, or four cutscores was more prominent in terms of ATL than 
in misclassification.  With four cutscores (five examinee classifications) and a maximum test 
length of 10, ATL was nearly 10 for examinees with θ near the cutscores.  This means that a 
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decision was rarely made using the SPRT alone; the maximum number of items would be 
reached, and the nearest classification taken.  Admittedly, a maximum test length of 10 is quite 
restrictive, but this effect followed, to a lesser extent, with maximums of 20 and 50 items. 

After the feasibility of a multiple-cutscore SPRT was established, Eggen (1999) 
investigated the application of alternative item selection strategies.  However, Eggen chose to use 
Sobel and Wald’s (1949) three-category SPRT.  Eggen (1999) was primarily research on item 
selection, but half of the study involved the three-category case.  Because of this focus, no fewer 
than nine selection strategies were investigated, including six formulations of Kullback-Liebler 
information (KLI).  Eggen also found the three-classification SPRT to work efficiently, with little 
difference in efficiency between item selection methods that evaluate information with respect to 
the cutscore. Eggen later compared the three-classification SPRT with three-classification AMT 
(Eggen & Straetmans, 2000).   
 Rudner (2002) also investigated item selection in multiple-cutscore classification.  Rudner 
used the k-category procedure developed by Armitage (1950) and applied to CCT by Spray 
(1993).  The item pool of 139 items was applied from a state educational assessment test for 
assigning students to one of four categories.  A calibration sample of 1,000 examinees was used to 
provide parameters for both IRT and Bayesian decision theory.  Cut scores were fixed on the θ 
scale at -0.23, 0.97, and 1.65.  Next, trial samples of 10,000 drawn from both a N(1,0) and U(-
2.5,2.5) distribution had classification tests simulated under four conditions described in the Item 
Selection Methods section below.  Maximum test length constraints ranged from 5 to 30 items. 
 Three of the item selection conditions specified the SPRT parameters with CTT methods 
and utilized cutscore-based item selection, which is appropriate for the SPRT.  The fourth 
condition specified the SPRT parameters with IRT, but utilized estimate-based item selection, 
which is not appropriate for the SPRT.  The three cutscore-based methods were relative entropy, 
maximum discrimination, and minimum expected cost.  Relative entropy is a variant of KLI.  
Rudner (2002) quantified maximum discrimination as a function of the difference between p1 and 
p2,  
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where zi = 1 is a correct response to item i, and the upper mastery group being considered is mk+1.  
Minimum expected cost is a Bayesian criterion where the test developer is able to define arbitrary 
cost values for misclassifications and the administration of another item.  For instance, if c21 is the 
cost of making a classification decision in Group 2 (d2) when the examinee is actually in mastery 
Group 1 (m1), and c12 is vice versa, then the expected cost is 
 

 )()|()()|( 2211211221 mPmdPcmPmdPcB +=  (15) 

Items are selected to minimize expected cost after administration,  
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where the probability of each response is multiplied by the expected cost B if the examinee were 
to respond with the associated response. 
 This study provided a comparison of methods under relatively harsh conditions.  Not only 
were there three cutscore points to put stress on the efficiency of the method, but the fourth 
category was reserved for only a small percentage of very elite students (θ > 1.65), and the item 
pool contained only 139 items.  Additionally, it is very difficult to make accurate classifications 
with a maximum test length of only 5 items. 



Polytomous CCT for Multiple Cutscores  22  

Rudner (2002) found that KLI and minimum expected cost had more accurate 
classifications into the four categories than maximum discrimination and the IRT formulation.  
However, the difference in proportion of correct classifications between the IRT formulation and 
KLI or minimum expected cost ranged only from .004 to .023.  The greatest differences were for 
the 5-item maximum condition, where the proportion correctly classified was far below nominal 
levels (0.630 to 0.836).  Moreover, these results were incomplete, as no data were given on ATL.  
It is possible that the IRT method used fewer items than the others.  Therefore, the only 
conclusion that can be drawn from this research regarding multiple-cutscore CCT is that it is 
feasible as long as maximum test length is not too short. 

Weissman (2004) also compared the efficiency of item selection methods in a three-
cutscore classification test.  A pool of 367 items calibrated with the 3PL was employed, with the 
peaked bank information function reaching its maximum at θ = 1.0.  The three cutscores defining 
the four categories were -0.3, 1.0, and 2, and were determined by using the mode and inflection 
points of the bank information function.  The SPRT was Armitage’s (1950) combination, with a 
fixed IR width at a single value (0.6), but it was unlike other studies in that it was specifically 
chosen.  The justification for this width was that this was approximately twice the standard error 
of measurement for a test with a classical reliability of 0.91. 

Weissman’s (2004) classification procedure performed efficiently.  The percentage of 
correct decisions (PCC) reached its minimum at about 92%, both within and across the four 
categories, with maximum test length of 40 items.  However, the results of this study were unlike 
past research because of the exclusion of examinees for which the SPRT could not make a 
decision within the short number of items allotted.  Since this was the case, PCC was actually 
higher when the maximum test length was only 10 items, and few decisions were being made at 
all, than with a maximum of 40 items.  All of those who reached the maximum were excluded 
from the results, resulting in an unrealistic portrayal of the efficiency in the results.   

All of the multiple cutscore studies discussed up to this point utilized Sobel and Wald’s 
(1949) or Armitage’s (1950) method.  Jiao, Wang, & Lau (2004) is the only attempt to date to 
compare the two multiple cutscore SPRT procedures with psychometric simulations, though 
Govindarajulu (1987) claimed that the two perform comparably from a statistical perspective.  If 
the IRF is nondecreasing and the θ evaluative points are ordered, the comparison of θ1 and θ4 is 
superfluous.  Unfortunately, the design of the Jiao et al. study was hampered by two confounds, 
disabling a direct comparison.  First, the three secondary independent variables of maximum test 
length, item exposure control, and item selection were not completely crossed, but were instead 
nested.  Instead of crossing the 2 x 2 x 2 design to form 8 cells, there were only four cells.  Test 
length and item exposure were confounded so that a test length constraint was imposed only when 
there was an exposure constraint.  This is partially due to the fact that the imposition of item 
exposure constraints restricted maximum test length to 60 by dividing the 300-item pool into 60 
strata of 5 items, but this was unrelated to the minimum test length constraint.  Secondly, and 
much more importantly, the two methods were fixed with different IR widths, transforming it to a 
study on IR width and ATL, as IR width has such a strong effect on results (Reckase, 1983, 
Eggen, 1999).  Moreover, only two item selection methods were examined: random and FI at the 
midpoint between the two cutscores, neither of which are the most efficient.  Item exposure also 
had only two levels.  These were “no constraints” and selecting items randomly from the items 
with the five highest levels of information.   

The difference in IR width was due to a difference in IR formulation between the two 
methods.  Armitage’s method defines δ = IR/2 = (θc1 – θc2)/2, where θc1 is the lower cutscore and 
θc2 is the upper cutscore.  The total width 2δ of the IR around each respective cutscore is then 
fixed at the distance between the decision points, with the upper limit of the lower IR being equal 
to the lower limit of the upper IR.  Sobel and Wald’s (1949) method, on the other hand, allows δ 
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to be chosen.  Since the IRs for each cutscore cannot overlap with each other, the maximum value 
that can be chosen is the value fixed by Armitage’s method, where the two indifference regions 
share a boundary halfway between the decision points.  The minimum value that can be chosen is 
0, and the experimenter is free to choose any value between these.  Since the cutscores were 
chosen to be -0.5 and 0.5, Armitage’s method defines δ = 0.5, with the shared IR boundary at 0.0.  
Instead of choosing δ = 0.5 for the Sobel and Wald method to build a comparison on equal 
ground, the authors chose δ = 0.1.  When the IR width differs by a factor of 5, this is certain to 
skew the results, as Reckase (1983) found that, in the simple two-category case, lowering δ from 
0.8 to 0.3 increased ATL from 4 to 16.  Given that the addition of another cutscore point adds 
stress onto the decision-making procedure, this difference could be greater in the three-category 
case. 

The results of the study demonstrated this effect.  Out of the four conditions, the two with 
test constraints had nearly equal error rates, as constraints tend to decrease any differences 
between methods.  However, with no constraints, the Sobel and Wald (1949) procedure had half 
the error of the Armitage (1950) procedure because the Sobel and Wald procedure uses large 
numbers of items, which the SPRT needs to do to make a decision when the IR width is specified 
as very small (Reckase, 1983).  The Armitage procedure, with its large IR width, made decisions 
very quickly, and used only a small fraction of the items taken by the Sobel and Wald procedure, 
but was lacking in accuracy.  When the maximum test length constraint was imposed (the 
minimum test length did not impact this study), this kept the Sobel and Wald procedure from 
using the number of items that it required, which inflated the observed error rate to that found 
with the Armitage procedure. 

Item selection methods use by Jiao et al. were also very primitive.  It has been known for 
some time in the relevant literature that random item selection does not perform relatively 
efficiently and some form of intelligent selection is better (e.g., Reckase, 1983; Kingsbury & 
Weiss, 1983).  Random selection should be present as a baseline for comparisons between other 
methods, but this study used only one intelligent method rather than several and therefore had no 
need of a baseline.  Moreover, if FI is to be used, a better method is needed than simply 
maximizing FI at the midpoint o the two cutscores.  This does not even maximize information in a 
relevant region of θ.  FI should be maximized at the current ability estimate or at the nearest 
cutscore point (Eggen, 1999; Eggen & Straetmans, 2000).  Jiao et al. also employed item exposure 
controls with random item selection, which is entirely unnecessary.   

Moreover, the comparison between the Sobel and Wald (1949) method and the Armitage 
(1950) method can be made conceptually.  If the IR width is set to be the same for both methods, 
they differ only in the fact that the Armitage method calculates an additional hypothesis test (θ1 
vs. θ3).  Because the other two hypothesis tests (θ1 vs. θ2, θ2 vs. θ3) are subsumed in the third, the 
likelihood ratio will always be larger for the third.  Therefore, if one of the two hypothesis tests 
around the two cutscores is able to make a decision, the third hypothesis test is guaranteed to 
already have made a decision, and therefore does not come into play.  The test is only terminated 
when the two hypothesis tests around the cutscores have significant likelihood ratios. 
 The primary target of research on the three-classification SPRT has been the effect that 
additional cutscores have on the results, and how this effect can be addressed.  There are two 
factors that might increase the efficiency of a test where accuracy is reduced below nominal levels 
by the addition of more cutscores.  First, more information is needed across the θ distribution.  
Since the SPRT requires information only at the decision point (Spray & Reckase, 1994), a test 
with a single cutscore requires information only at that point.  A test with three cutscores, with the 
target of four categories, requires sufficient information to make decisions at all three cutscores, 
tripling the requirements of the item bank.  Another factor that would help is more information in 
each item, across a greater range.  If each item provides a moderate amount of information at 
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more than one cutscore, the required increase in the size of the item bank will not be as large.  
Polytomous IRT models address both of these issues. 
 
 

The SPRT with Polytomous IRT 
Another extension of the SPRT is to CCT with polytomously scored items.  Lau and 

Wang (1998; 1999; 2000) suggested that instead of calculating the p1 and p2 parameters with a 
dichotomous IRT model, this could be done with a polytomous model.  In a series of monte carlo 
simulation studies, they investigated the performance of a CCT that employed the GPCM under 
varying practical conditions, such as item exposure and test length constraints.  It was concluded 
that a polytomous SPRT performed efficiently and that CCTs could be conducted using mixed 
item types. 

CCT frequently involves multiple-choice achievement items, which can sometimes be 
modeled more accurately by polytomous IRT models.  Dichotomous models score each item as 
merely correct or incorrect, with the incorrect options assumed to have equal levels of 
incorrectness.  Yet many items are constructed so that the distractor options reflect partial 
completion of the task or full completion with small errors.  In this case, a partial-credit ordering 
of the responses might fit the data better, theoretically and empirically.  Two models that do this 
are the partial credit model (Masters, 1982) and its generalization, the GPCM (Muraki, 1992). 

The important advantage of polytomous IRT, as discussed previously, is information.  FI 
is a function of the slope of the IRF, and with dichotomous IRT that slope is maximized at the 
point where the item most efficiently discriminates between the possible responses, of which there 
are only two (correct/keyed and incorrect/non-keyed).  With polytomous IRT, there are multiple 
responses, or categories.  If the item has four possible responses, then there are three boundaries 
between them, with each of those boundaries contributing information for the item.  Each item 
will provide more information when scored polytomously (Dodd, De Ayala, & Koch, 1995) as 
well as across a greater range.  More information generally means greater testing efficiency. 

The effect of the GPCM is illustrated in Figure 6.  In this example, the same cutscore and 
IR are used as in Figure 5, and the item discrimination parameter is equal for both items.  Note the 
much greater disparity in the p1 = 0.35 and p2 = 0.65 values, all else being equal.  The SPRT will 
make a decision much more quickly with items such as this.   

Moreover, this leads to a more specific advantage.  A common practice in CCT is to 
select items with the greatest information at the cutscore point (Spray & Reckase, 1994).  With 
dichotomously scored items, all other things being equal, items would need to have difficulty 
locations near the cutscore point.  This requires the construction of an item bank with a peaked 
information function.  A large number of items on the same topic with similar difficulty are 
needed, which might not be feasible.  When scored polytomously, items with locations not at the 
cutscore point might still provide a relatively large amount of information at that point, as 
compared to the same item scored dichotomously.  This allows the item bank to have a greater 
variance of item difficulty or location parameters.  This fact will not only ease the construction of 
new banks, since less peakedness is required, but also enable the incorporation of existing item 
banks that are not peaked.  Moreover, this might help deal with item exposure issues. 
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Figure 6: Transforming θ0 and θ1 to p0 and p1 with a polytomous item and a single cutscore 

 
 

The adaptation of the SPRT to items scored with ordered polytomous IRT models (Lau & 
Wang, 1998; 1999; 2000) is quite simple.  The same procedure of specifying p1 and p2 from θ1 
and θ2 is utilized, but this is calculated using the category response functions of the polytomous 
item (Figure 6) rather than the single IRF of a dichotomously scored item (Figure 5).  The 
category response function represents the probability of an examinee endorsing a given response. 

Lau and Wang (1998) used 246 dichotomous items and 266 polytomous items from the 
1996 National Assessment of Educational Progress.  The polytomous items, with ordered partial 
credit categories, were calibrated with the GPCM (Muraki, 1992), while no information was given 
regarding the dichotomous calibration; nor were aspects of the item bank, examinee distribution, 
or SPRT specifications reported.  But across conditions of test length and item exposure 
constraints, pools with polytomous items had mean observed error of 0.028 and ATL of 15.127.  
On the other hand, dichotomous-only pools had an observed error of 0.038 and an ATL of 22.509.  
Since virtually no information was provided regarding the design, conclusions are limited, but it 
was found that polytomous CCTs required fewer items. 

Lau and Wang (1999) used the same data, but provided more detail.  The mean item 
difficulty was 1.043, 10,000 examinees were generated from a N(0,1) distribution, and IR width 
was varied, with values of 0.5 and 1.0.  Cutscore location was varied also, at -0.8 and 0.8, both 
below the mean item difficulty.  Only the polytomous items from the previous study were used, 
and the main comparison was between item selection by FI and KLI, where the KLI boundaries 
were the same as the IR boundaries.  Very little difference was found, supporting other research 
on the topic (Spray, 1993) and the proposition that the item with the highest FI at the cutscore will 
also be the item with the highest KLI around the cutscore.  Lau and Wang (2000) investigated the 
procedure once more, incorporating mean item response time into an index for item selection, 
with little effect. The combined item pool from their first (1998) study was again utilized, and the 
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comparison was between FI and KLI.  As before, no difference was found for the latter 
comparison, so that only FI results were used for conclusion and discussion. 

 
 

Summary 
The SPRT performs even more efficiently when the items are polytomously scored.  

However, the use of polytomous IRT models might be even more valuable for multiple cutscore 
CCT.  This procedure can easily be adapted to multiple cutscores, a methodology which has not 
yet been investigated.  The p parameters can be evaluated at each of the θ values that represent the 
indifferences regions around the cutscores.  This is done simultaneously for each set of hypotheses 
(θ1 vs. θ2, θ2 vs. θ3, θ1 vs. θ3).  Once the p values have been calculated, they can be entered into the 
likelihood ratios for the SPRT.  If items are being selected to maximize information at a single 
cutscore, a given item might provide information at that point or at a different cutscore, depending 
on the response of the examinee. 

This characteristic of polytomous IRT should greatly increase the efficiency of multiple-
cutscore SPRT.  Suppose a test has three categories, with two cutscores.  Let examinee A truly be 
in the lowest group, but suppose that the examinee correctly guesses the answer to the first few 
questions.  The likelihood ratio of the upper cutscore would then be further from a decision, and a 
cutscore-based item selection would administer items with the greatest information at the upper 
cutscore (Eggen, 1999).  If these are dichotomously scored, they will provide a large amount of 
information only at that cutscore.  Polytomously scored items, on the other hand, might have a 
boundary between categories located near the lower cutscore, and therefore provide information at 
that location.  Since the two sets of hypotheses are being simultaneously tested, the procedure will 
perform less efficiently across a population when items are selected only to maximize information 
at a single cutscore rather than both. 

 

Adaptive Mastery Testing 
The other primary termination criterion utilized in CCT is known as adaptive mastery 

testing (AMT), though it is easily extended beyond the two-classification mastery testing case to 
multiple cutscores.  Weiss and Kingsbury (1984) suggested using confidence intervals on the θ 
metric to classify examinees into multiple categories.  At each stage in the testing process, usually 
after each item, the examinee’s θ level is estimated using the current set of responses.  Then a 1 - 
α confidence interval is constructed around that estimate using either the CSEM from maximum 
likelihood estimation or the square root of the Bayesian posterior variance, if Bayesian estimation 
is used.  This confidence interval can be expressed as 
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where zα is the normal deviate for a 1-α confidence interval, such as 1.96 for a 95% interval.  In 
the two-category case for which it was first developed, if the confidence interval falls completely 
above the cutscore on the θ metric, the examinee can be classified as above the cutscore.  If the 
confidence interval falls completely below the cutscore, the examinee is classified as below the 
cutscore.  If the confidence interval contains the cutscore, another item is administered.   

In the multiple-cutscore case, if this interval falls into a category on the θ metric without 
overlapping any of the cutscores, a classification can be made.  If a cutscore is included in the 
interval, another item is administered.  The introduction of polytomous IRT will not directly affect 
the calculation of Equation 17.  But since the greater information of the polytomous model might 
lead to increased reductions in the CSEM, decisions might possibly be made with fewer items. 
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AMT has performed well as a termination criterion in comparison to other methods for 
dichotomous classification based on test data.  The earliest research (Kingsbury & Weiss, 1983) 
that compared it directly to another method (the SPRT) did not support the sequential SPRT 
procedure used, but no strong conclusion could be drawn about the SPRT or AMT itself for three 
reasons.  First, as Spray and Reckase (1996) pointed out, one of the two outcomes by which the 
methods were compared, either misclassification rates or average test length, was not held 
constant to provide a relatively even comparison on the other.  Secondly, the research was 
designed to compare adaptive and randomly sequential item selection, not to perform an even 
comparison of the termination criteria of IRT-based AMT and the SPRT.  Thirdly, the two 
methods compared are now outdated: the SPRT was used with random selection of parallel items, 
and the IRT method used confidence intervals based on the square root of the Bayesian posterior 
variance (Owen, 1975).  Since then, several intelligent and much more efficient SPRT procedures 
have been developed (Reckase, 1983; Frick, 1992; Spray & Reckase, 1994; Rudner, 2002), both 
adaptive and sequential, and confidence intervals using standard errors from maximum likelihood 
estimation have become more favored than the Bayesian posterior variance method (Eggen & 
Straetmans, 2000) because Bayesian estimation artificially shrinks the posterior variance as 
compared to the CSEM.   

AMT was not investigated further until Frick (1989; 1990; 1992) compared AMT to 
several CTT-based SPRT procedures with small sample sizes.  In several real-data simulations, 
Frick compared AMT to the SPRT with (1) with random item selection and the original method of 
SPRT parameter specification; (2) random item selection but subgroup parameter specification; 
and (3) an adaptive item selection algorithm employing classical difficulty statistics (described 
below), and subgroup parameter specification. 

The SPRT with adaptive item selection was found to have classification accuracy 
comparable to AMT and the random SPRT, while requiring fewer items.  In the one study with 25 
examinees, the mean number of items required for the AMT procedure was 14.83, compared to 
9.68 for the original SPRT, 10.28 for the random SPRT, and 5.55 for the adaptive SPRT.  With 50 
examinees in the standardization sample, these were 13.57, 10.23, 8.94, and 6.36 items, 
respectively.  The percent correctly classified ranged from 92.5 to 98.1, which is close to the 
expected percentage of 95, with the exception of the original SPRT with 25 examinees (88.7).  
Percentages of accurate classifications were evaluated by a goodness-of-fit χ2 test; none of these 
differed significantly from expected values.  The same pattern of results was found in a second 
study, but with even greater differences in ATL.  This suggests that CTT-based adaptive testing 
with the SPRT is a superior method, as compared to AMT, for variable-length testing when 
standardization samples are very small, which makes IRT parameter estimation difficult.   

Nevertheless, there are several deficiencies with this study.  First of all, an even 
comparison was not made.  The adaptive SPRT differs from AMT in two ways: the decision 
procedure and the test theory used for parameter estimation.  Next, sample size contributed to the 
results of the study.  IRT parameter estimation requires large numbers of examinees and items. In 
Frick’s (1992) first study, the pool contained 97 real items, and two sample sizes of 25 and 50 
were used for parameter estimation.  In the second study, there were 85 items, and sample sizes 
were varied at 25, 50, 75, and 100 examinees.  While the comparison of methods with small 
sample sizes was one of Frick’s goals, sample sizes this small make it extremely difficult to 
estimate IRT parameters, so the practical significance of the study is limited.  Additionally, Frick 
(1992) used Owen’s (1975) method of constructing confidence intervals using Bayesian posterior 
variance, just as Spray and Reckase (1996) did, rather than more modern maximum likelihood 
estimation.   

Spray and Reckase (1996) provided the first matched comparison of the termination 
criteria.  They computed expected classification error rates to match the two procedures before 
conducting simulations, in an attempt to provide an even comparison on ATL.  IRT was used as 
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the basis for both termination criteria, and IRT-based intelligent item selection was also used for 
both criteria.  However, the next item drawn was always the most informative at the decision 
point (Spray and Reckase, 1994), which might not be optimal for AMT.  When expected error 
rates were held constant, the SPRT procedure required fewer items than the AMT, with the 
difference becoming greater as the error rates became more constrained.  However, they did not 
use maximum likelihood estimation for the AMT confidence intervals, and with the item selection 
method held constant, the finding that the SPRT performed noticeably better is still not 
conclusive. 

Eggen and Straetmans (2000) compared the three-classification SPRT with three-
classification AMT (Kingsbury and Weiss, 1983), using the same simulation methodology as 
Eggen (1999), again with the SPRT developed by Sobel and Wald (1949).  The main purpose of 
the research was to compare statistical estimation and statistical testing for CCT under realistic 
rather than ideal conditions.  Both content and exposure controls were introduced as variables, but 
neither had much of an effect.  For the comparison between AMT and SPRT, Eggen and 
Straetmans approximately matched methods on observed error rates, and compared on ATL 
across four exposure and content conditions.  AMT with 90% confidence intervals produced 
between 87.7% and 89.9% correct classification , while the SPRT with α = 7.5% produced 
between 87.4% and 91.1% correct classification .  However, when δ was changed from 0.1 to 
0.1333 in the SPRT, ATL decreased while errors were unaffected, so the authors chose to only 
compare the δ = .1333 case to AMT.  This decrease was enough to persuade the authors to 
conclude that statistical testing performed more efficiently, by requiring fewer items.  However, 
when δ = 0.1, the SPRT performed equally with AMT. 

Eggen and Straetmans (2000) compared AMT and the SPRT as methods for only three-
category classification, yet this is the best comparison between the two procedures for several 
reasons.  First, the square root of the Bayesian posterior variance (Owen, 1975) was replaced by 
the standard error of the weighted maximum likelihood ability estimate (Warm, 1989).  Second, 
the item selection procedure was crossed.  Items were selected to maximize FI at the nearest 
cutscore, following Spray and Reckase (1994), but this was defined differently since the SPRT 
does not calculate an ability estimate.  The original AMT algorithm of FI at the current estimate 
was also included.  Third, it was conducted under realistic conditions, to make sure that the 
comparison was not moderated by common constraints such as item exposure and content control.  
Moreover, the item pool was not generated, but instead used 250 real items calibrated on a sample 
of 1,198 real examinees from the target population of adult education students, as discussed 
previously.  The only distinct drawback was that that the maximum test length was fixed at a short 
25 rather than varied.  This might be important regarding the specific practical application of 
interest to the researchers, but it clouds the results. 

Unfortunately, the efforts taken to make a good comparison were superseded by the 
problems associated with multiple-cutscore classification.  As noted before, changing the nominal 
error rates with the Sobel and Wald (1949) procedure did not change observed error rates.  The 
same was true, to a lesser extent, with AMT.  This hampered the comparison between the two 
methods.  It is logical to match methods on observed error or expected error (Spray & Reckase, 
1996) and then compare on ATL.  But seven out of the eight cases investigated had observed error 
between 86% and 91%, regardless of the a priori error rates.  Only the 70% confidence interval 
with FI at the current estimate had different error rates, and this was still not close to nominal 
levels, ranging from 83.5 to 85.7.  Therefore, all eight of the cases had roughly the same observed 
error, with varying levels of ATL, which might be due to the ATL being fixed at an unrealistically 
small value.  The AMT procedure performed better with FI at the current ability estimate, which 
agrees with Thompson and Weiss (2006), but contradicts the findings of Spray and Reckase 
(1994), who found that cutscore-based and estimate-based selection performed comparably.  The 
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authors suggested that this might be due to the item bank structure, the location of the decision 
points, or to the specifications of the procedures. 

 
 

Conclusions   
Comparisons of termination criteria made to this date are incomplete.  With the exception 

of Eggen and Straetmans (2000), all comparisons were confounded with item selection method, 
and used the square root of the Bayesian posterior variance rather than the maximum likelihood 
standard error for AMT.  Additionally, no comparisons have been made with polytomous IRT, 
and only one comparison (Eggen & Straetmans, 2000) involved multiple cutscores.   
 
 
Item Selection Methods 
 CCTs, because they are iterative or sequential processes, involve multiple steps, where 
each step requires the administration of another item to the examinee.  The methods of choosing 
the next item differ in the ways that they evaluate item information and choose the “best” item 
that should be administered next. 
  CCT was originally developed with random item selection (Ferguson, 1969); however, 
Kingsbury and Weiss (1983) demonstrated the relative inefficiency of randomly sequential testing 
as compared to adaptive testing with intelligent item selection.  Since then, research has focused 
on the application of intelligent IRT-based item selection methods to CCT.  Intelligent IRT item 
selection methods fall into two families: estimate-based (EB) and cutscore-based (CB).  With EB 
selection, the criterion to select the next item involves the current θ estimate of the examinee, as 
calculated with the examinee’s response vector up to that point in the test, regardless of the 
location of the cutscore(s).  Conversely, CB item selection evaluates items with reference to the 
cutscore, and does not involve the θ estimate.  Usually, a CCT with CB item selection does not 
even estimate θ. 
 

Cutscore-Based Selection 
Three approaches have been suggested for CB item selection:  information at the cutscore 

point (Spray & Reckase, 1994), information in a region around the cutscore point (Lin & Spray, 
2000), and the maximization of the difference p2 – p1 in the SPRT termination criterion (Frick, 
1992, Lin & Spray, 2000).  The latter method was suggested first, as Weitzman (1982) made the 
important observation that the SPRT will classify examinees with the fewest items when these 
items maximize the difference between the probabilities p1 and p2 that are sequentially entered 
into the ratio, as described below.  However, this was not pursued further until a decade later, 
when Frick (1992) defined item discrimination as the difference p2 – p1 as calculated with 
classical test theory difficulty statistics in the master and nonmaster groups of a calibration 
sample.  Lin and Spray (2000) adapted this approach to IRT, selecting items by maximizing the 
log of the ratio, which the authors termed a log-odds ratio, between the two parameters when 
calculated with an IRF, 
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Lin and Spray (2000) also investigated KLI, which evaluates information across a region 
rather than at a single point.  Formally, KLI is an index of the discrepancy between two 
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probability distributions.  Within the CCT context, these are conditional distributions at two points 
on θ.  KLI can be described as the expectation over observed responses Xi, from the possible 
responses x, of the log-likelihood ratio for each item, or 
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with θ1 and θ2 representing two points on θ chosen by the test user and  
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denoting the likelihood function for the ith item.  The double vertical bars are standard in this 
context to emphasize that θ0 and θ1 need to be separated, and not viewed as the conditional 
relationship indicated by a single vertical bar. These are the two endpoints that define the region 
on which that information is calculated, which can be the same as the indifference region, but 
does not need to be.  With a dichotomous IRT model (Eggen, 1999; Lin & Spray, 2000), this 
simplifies to 
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where pi(θ1) is the probability of a correct response at θ1 and qi(θ1) is the complementary 
probability of an incorrect response.  The θ1 and θ2 used to calculate KLI are often the same as 
with the SPRT, but need not be.  As with the SPRT, they are usually determined by adding and 
subtracting a small constant ε from the cutscore.  This is important to note because the literature 
uses the same notation in the definition of both, defining them both as plus or minus a constant δ 
around the cutscore point.  The possibility of confusion introduced by this is the reason for the use 
of ε within the context of KLI here.   

Lin and Spray (2000) compared all three CB methods that employ IRT--maximum FI, 
maximum KLI, and log-odds ratio--and found them to be nearly equivalent.  This conclusion is 
not surprising, as all three methods assess the same concept – information at the cutscore – and 
the item that is the highest in terms of one item selection criterion will also be the highest in terms 
of the others.  As first pointed out by Weitzman (1982), the SPRT will make a decision faster 
when the two p values are most different.  This situation occurs with an IRF that has a higher 
discrimination (slope) parameter.  An item that has the most information at the cutscore point (FI) 
will also have the most information in a small region around that point (KLI), both of which mean 
that the p values will have the greatest difference (log-odds ratio). 

A serious drawback to the selection of items at the decision point is that those items 
which are most informative at that point might become overexposed quite quickly.  The same 
items are given to every examinee, possibly causing the items to become compromised in some 
testing applications.  Their original high level of information might then be eroded. Some form of 
item exposure control, such as stratum levels (Jiao & Lau, 2003; Kalohn & Spray, 1999) must 
then be employed.  One potentially important question, then, is how adaptive item selection 
compares to intelligently sequential item selection at the cutscore point under item exposure 
constraints while comparing the SPRT and AMT.  Exposure constraints with adaptive selection 
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are not as important because only examinees at the same ability level will receive the same set of 
items.  This comparison is yet to be made. 

 

Estimate-Based Selection 
While intelligently selecting the next item to be administered based solely on item 

characteristics might be more efficient than random item selection, it does not make use of all 
available information.  Since the broader topic of paramount interest is the interaction between the 
examinee and an individual item or some set of items – a very general description of the testing 
process – it is logical to introduce examinee characteristics into the item selection process.  This 
can refer to characteristics of the examinee distribution, as is sometimes used with Bayesian 
methods (van der Linden, 1990), but to make the test truly adaptive, this must include information 
concerning the specific examinee being tested.  Most notably, this includes the responses to past 
items in the test – the response vector – and the subsequent scoring of this response vector to 
obtain the current θ estimate. 

Adaptive item selection is defined as the selection of the next item to maximize 
information at the current θ estimate.  This methodology was originally developed for point 
estimation of ability testing, rather than classification testing, because information varies inversely 
with the CSEM (Embretson & Reise, 2000), and the provision of the most information at the θ 
estimation implied the least amount of error present in the estimation of θ at that point in the test.  
However, this approach is also useful for CCT.  The reason for this is that AMT’s confidence 
intervals make use of the CSEM.  A greater amount of information at the θ estimate implies a 
smaller CSEM, which implies a smaller confidence interval, which in turn implies a classification 
decision that is made with greater accuracy and fewer items.  For this reason, adaptive item 
selection was originally suggested for the AMT termination criterion (Weiss & Kingsbury, 1979), 
and has been used since (Kingsbury & Weiss, 1983; Thompson & Weiss, 2006). 

The first research on FI as an item selection criterion was Weiss and Kingsbury (1979) for 
AMT and Reckase (1983) for the SPRT termination criterion.  Both used adaptive EB item 
selection, where the next item to be selected was the item from the remaining item bank that had 
the greatest FI at the most recent θ estimate for the examinee. This was an important development 
because, while randomly sequential testing with the SPRT might perform much more efficiently 
than fixed-form conventional tests, it does not compare well with other methods of CCT that 
make use of intelligent item selection.  This is exactly what Kingsbury and Weiss (1983) 
demonstrated.  Reckase’s (1983) research demonstrated that using the SPRT with intelligent (i.e, 
EB) item selection is a viable method, enabling more direct comparisons with other methods in 
the future (e.g., Spray & Reckase, 1996), as well as exploration among various methods of 
intelligent item selection (e.g., Lin & Spray, 2000). 

Frick (1989; 1990; 1992) developed CCT methods using the SPRT with the classical 
psychometric model.  While not exactly the same, selecting the item with the most information at 
the current estimate is approximately equivalent to selecting the item which is closest in difficulty 
to the examinee’s current θ estimate and has the highest discrimination, since FI is a function of 
these two item characteristics.  Frick (1992) therefore created an item utility index that attempted 
to match CTT item difficulty to examinee performance, while simultaneously maximizing 
discrimination.  The first step was computing an incompatibility index, defined as the absolute 
difference between the proportion of all standardization sample examinees who correctly 
answered an item and the proportion of items that a given examinee had correctly answered after a 
specified number of items.  An item’s discrimination was simply defined as the difference 
between the proportion of masters who got an item correct (p2) and the proportion of nonmasters 
who responded correctly (p1).  This is helpful to the SPRT because it maximizes the probability 



Polytomous CCT for Multiple Cutscores  32  

ratio (p2)/(p1).  These two indices were then used to calculate the utility index for each item, which 
was defined as item discrimination divided by item incompatibility, plus a small arbitrary constant 
to prevent division by zero.  Items were selected to maximize the utility index. The matching of 
item difficulty to the current estimate of examinee ability on the proportion-correct metric at each 
stage in the test administration makes this method adaptive under the earlier definitions. 

The most important thing missing from this research is a comparison between Frick’s 
adaptive SPRT and Reckase’s method.  These two procedures both have the SPRT as the 
termination criterion and adaptive item selection.  A comparison would demonstrate how well 
basing the procedure on CTT approximates the greater complexity and accuracy introduced by 
IRT.  It would be of further interest to investigate how this relationship is moderated by sample 
size, since the larger the sample used for item calibration, the more IRT is appropriate. 

 

Research Comparing EB and CB Selection 
Spray and Reckase (1994) was the first study to compare EB and CB item selection 

methods. Separate monte carlo simulations were conducted with both AMT and SPRT termination 
criteria, with the SPRT comparing two item selection methods and Bayesian AMT comparing 
three.  With the SPRT, the two item selection methods were maximum FI at the cutscore and at 
the true θ, as generated for each examinee. Bayesian AMT compared maximum FI at the cutscore, 
current θ estimate, and true θ.  Each simulation had 1,000 replications, with α and β error rates set 
at 0.05, and the simulation was repeated with three decision points: -0.5, 0.0, and 1.0.  The IR for 
the SPRT was set to be a symmetric plus or minus 0.5 θ units around the decision point, rather 
than varied.  Methods were evaluated by the ATL function conditional on θ. 

Spray and Reckase (1994) concluded that administering the next most informative item at 
the cutscore point resulted in smaller or equal ATL than using the current θ estimate.  This was 
true for both the SPRT procedure and AMT with Owen’s (1975) sequential Bayesian procedure.  
With AMT, the conditional ATL functions were similar, with the current θ estimate method 
requiring only slightly more items.  With the SPRT, the two methods performed similarly near the 
cutscore point, but when not near the decision point the conditional ATL function of the true θ 
method became not only higher but also very erratic.  It is likely that there was not enough 
information in the bank at high ranges of θ to efficiently employ adaptive item selection, which 
also explains the inability of adaptive item selection to outperform cutscore point selection with 
AMT.  Moreover, although this comparison depended heavily on the information available in the 
item bank, this was not manipulated or even reported. 

It is also important to consider conditional error rates as a dependent variable, but this was 
not investigated.  Considering that error rates will covary strongly with θ level, this might be 
important in the comparison of item selection strategies.  Another issue that might have affected 
the results is the use of Bayesian priors in the construction of confidence intervals, using Owen’s 
(1975) method.  Kingsbury and Weiss (1983) originally suggested this method for AMT, but 
better methods for estimating conditional standard error of measurement (CSEM) from maximum 
likelihood estimation have been developed since.  The CSEM is better in this application than the 
posterior Bayesian variance because Owen’s method requires the specification of a Bayesian prior 
distribution.  The choice of this distribution can artificially raise or lower the variance, requiring 
the AMT procedure to then take longer or shorter than it would with CSEM confidence intervals, 
just as the choice of priors can also introduce bias into the item parameter estimation process 
(Gifford & Hambleton, 1990). The Bayesian prior N(0,1) in Spray and Reckase (1994) resulted in 
single-item tests for many simulees.  When the decision point was 1.0, a single incorrect response 
was often enough to produce a nonmastery classification, which the authors suggested might 
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cause high misclassification rates.  However, no information regarding this was presented, so the 
relationship in this case is not known. 

The empirical results of Spray and Reckase (1994) do not make logical sense, likely due 
to deficiencies in the item bank.  The SPRT should perform most efficiently when items are 
selected by maximum information at the decision point, as was found.  Doing this provides items 
with the greatest slope in that area of θ, which transfers into values of p1 and p2 that are most 
distant from each other.  This is the same logic that supports the use of KLI and a log-odds ratio 
(Lin & Spray, 2000).  However, the items that should make the AMT procedure more efficient are 
items that minimize the Bayesian posterior variance or conditional standard error of measurement.  
Since these two quantities are inversely related to information at the θ estimate, the items that do 
this most efficiently should be the items that provide the most information at the current estimate.  
This would cause the confidence interval around the current estimate to shrink more than an item 
providing information in a different range of θ, which in turn enables a decision to be made more 
quickly.  Thompson and Weiss (2006) found item selection at the current estimate to produce 
lower ATL than CB selection in 80 out of 80 conditions using real-data simulation with AMT.  
These results were obtained from data collapsed across the θ dimension, though, rather than being 
presented as a function of θ as was done in Spray and Reckase (1994). 

Eggen and Straetmans (2000) also investigated item selection while comparing AMT and 
the SPRT, but only partially crossed methods.  The AMT procedure used maximum FI at both the 
current ability estimate and the nearest cut point.  No ability estimates are needed when testing 
with the SPRT as the termination criterion, so the only item selection procedure used with the 
SPRT was FI at the cut point.  Random item selection was also added, merely as a baseline.  It 
was found that CB selection required 3-4 more items than EB selection, but also had slightly 
higher PCC.  Since no matching was performed, it is difficult to draw a conclusion. 

Eggen (1999) repeated the comparison of Spray and Reckase (1994) with FI while also 
introducing the comparison of KLI to the two Fisher methods. Separate simulations were 
completed for the two and three classification case, with three different information interval sizes 
(ε = .05, .10, and.15).  He also varied the a priori error SPRT error rates (α = β = .05, .075, and 
.10) and the size of the indifference region (δ = .10, .11, .12, …, .23).  Although other research has 
also varied the cutscore point and maximum test length, these were fixed at θc = 0.1 and a 
maximum test length of 40. 

Several important results were found concerning the item selection methods.  First, the 
size of the KLI region mattered little.  Second, although FI at the cutscore produced shorter tests 
on average than FI at the current θ estimate with comparable accuracy, the difference was very 
small.  Lastly, the same conclusion was drawn concerning the outperformance of the FI methods 
by KLI.  The author suggested that the difference between this research and Spray and Reckase’s 
(1994) might be due to the use of a different IRT model (2PLM) than Spray and Reckase, who 
used the 3PLM.  Thus, while there might be a preference for KLI methods it was not large.  The 
greatest effect of the study on PCC and ATL was of the IR, which provides more evidence that 
suggests that AMT and SPRT should be matched on PCC by varying the IR before making any 
comparison.   

Lin and Spray (2000) conducted a similar study, with the addition of another item 
selection method.  This log-odds ratio (Equation 18) was compared to the item selection strategies 
of KLI and FI at the cutscore point under varying conditions, each with 100,000 simulated 
examinees.  There were three cutscore points (-0.32, 0.81, 1.79), eleven sizes of the IR (0.20, 0.21, 
0.22, …, 0.30), and two item pools (180, 360).  Additionally, item exposure rates were varied:  the 
larger pool of 360 items had stratum depths of s = 1 (no constraint), 5, and 10 items, while the 
smaller pool had stratum depths of s = 1 (no constraint) and 5 items.  Contrary to Eggen (1999), 
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Lin and Spray (2000) did not impose any constraint on test length because they thought that this 
would decrease the visibility of any effect.  

The authors found only negligible differences between the three item selection methods.  
For instance, when using the 360-item pool and a stratum depth of s = 1 (no exposure constraint), 
ATL never differed by more than one item among the three, and proportion of correct decisions 
never differed by more than .002.  This was across 33 conditions created by crossing three 
cutscore points with 11 values of the IR.  Other conditions defined by pool size and stratum depth 
netted similar results, and the authors concluded that there was no difference of importance among 
the three, and that the common practice of selecting by FI at the cutscore point is justified with the 
SPRT. 

Lau and Wang (1999; 2000) compared FI at the cutscore point to KLI around the 
cutscore, with endpoints fixed at the endpoints of the IR.  Real item parameters were used from 
both polytomous and dichotomous items in a monte carlo simulation.  Like Lin and Spray (2000) 
and Eggen (1999), it was found that FI and KLI at the cutscore performed nearly identically in 
terms of PCC and ATL.  This occurred across several secondary variables such as test length 
constraints, cutscore location, item exposure, and item pool size.   

As previously discussed, the lack of differences is not surprising.  The three item selection 
methods are highly related conceptually.  An item with a large amount of FI at the cutscore point 
will be an item with high discrimination, or a steep slope.  An item with a steep slope will 
translate to values of p1 and p2 that differ much more than an item with little or no discrimination.  
This difference between p1 and p2 is exactly what the log-odds ratio and KLI are assessing directly.  
So the item with the greatest FI at the decision point is likely to be the item with the greatest 
values of KLI and the log-odds ratio.  The log-odds ratio and KLI are addressing the same 
concept, but the log-odds ratio is in this case fixed at the indifference region boundaries, while the 
two points in KLI may vary.   

Rudner (2002) also addressed the use of a form of KLI in mastery testing, but it was done 
from a BDT perspective while using the SPRT as the termination criterion.  Rudner’s justification 
for BDT with a classical model was that IRT often requires larger samples and more restrictive 
assumptions while introducing greater complexity.  Yet IRT’s major assumptions are of 
unidimensionality and local independence, which are equivalent; BDT, as well as the SPRT 
termination criterion, also assumes local independence, so one approach is not more restrictive 
than the other is in this respect.  

Rudner (2002) used classical difficulty parameters from subgroups to specify the SPRT 
parameters while investigating three item selection criteria from BDT: minimum expected cost, 
information gain, and maximum classical discrimination.  The first was constructed to maximize 
the BDT termination criterion in an adaptive fashion, while the second is an adaptive variant of 
KLI, and the third was included as a BDT approximation to maximum FI discrimination at the 
cutscore point, as supported by Spray and Reckase (1994), and the log-odds ratio of Lin and Spray 
(2000).   

To compare these three item selection criteria, as well as AMT (Kingsbury & Weiss, 
1983) with items selected at the true score, Rudner (2002) simulated examinee responses using 
IRT.  The item parameters were sampled from two real item pools, with 139 and 54 items, used in 
elementary mathematics assessments. Given these small item pools, maximum test length was 
varied only from 5 to 30, in increments of five, and this constraint of very short tests drawn from 
small pools likely affected the results. The first assessment classified examinees into two 
categories, the second into four.   

The examinee distributions of 1,000 for the calibration sample (for the BDT item 
parameters) and 10,000 for the research sample were created by randomly drawing points from 
two distributions, one normal N(0, 1) and one uniform (-2.5, 2.5), and assigning a true 
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classification based on this true score.  However, while the Method section claimed to use two 
distributions, there was only one table in the Results, and it did not specify which distribution.  

There are two important conclusions drawn by Rudner (2002).  First, minimum expected 
cost and information gain noticeably outperformed the other two methods with respect to ATL 
while producing almost identical proportions of correctly classified examinees.  The author notes 
that, upon further examination, this is due to the two criteria almost always choosing the same 
item at a given point in the test administration.  This conclusion is qualified by the fact that this 
relatively superior performance by information gain and minimum expected cost is inversely 
related to maximum test length.  The greater accuracy in classification shown by these two 
procedures has a reduced effect as the maximum number of items is raised.  So for longer tests, all 
four methods should produce roughly equivalent classifications, again supporting the relative 
equivalence of different item selection approaches. 

There were a few noticeable absences in this study, the most obvious being ATL.  ATL 
and PCC should always be examined jointly.  Rudner (2002) also imposed a confound by using 
EB selection with IRT and CB selection with CTT, though CB selection is more appropriate with 
the SPRT, thereby reducing the effectiveness of the item selection algorithm for the IRT-based 
condition. 

One additional application of KLI was Weissman (2004).  Weissman noted that the use of 
KLI in multiple-cutscore CCT produces a problem.  KLI is an index of information across a 
region, but only one region (θ0 to θ1).  When there are multiple categories into which examinees 
can be classified, there are then multiple cutscore points on the θ metric.  If the item selection 
strategy is to maximize information around a cutscore (Spray & Reckase, 1994; 1996), multiple 
categories necessitate multiple information regions, which KLI is unable to do.  Eggen (1999) also 
noticed this problem.  Additionally, there is the issue of defining the KLI region width.  
Weissman’s suggestion was to employ mutual information, a more general form of KLI.   

The mutual information between individual examinee responses and examinee trait level, 
I(Xi, θ), is the KLI between the joint distribution f(xi, θ) and the product of the two marginal 
distributions f(xi)  and f(θ) .  This is expressed as (Weissman, 2004) 
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Computationally, however, this is evaluated at a discrete number of points.  Weissman also 
suggested another new criterion for item selection in CCT, FI with a posterior weight function. 

Weissman compared these two strategies in a four-classification CCT, along with 
selecting items by FI at the current ability estimate.  The comparison used a sample size of 5,000 
simulated examinees drawn from a N(0,1) distribution.  The item pool had 367 items already 
calibrated under the 3PL model, centered at θ = 1.  The three cutscore points were fixed at -0.3, 1, 
and 2 with a fixed IR width of 0.6 (δ = 0.3).  Maximum test length was introduced as a variable, 
and the simulation was repeated with maximum test length rising in single increments from 1 to 
40.  Nominal error was set at 0.10 for each classification group; α = β = 0.05 at each cutscore 
except for the decisions for the two end categories (1 and 4), where it was .10.  Results showed 
that FI with a posterior weighted function usually outperformed FI in terms of ATL and observed 
misclassification rates, and mutual information always outperformed them both.  The only 
exception was for Category 4 with small maximum test length, where the procedures performed 
more erratically and there was no pattern of superiority.  These results suggest that when there are 
four or more classifications and short tests are needed, mutual information might be more 
efficient. 
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Conclusions 
Since mutual information’s superiority comes with four or more classifications, which is a 

small proportion of classification testing, its greater complexity does not offer an increase in 
efficiency for most classification tests.  Similarly, KLI is more complex than FI, but does not 
always offer a substantial increase in efficiency.  In the interests of parsimony, therefore, most 
CCTs can be constructed with an item selection algorithm based on FI.  If CTT is used for the 
psychometric model, analogous indices are available. 

While there are not considerable differences in efficiency among information types within 
CB or EB selection, the specification of CB vs. EB item selection is important.  CB selection is 
appropriate for the SPRT termination criterion (Spray & Reckase, 1994) because it maximizes the 
difference of the likelihood ratio, while EB selection is appropriate for AMT because it maximizes 
the reduction in the CSEM used to construct the confidence interval. 

Constraints have a moderating effect on differences between competing methods; 
consider the extreme constraint of requiring all tests to be 50 items long, where no difference 
would be found in ATL between any item selection methods or termination criteria.  Therefore, 
while they serve useful purposes in practical applications, they are of minor importance in 
research. 

 
 
Practical Constraints 
 When designing a CCT to be used in a live testing program, there is often pressure from 
external forces to impose constraints on the algorithms to address practical issues.  There are three 
primary types of practical constraints: item exposure, test length, and content area.  All three are 
very important in some testing applications in that they address significant practical issues in 
testing.  However, their relevance is lessened in research comparing algorithms in computerized 
variable-length testing because the constraints obviously constrain the algorithms from 
performing as they are designed to do, thereby confounding some conclusions.   
 This has been supported empirically.  Eggen (1999) applied the Kingsbury and Zara 
(1991) approach to distributing items among three content categories.  After an item was 
administered and no decision had been made, the percentage of items administered in each 
category was compared to the target percentages, and the next item was selected from the content 
category with the greatest discrepancy.  It was found that, while the introduction of constraints 
had little absolute impact, it lessened the differences in efficiency between the three item selection 
methods that were part of this portion of the study.  This result was also present, though less 
strongly, in Eggen and Straetmans (2000), in the comparison between two item selection methods 
with AMT.  Thompson and Weiss (2006) found that test length constraints only served to reduce 
differences between methods.  Spray, Abdel-fattah, Huang, and Lau (1997), Lau (1998), Jiao, 
Wang, & Lau (2004), also found that constraints reduced differences.  Lin and Spray (2000) 
specifically did not include constraints because they reduce the visibility of comparisons among 
other variables.    
 
 
Conclusions Regarding CCT Design 

Several important choices are presented to the test user when designing a CCT.  The first 
step is to select a psychometric model that can be used to calibrate the item bank.  For several 
reasons, IRT presents a more viable option, though efficient CCTs can be designed with classical 
test theory if small sample size necessitates that path.  The second step is to select a termination 
criterion.  The SPRT has been shown mathematically to be the uniformly most powerful test of 
two competing hypotheses (Wald, 1947), but AMT is highly efficient also.  Both methods classify 
examinees with far fewer items than are  needed for a fixed-form test, while maintaining high 
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levels of classification accuracy.  Both have also been shown to work efficiently in the situation of 
multiple cutscores, and the SPRT has additionally been shown to be efficient with polytomous 
IRT.  Both of these additional variables were investigated in the current study. 

An item selection method must be chosen to work in conjunction with the termination 
criterion, with several options available. Although conflicting results have been found in the 
CB/EB comparison, it is evident that the additional complexity introduced by KLI is not necessary 
for either approach.  Therefore, the current study was designed to compare the two paradigms, 
with FI as the specific operationalization. 

Lastly, there is the issue of practical constraints.  It is evident from past research that the 
imposition of constraints is not necessary, and is even detrimental to, simulation research on CCT 
methods.  Therefore, they were not included in this study, but CCT test users are obviously free to 
impose any constraints necessary for their particular application.  
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Chapter 3: Method 

 
Purpose 
 The objective of this study was threefold: 
 
1. To investigate the relative efficiency of multiple-cutscore CCTs scored with polytomous IRT as 

compared to CCTs scored with dichotomous IRT models; 
2. To compare the two termination criteria of AMT and the SPRT in a polytomous CCT, as the 

two have been compared in previous research but not in the polytomous case; 
3. Similarly, to compare the two item selection methods of EB and CB.  Although there have been 

some studies comparing these item selection methods, they have not been compared in the 
polytomous case.  

 
The primary hypothesis was that there would be an interaction between the number of cutscores 
and the type of IRT model.  The advantages of polytomous IRT were hypothesized to be greater 
for the two-cutscore case than for a single cutscore test.  Operationally, this would be manifested 
as a greater difference in ATL while maintaining a similar level of PCC. 

The method used to compare these conditions was a monte carlo simulation where each 
simulated examinee was assigned a classification by the CCT, which was compared to the 
examinee’s true classification as determined by the generated θ value.  PCC and ATL were the 
dependent variables. 
 Two additional independent variables were also investigated for possible interaction with 
the three primary independent variables: the number of cutscores (one or two) and item bank 
information structure (uniform or bell-shaped).  Thirteen levels of θ, ranging from –3.0 to 3.0 in 
increments of 0.5, were also investigated, but only to evaluate the effects of the other independent 
variables conditional on θ.  The combination of these independent variables resulted in a 2 
(termination criterion) × 2 (item selection method) × 2 (IRT model) × 2 (number of cutscores) × 2 
(item bank shape) design with 32 conditions.  The independent variables and their levels were: 

 
1.  IRT Model 

a. Dichotomous (3PL) 
b. Polytomous (GPCM 

 
2.  Termination Criterion 

a. SPRT 
b. AMT 

 
3.  Item Selection Method 

a. Current θ estimate (EB) 
b. Cutscore (two-category case) or nearest cutscore (three-category case) (CB) 

 
4.  Number of Cutscores 

a. One cutscore, i.e., two classifications 
b. Two cutscores, i.e., three classifications 

 
5.  Item Bank Shape 

a. Information function high and flat (uniform item location distribution) 
b. Information function peaked at cutscore(s) (unimodal bell-shaped item location 
distribution for one cutscore; bimodal for two cutscores)   
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Cutscores 
 The uniform distribution of examinees on θ used in the monte carlo simulation was 
generated only to allow analysis of the independent variables conditional on θ.  However, the 
cutscores investigated in this study were chosen with the assumption of a N(0,1) distribution, as 
this is more commonly encountered in practice than a perfectly uniform distribution of examinees.  
Cutscores were selected for a norm-referenced interpretation since the lack of a real item pool and 
testing situation precludes a criterion-referenced interpretation.  In the two-category condition, 
with only one cutscore, the cutscore was set at 0.675 on an N(0,1) θ scale.  This represents the 
case where the purpose of the test is to identify the upper 25% of examinees.  This corresponds to 
the situation where the goal of the test is to identify the examinees with the highest level of ability 
or achievement, such as in educational assessment or employee selection.  Similarly, the three-
category case was designated with cutscores at –0.675 and 0.675, classifying the top and bottom 
25% of the sample.  This is an extension of the same situation where the test is designed to not 
only identify the highest performing examinees, but also the lowest, perhaps for some remedial 
training.   

 
 
Item Banks 
 Six separate banks were constructed by varying the three factors of IRT model, number of 
classifications, and item bank shape. 

 
1. Dichotomous uniform 
2. Polytomous uniform 
3. Dichotomous peaked unimodal 
4. Polytomous peaked unimodal 
5. Dichotomous peaked bimodal 
6. Polytomous peaked bimodal 

 
A unimodal item bank was constructed only for the case of a single cutscore, with the information 
function peaking at that cutscore.  A bimodal item bank was constructed only for the two-cutscore 
case, with information at both cutscores, rather than peaking at a single point.  The same uniform 
bank was used for both the single-cutscore and the two-cutscore cases; hence, there were only six 
banks, rather than the eight that would be obtained by fully crossing the three aforementioned 
variables. 

The use of different sets of items to compare a polytomous and dichotomous IRT model 
follows Lau and Wang (1998, 1999, 2000).  They used two banks of 266 polytomous items and 
246 dichotomously scored items when comparing a polytomous and dichotomous CCT with a 
single cutscore.  It would also be useful to use only one set of items and calibrate them with both 
IRT models.  This would represent the case where one model is appropriate, but an incorrect 
model is used.  For example, item responses could be generated with the GPCM and then 
calibrated with both the GPCM and 3PL to investigate the loss in efficiency caused by the 
misspecification of the model, as was shown to have an important effect among dichotomous IRT 
models by Spray and Reckase (1987).  However, this introduces model fit as another independent 
variable, so two separate sets of items were used in the current study.  Additionally, if one model 
were used to generate data for calibration by both models, the model that was used for generation 
would have an undue and unfair advantage.  That model would fit the calibration data better, and 
might then lead to better performance in simulations. 
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Moreover, in a practical application of a CCT, a bank of items will likely be constructed 
for the purpose of applying polytomous or dichotomous IRT but not both, and an inappropriate 
model would likewise not be employed in the real world.  For instance, a typical multiple-choice 
item bank is intended for the 3PL, while a set of constructed-response or performance assessment 
items is intended for the GPCM or similar scoring method.  Items typically are not written for 
both models simultaneously, and both models are then not equivalently appropriate.  Many testing 
programs utilize both approaches separately because many of the characteristics that are assessed 
by one type of item cannot be assessed by the other.  For example, a multiple-choice examination 
serves to assess knowledge of facts, while a performance assessment serves to assess the ability to 
perform tasks correctly.  This can be done within the same test, as is done with the NAEP, or in 
separate tests. 
 For the polytomous bank in this study, GPCM item parameters were generated.  The 
GPCM is conceptually appropriate for many polytomous achievement items because it involves 
an ordering of the options to reflect steps involved in determining the correct answer.  The GPCM 
has been used to model polytomous achievement items on exams from the NAEP (Loomis & 
Borque, 2001; Lau & Wang, 1998, 1999, 2000).  It was assumed for the present study that all 
GPCM items had four responses, which represents many GPCM items on NAEP exams (Lau & 
Wang, 1998).  The GPCM can be used to model multiple-choice items with an explicit ordering of 
alternatives, but is also used for open-ended or performance assessment items.  For the 
dichotomous banks, 3PL item parameters were generated.  The 3PL is appropriate for 
dichotomously scored multiple-choice achievement items. 

Item parameters were generated in an attempt to provide two target shapes of the bank 
information function, representing the optimal bank information structure for each situation: a 
uniform bank and a peaked bank.  The resultant bank information functions are presented in 
Figure 7.  While the “uniform” and “bimodal” information functions were not strictly so, the 
uniform function was much flatter than the peaked functions, and the bimodal function provides 
information across a wider range than the unimodal function.  If a difference is found between 
these banks, it likely would be found between banks that strictly fit the definitions.  Moreover, 
banks of real testing programs are not likely to be strictly uniform or bimodally peaked. 

The optimal bank information function for adaptive testing with EB item selection is high 
and flat, or the item bank contains a large number of highly discriminating items across a range of 
θ (Weiss, 1974; Thissen, 2000).  This implies an approximately uniform distribution of item 
difficulty, so the item location parameters for the dichotomous IRT bank were uniformly 
distributed from -3.0 to 3.0 in intervals of 303.0 , producing a bank of 181 items.  The item 
parameters for the dichotomous banks are presented in Appendix A. 
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Figure 7:  Bank information functions 
 

 
For the polytomous bank with relatively uniform information, the boundary location 

parameters were generated by first generating the middle of the three parameters for each item, 
and then adding/subtracting a constant from this value for the other two boundary parameters.  
The middle parameters were specified at 61 values of θ, from -3.0 to 3.0 in intervals of 0.1, for a 
bank of 61 items. The constant distance of 1.35 between the category boundaries of the GPCM 
items was determined by the location of the cutscores; as these were -0.675 and 0.675, a distance 
of 1.35 (0.675 + 0.675).  The rationale for this choice was that it represented the optimal case for 
SPRT-based multiple-cutscore CCT with polytomous items.  If an item is selected because its 
highest point of information is at one cutscore, the location parameter for that item will likely be 
near that point.  One of the other category boundaries of the item will then be located near the 
other cutscore, providing a substantial amount of information at that point also.  The fact that 
these items provided information at more than one cutscore when polytomously scored, 
contributed to the relatively normal peakedness of the bimodal bank information functions even 
though the location parameters were a bimodal distribution (Figure 7).  The item parameters for 
the polytomous banks are presented in Appendix B. 

Since polytomous items have the advantage of more information, the polytomous and 
dichotomous banks were matched to provide an approximately equivalent bank information 
function.  The polytomous items had three category boundaries, as opposed to the single boundary 
in dichotomous models, so they provided three times as much information, assuming that item 
parameters were held constant.  Therefore, the polytomous bank contained one-third as many 
items, for both the uniform and peaked banks.  Although 61 items might seem like a small 
number, the average test length found by Lau and Wang (1998) for polytomous CCT was only 15 
items.   

Because a bank information function that is peaked at the cutscore is ideally different for 
a single-cutscore test (unimodal) than a two-cutscore test (bimodal), two separate banks were 
generated to represent the optimal information case for CB selection, one for a single cutscore and 
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one for two cutscores.  In the single cutscore case, the bank was peaked near the cutscore of θ = 
0.675, which represents the condition where the purpose of the test was to identify the top 25% of 
examinees of a normal distribution.  This was accomplished by randomly generating item location 
parameters (bi) from a N(0.675, 0.25) distribution.  The three-classification peaked banks required 
a bimodal information function, which peaked at both of the two cutscores.  These were 
constructed by generating two pools of items with the location parameters normally distributed 
around each cutscore, N(-0.675, 0.25) and N(0.675, 0.25), and these were combined to form the 
bimodal pool.  For the polytomous bank, there were 30 items distributed around the lower 
cutscore, and 31 around the higher cutscore.  Similarly, the dichotomous bank had 90 items 
distributed around the lower cutscore and 91 at the upper cutscore.  The relatively small standard 
deviation of the bi parameters, only a quarter of the examinee standard deviation, was selected to 
construct peaked information functions for comparison to the uniform information functions 
constructed by the uniform item banks.   
 Bank information functions for the six item banks are shown in Figure 7.  Though the 3PL 
banks had three times as many items as the GPCM banks, the GPCM banks still had more 
information across most of θ.  Note that the distribution of item location or difficulty parameters 
did not necessarily mean that the information functions were of strictly the same type, due to the 
fact that each item provided a varying amount of information across θ.  However, it is still 
noteworthy that the bank information functions for the uniform banks were much flatter than the 
other bank information functions. 

Item discrimination also has an effect on information, but since discrimination parameters 
were randomly generated and therefore uncorrelated with difficulty parameters, they had little 
effect on the bank information function.  The discrimination parameters for each bank were 
randomly drawn from a N(1.0,0.2) distribution in an effort to produce a high information function 
found with banks of highly discriminating items.  The distribution parameters of 1.0 and 0.2 were 
arbitrarily chosen, as Lau and Wang (1998, 1999, 2000) did not provide any information 
concerning the discrimination of the NAEP items used in their polytomous CCTs.  Moreover, 
since the primary purpose of this study was comparison of termination criteria, it was of primary 
importance that the different banks had similar discrimination parameter distributions, regardless 
of the values.  The same distribution of discrimination parameters was used for generating all 
banks, so that one bank did not have an advantage over another simply because it had higher 
discriminations and therefore more information.  If one bank had better discriminating items, it 
would provide more information, predisposing that bank to perform better regardless of shape.  
Also held constant across the dichotomous banks was the pseudoguessing parameter for the 3PL, 
which was c = 0.25 for each item, representing the case of a typical four-alternative multiple-
choice item with plausible distractors. 
 
 
Termination Criteria Specifications 
 Both AMT and the SPRT require certain specifications to be set by the test user.  AMT 
requires specification of the 1-γ confidence interval, while SPRT requires the nominal error rates 
α and β as well as the width of the IR.  (The traditional notation of confidence intervals is that of 
1-α, but 1-γ was used here so as not to be confused with the nominal Type I error rate α.)  The 
total nominal error rate γ was here equal to the sum of the nominal Type I (false positive) and 
Type II (false negative) rates α and β.  This study used a 95% AMT confidence interval, which 
had a nominal error rate of 2.5% on either side.   

Though it is not necessary to set the SPRT error rates to be equal, or equivalently for the 
AMT confidence interval to be symmetrical, this study examined only that case.  The SPRT does 
this by explicitly stating equivalent values of α and β.  The specification of the confidence interval 
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for AMT implicitly set α = β = γ/2 at each cutscore.  It is possible to specify a different interval 
width on either side at the cutscore, but this has not yet been investigated.  For instance, a 99% 
interval could be used for all θ > θc, and a 95% interval used for all θ < θc.  This would translate to 
a 0.005 probability of a false positive classification α, and a 0.025 probability of a false negative 
classification β.  This study examined only the simpler scenario where the nominal SPRT rates 
were each set at .025 and the corresponding AMT confidence intervals were 95%. 

Because of the fact that nominal error rates do not always control observed error rates, 
nominal rates were not varied, even though it is conventional to vary the nominal rates in CCT 
research.  An example of this lack of control is Eggen and Straetmans (2000), who investigated 
the AMT criterion in four multiple-cutscore situations: a 70% confidence interval with CB 
selection, a 70% confidence interval with EB selection, a 90% confidence interval with CB 
selection, and a 90% confidence interval with EB selection.  These produced observed PCC of 
88.4, 85.4, 89.9, and 89.1 percent, respectively.  A similar effect was observed with the multiple-
cutscore SPRT.  These results might have been due to the strain that multiple cutscores place on 
the decision procedure, but this observation was also true for the two-classification case in a 
different study (Eggen, 1999).  Eggen found that observed error rates remained relatively the 
same, regardless of the nominal rates or the item selection method employed.  The only effect of 
multiple cutscores was to increase the overall amount of misclassification.  Therefore, only the 
nominal PCC of 95% was applied in this study. 

The SPRT requires an additional arbitrary specification, the IR width.  IR size has a direct 
effect on the results (Reckase, 1983; Eggen & Straetmans, 2000), though some research has not 
accounted for this fact (Jiao, Wang, & Lau, 2004).  Previous research has indicated that a wider IR 
tends to classify examinees with fewer items, in turn causing a slight increase in classification 
error as opposed to a smaller IR.  Therefore, choosing an SPRT IR that is too large might lead to 
results with much lower ATL and PCC than the AMT condition that it is intended to be compared 
to, and the comparison will then not be as even as possible.   

Spray and Reckase (1996) suggested that the AMT and SPRT simulations be equated on 
expected classification error and then compared on test length.  They conducted AMT 
simulations, and then chose nominal SPRT error rates for a fixed IR that produced similar levels 
of classification error.  A similar approach was employed in this study.  However, instead of using 
different nominal error rates for each method, these were kept constant.  AMT simulations were 
run first with a 95% interval, or nominal errors of 2.5% on either side of the cutscore.  SPRT 
simulations were then run with nominal error rates of 2.5%, with the IR systematically varied until 
observed PCC was equivalent to the AMT condition.  The two were then compared on average 
test length.  This was done for each of the 16 conditions created by the four variables other than 
the termination criterion.  Eggen and Straetmans (2000) employed this approach in their 
interpretation of results, but did not vary the IR to make the observed error rates extremely close, 
as was done in the present study.  All observed PCC rates were matched so that the greatest 
difference in terms of PCC between equivalent conditions of AMT and SPRT was 0.15% (see 
Table 1).   

The SPRT approach that was used for the three-category case was Armitage’s (1950) 
method.  This method can be applied to CCT for any number of ordered categories, as opposed to 
Sobel and Wald’s (1949) formulation.  Sobel and Wald’s is only applicable to the three-category 
situation, but makes for fewer likelihood ratio comparisons than the Armitage method. 
Govindarajulu (1987) reported that the two performed comparably in a three-category situation, 
and since the Armitage method is more generalizable, that method was employed in this study. 
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Item Selection Methods 
 The EB item selection method has been shown to be the more efficient of the two item 
selection methods both in the two-category case (Thompson & Weiss, 2006) and the multiple-
cutscore case (Eggen & Straetmans, 2000) with the AMT termination criterion.  With the two-
category SPRT termination method, prior research indicated that it is more efficient to utilize CB 
item selection (Spray & Reckase, 1994), but with the multiple-cutscore SPRT termination method, 
EB selection and CB selection performed with equivalent efficiency (Eggen, 1999).  Therefore, 
both EB and CB selection were applied to each condition in this study, crossed with termination 
method to investigate the four possible combinations.  The current study used only the FI versions 
of CB and EB selection, as past research has found minimal difference between FI and KLI.  
Items were selected to maximize FI at the current estimate for EB selection, and the cutscore, or 
nearest cutscore in the three-classification case, for CB selection 

The terms estimate-based and cutscore-based item selection were used here because the 
introduction of a second cutscore changes the way that an item selection method is 
operationalized.  This does not occur for EB selection, but does for CB selection.  When there is 
one cutscore, items are always selected based on information at that point.  A second cutscore 
requires the application of a new algorithm.   

In the simple two-category case, CB item selection is defined equivalently with both 
termination criteria.  There is only one cutscore, so items are ranked by information at that 
cutscore.  With two cutscores, items are selected to maximize information at the nearest cutscore.  
However, because AMT operates on the θ scale during every step of the testing process and the 
SPRT does not, “nearest” must be defined differently for the two termination criteria.  Eggen and 
Straetmans (2000) operationalized CB selection for the AMT termination criterion as the selection 
of the next most informative item at the cutscore nearest to the current estimate on the θ scale. 
With the SPRT, the items are selected at the cutscore that is further from a decision, because this 
reflects the examinee’s ability level being closer to that cutscore.  For example, if the examinee’s 
θ level was near the lower of two cutscores, the decision would be much more difficult to make at 
the lower cutscore than the higher cutscore.  In all probability, the algorithm would quickly 
recognize that the examinee should not be classified at the higher ability level.  This examinee 
should incorrectly answer the majority of items with difficulty values near the upper cutscore.  
Therefore, items would be selected to maximize information at the lower cutscore to distinguish 
between the first and second categories, since the third category would be ruled out for that 
examinee. 
 Regardless of the number of categories or the termination criterion, EB selection always 
operates the same way; items are selected to maximize information at the θ estimate based on item 
responses up to that point in the test.  The EB selection entails more computation than an SPRT-
based CTT would normally require, because the SPRT does not use θ estimates in computing the 
termination criterion, as does AMT.   
 No practical constraints were applied for two reasons.  First, this was an exploratory study 
of a new methodology, and practical constraints present an opportunity for future research if the 
methodology is found efficient, accurate, and potentially useful.  Second, past research has found 
that practical constraints tend to reduce differences between competing methodologies (Thompson 
& Weiss, 2006; Spray, Abdel-fattah, Huang, & Lau 1997; Lau 1998; Jiao, Wang, & Lau, 2004), 
and often have simple and obvious effects, such as a minimum test length increasing ATL for 
each condition. 
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Monte Carlo Simulation 
A sample of 13,000 examinees was generated from a U(-3, 3) distribution at thirteen 

points on θ from –3 to 3 in intervals of 0.5, each with 1,000 examinees.  This allowed for the 
performance of the CCT procedures to be compared conditional on θ, as well as for the entire 
aggregated distribution, with each θ level contributing equally to the aggregate.   

Item responses were simulated by generating a rectangular random number between 0 and 
1 for each item for each person, which was then compared to the probability of responding in each 
of the four item alternatives for the GPCM or two alternatives for the dichotomous case at the true 
θ level for each examinee (using the appropriate item parameters for that item) to determine the 
“response.”  Responses were generated independently for each item for each examinee.  The 
probabilities of responding in a category are defined in Chapter 2 in Equations 1 and  2.  For 
example, suppose for a GPCM item at a given level of θ there was a 0.10 probability of 
responding with option 1, 0.60 probability of option 2, 0.25 probability of option 3, and a 0.05 
probability of option 4.  These probabilities were progressively summed to produce boundaries 
that the random number was compared to.  In this example, the first boundary, between categories 
1 and 2, was 0.10.  The second boundary was 0.70, and the third boundary was 0.95.   If the 
random number for that item was between 0 and 0.1, the examinee “responded” with the first 
option.  If the random number was between 0.10 and 0.70, the examinee responded to the second 
option, and so on. 

The same method was used to simulate responses with the 3PL, but only two options were 
present.  If the random number was above the probability of correctly answering the item for an 
examinee at the given θ, the simulation scored the item as incorrect.  If the random number was 
below the probability, the simulation scored the item as correct.  For example, suppose the 
probability of a correct response was 0.30.  If the random number was below 0.30, the item is 
“scored” as correct.  If the random number was above 0.30, the item response was incorrect. 

Once the item was scored, the result was used to update the calculation of the termination 
criterion.  In the case of AMT, the likelihood function was updated, producing a modified 
estimate of the examinee’s ability and SEM.  As discussed in Chapters 1 and 2, using the AMT 
termination criterion if any cutscore was contained within the resulting confidence interval around 
the θ estimate, another item was administered.  If not, the test was terminated for the examinee 
and a classification assigned.  The responses from each item were likewise used to update the 
likelihood ratio, or ratios in the two-cutscore case, for the SPRT cutscore criterion.  Another item 
was administered if the SPRT termination criterion was not able to make a decision at that point in 
the test. 

Spray (1993) used maximum test lengths of 10, 20, and 50 for simulated CCTs, while 
Eggen (1999) fixed the maximum at 40 items.  However, the imposition of test length constraints 
tends to reduce the visibility of effects in the results (Thompson & Weiss, 2006).  Therefore, no 
length constraints were used in this study, but should be evaluated in future research on 
polytomous multiple-cutscore CCT.  Examinees that were administered every item in the bank 
were classified in whichever classification was closest. For example, if the SPRT was greater than 
1.0 but less than the upper boundary, examinees were classified into group 2 (“pass”). 

Before analyzing the simulations, a quality control analysis was performed on the part of 
the computer program responsible for generation of responses.  The data from this substudy are 
presented in Appendices C and D.  Observed proportions of each response were compared to the 
expected value for a given level of θ, as calculated by the IRF or polytomous response functions.  
The difference between the two is presented in the column labeled “bias.”  Values in the bias 
columns are very near zero; the mean bias for the four polytomous responses are each within 
0.001 of zero, with standard deviations of approximately 0.01. 
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Data Analysis 

The simulation was replicated 25 times for each of the 32 conditions of the study to obtain 
an estimate of sampling variability, which also enabled the use of an ANOVA model to 
summarize the results.  As the item parameters and person parameters did not change, only item 
responses were generated anew in each replication.     

The number of items administered to each of the 13,000 examinees in each of the eight 
simulated CCTs was used to calculate the ATL for each replication at each value of θ.  The 
generated true θ value for each examinee was compared to the cutscore or cutscores, and a true 
classification into one of the two or three categories assigned for each group of 1,000 simulees at 
a given level of θ. This was then compared to the classifications made with the simulated CCTs to 
determine PCC for each replication, at each level of θ.  The relative efficiency of polytomous 
multiple-cutscore CCT was then gauged by whether it made use of fewer items than dichotomous 
multiple-cutscore CCT while still maintaining similar rates of misclassification. 
 The majority of research concerning CCT has subjectively compared procedures on ATL 
and PCC simultaneously.  The notable exception to this was Spray and Reckase (1996), who 
matched procedures on expected PCC to provide a more objective comparison on ATL alone.  
Since the current study matched AMT and the SPRT on observed PCC, within the 16 conditions 
created by the remaining independent variables, the primary method of analysis was an ANOVA 
summarization of ATL results.  PCC results were also summarized with ANOVA, but are of 
secondary importance since it was a controlled factor.  ATL and PCC data were analyzed 
separately with a 2 (termination criterion) x 2 (item selection method) x 2 (IRT model) x 2 
(number of cutscores) x 2 (item bank shape) ANOVA model to obtain relative estimates of effect 
size.  The relative strength of each effect including interactions was gauged by η2 (Yoes, 1993; 
Jacobs-Cassuto, 2005), which represents the proportion of variance in the study due to a variable, 
and was calculated for each effect as 
 
  SSeffect/SStotal ,        (23) 
 
Where   
 ∑ −= 2)( grandleffect xxSS       (24) 
 
with lx  as the means for each level of a given effect and grandx  as the grand mean, and 
 
 ∑ −= 2)( grandtotal xxSS .      (25) 
 
 It is important to note that ANOVA is only appropriate for summarization of the results.  
Hypothesis tests of PCC and ATL are inappropriate because statistical significance is partially a 
function of sample size, and sample size (replications) is entirely controlled by the experimenter 
in monte carlo simulation.  It is also important to note that, in this situation, PCC is able to be 
summarized by ANOVA.  In most situations, it is inappropriate to analyze proportions or 
percentages with ANOVA because they are not normally distributed.  However, in this situation 
PCC was approximately normally distributed around a “true” value of PCC rather than being 
uniformly distributed across the range 0-100. 
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Chapter 4: Results 

 
Overview 
 Table 1 presents the mean ATL and PCC for each of the 32 conditions, averaged across 
all 25 replications at each condition.  ATL ranged from 2.71 to 37.06, and PCC ranged from 94.09 
to 98.51.  The shortest ATL was for the CCT that utilized CB selection and the GPCM and had 
only one cutscore.  The termination criteria performed equivalently in this condition.  The longest 
ATL was for the CCT that utilized CB selection and the 3PL model with the AMT termination 
criterion and two cutscores. 
 
Table 1: Mean ATL and PCC for Each Condition   
 
          ATL                 PCC  
Condition         Mean SD   Mean  SD  
 
Uniform Bank     
   3PL Model       
       AMT Termination      
               EB Selection     
                     1 Cutscore     4.90  0.02   94.51  0.20 
                     2 Cutscores  34.27  0.45   94.09  0.14  
               CB Selection    
                     1 Cutscore     5.78  0.03   95.47  0.14 
                     2 Cutscores  37.06  0.42   95.30  0.21 
       SPRT Termination     
               EB Selection     
                     1 Cutscore     3.76  0.03   94.61  0.12 
                     2 Cutscores                16.69  0.18   94.23  0.19  
   CB Selection      
                     1 Cutscore     4.88  0.03   95.61  0.16  
                     2 Cutscores  17.83  0.20   95.16  0.18 
   GPCM  
       AMT Termination      
               EB Selection      
                     1 Cutscore     2.85  0.02   97.59  0.11 
                     2 Cutscores              12.95  0.11   97.91  0.11  
   CB Selection      
                     1 Cutscore     3.00  0.02   97.76  0.09 
                     2 Cutscores  13.38  0.07   98.01  0.11  
       SPRT Termination        
               EB Selection      
                     1 Cutscore     2.85  0.02   97.67  0.16  
                     2 Cutscores              10.32  0.07   98.00  0.11   
   CB Selection        
                     1 Cutscore     2.88  0.02   97.62  0.16 
                     2 Cutscores  10.39  0.09   97.97  0.12  
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          ATL                 PCC  
Condition         Mean SD   Mean  SD  
Peaked Bank       
   3PL Model  
       AMT Termination      
               EB Selection      
                     1 Cutscore     5.31  0.03   95.34  0.14 
                     2 Cutscores              33.43  0.31   96.68  0.14  
   CB Selection      
                     1 Cutscore     5.82  0.03   95.91  0.15 
                     2 Cutscores  33.79  0.30   96.38  0.15  
       SPRT Termination        
               EB Selection      
                     1 Cutscore     4.68  0.02   95.49  0.16   
                     2 Cutscores              19.55  0.17   96.57  0.15  
   CB Selection        
                     1 Cutscore     4.82  0.03   95.76  0.14  
                     2 Cutscores  17.77  0.19   96.27  0.17   
GPCM  
       AMT Termination      
               EB Selection      
                     1 Cutscore     2.89  0.02   97.64  0.11 
                     2 Cutscores              12.32  0.11   98.50  0.11  
   CB Selection      
                     1 Cutscore     2.71  0.02   97.82  0.14 
                     2 Cutscores  12.55  0.11   98.46  0.10  
       SPRT Termination        
               EB Selection      
                     1 Cutscore     2.76  0.02   97.65  0.13   
                     2 Cutscores                9.84  0.07   98.51  0.11   
   CB Selection        
                     1 Cutscore     2.71  0.03   97.72  0.13   
                     2 Cutscores    9.59  0.07   98.41  0.10   
 
  
 The result of matching of conditions on PCC in order to provide a more even comparison 
on ATL, as described in Chapter 3, is seen in Table 1.  Conditions that are equivalent for AMT 
and the SPRT have an approximately equal PCC.  As mentioned previously, the greatest 
difference in PCC is only 0.15%. 
 Results were summarized with an ANOVA model, with all replications included at each 
condition to assess sampling variability in the simulation.  Before this summary, the ANOVA 
assumption of normality within conditions was evaluated by plotting the 25 replications of the 
first condition in Table 1.  This was done because percentage and proportion data are commonly 
assumed to be uniformly distributed and therefore not appropriate for ANOVA-type analysis, 
especially with significance tests, although no significance testing was done in these analyses.  
The descriptive statistics are presented in Table 2, and frequency plots are depicted in Figures 8a 
and 8b.  
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Table 2: Descriptive Statistics of Replications in Condition 1 
 

Variable N Minimum Maximum Mean SD Skewness Kurtosis 
ATL 25  4.87   4.94   4.901 0.020 0.514 -0.950 
PCC 25 94.19 94.98 94.500 0.198 0.458 -0.229 

 
Obviously, PCC and ATL were not uniformly distributed, but had an approximately normal 
distribution, as indicated by the skewness and kurtosis values in Table 2.  Moreover, since no 
significance testing was performed, due to the experimenter control of N, the normality 
assumption was of less importance. 

 
Figure 8: ATL and PCC Distribution in Condition 1 

a. ATL                                                                             b. PCC 

 
The ANOVA summary for ATL is presented in Table 3, and PCC in Table 4.  Several 

general results are of note.  First, the amount of sampling error was very small.  The error term η2 
for ATL was less than 0.001, and the error term η2 for PCC was 0.010, implying that the 
simulation was stable across replications.  If the assumptions employed in the administration of 
the monte carlo simulations are considered acceptable, such as the responses being generated by 
comparing U(0,1) random numbers to 3PL and GPCM probabilities, then the PCC and ATL of the 
CCTs was highly stable within each condition.  Each of the five independent variables had a main 
effect η2 of at least 0.050 with at least one of the dependent variables, with the exception of item 
selection.   
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Table 3: ANOVA Summary for ATL 
Source of Variation SS df MS η2

Main Effects     
  Bank 7.182 1 7.182 <0.001
  Termination Criterion 5242.880 1 5242.880 0.064
  Item Selection Method 22.842 1 22.842 <0.001
  IRT Model  14591.786 1 14591.786 0.177
  Number of Cutscores 44778.573 1 44778.573 0.544
Two-way Interactions  
  Bank × Termination 41.078 1 41.078 <0.001
  Bank × Selection 47.678 1 47.678 0.001
  Bank × Model 9.768 1 9.768 <0.001
  Bank × Cutscores 16.411 1 16.411 <0.001
  Model × Cutscores 8120.859 1 8120.859 0.099
  Selection × Model 14.694 1 14.694 <0.001
  Selection × Cutscores 0.028 1 0.028 <0.001
  Termination × Selection 16.687 1 16.687 <0.001
  Termination × Model 2753.710 1 2753.710 0.033
  Termination × Cutscores 4290.436 1 4290.436 0.052
Three-way Interactions  
  Bank × Termination × Selection 0.511 1 0.511 <0.001
  Bank × Termination × Model 36.312 1 36.312 <0.001
  Bank × Selection × Model 29.101 1 29.101 <0.001
  Bank × Termination × Cutscores 32.120 1 32.120 <0.001
  Bank × Model × Cutscores 0.022 1 0.022 <0.001
  Bank × Selection × Cutscores 14.376 1 14.376 <0.001
  Selection × Model × Cutscores 0.949 1 0.949 <0.001
  Termination × Selection × Cutscores 14.537 1 14.537 <0.001
  Termination × Model × Cutscores 2148.729 1 2148.729 0.026
  Termination × Selection × Model 5.763 1 5.763 <0.001
Four-way Interactions  
  Bank × Termination × Model × Cutscores 29.025 1 29.025 <0.001
  Bank × Termination × Selection × Cutscores 0.003 1 0.003 <0.001
  Bank × Termination × Selection × Model 0.565 1 0.565 <0.001
  Bank × Selection × Model × Cutscores 14.537 1 14.537 <0.001
  Termination × Selection × Model × Cutscores 4.440 1 4.440 <0.001
Five-way Interaction  
  Bank × Termination × Selection × Model × 

Cutscores 0.677 1 0.677 <0.001

  Error 18.727 768 0.024 <0.001
  Total 82305.007 799  
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Table 4: ANOVA Summary for PCC 
 
Source of Variation SS df MS η2

Main Effects  
    Bank 111.288 1 111.288 0.073
    Termination Criterion 0.164 1 0.164 <0.001
    Item Selection Method 13.760 1 13.760 0.009
    IRT Model 1212.978 1 1212.978 0.793
    Number of Cutscores 33.293 1 33.293 0.022
Two-way Interactions  
    Bank × Termination 0.666 1 0.666 <0.001
    Bank × Selection 15.015 1 15.015 0.010
    Bank × Cutscores 36.159 1 36.159 0.024
    Bank × Model 47.103 1 47.103 0.031
    Model × Cutscores 3.058 1 3.058 0.002
    Selection × Cutscores 0.704 1 0.704 <0.001
    Selection × Model 12.575 1 12.575 0.008
    Termination × Selection 0.285 1 0.285 <0.001
    Termination × Cutscores 0.249 1 0.249 <0.001
    Termination × Model 0.073 1 0.073 <0.001
Three-way Interactions  
    Bank × Termination × Model 0.525 1 0.525 <0.001
    Bank × Termination × Selection 0.270 1 0.270 <0.001
    Bank × Model × Cutscores 8.976 1 8.976 0.006
    Bank × Selection × Model 11.410 1 11.410 0.007
    Bank × Termination × Cutscores 0.032 1 0.032 <0.001
    Bank × Selection × Cutscores 1.148 1 1.148 0.001
    Selection × Model × Cutscores 0.779 1 0.779 0.001
    Termination × Selection × Model 0.003 1 0.003 <0.001
    Termination × Model × Cutscores 0.710 1 0.710 <0.001
    Termination × Selection × Cutscores 0.307 1 0.307 <0.001
Four-way Interactions  
    Bank × Termination × Selection × Cutscores 0.018 1 0.018 <0.001
    Bank × Termination × Selection × Model 0.022 1 0.022 <0.001
    Bank × Termination × Model × Cutscores 0.063 1 0.063 <0.001
    Bank × Selection × Model × Cutscores 1.483 1 1.483 0.001
    Termination × Selection × Model × Cutscores 0.000 1 0.000 <0.001
Five-way Interaction  
    Bank × Termination × Selection × Model × 

Cutscores 0.433 1 0.433 <0.001

    Error 15.258 768 0.020 0.010
    Total 1528.807 799 1513.55 
 

Additionally, for both dependent variables, more than half the variance was due to a 
single independent variable.  For ATL, 54.4% of the variance was attributable to the number of 
cutscores with the two-cutscore situation understandably requiring a higher average test length; 
the ATL for two cutscores (18.874) was higher than for one cutscore (3.911) (Table 5).  For PCC, 
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Table 4 shows that 79.3% of the variance was due to IRT Model, where the GPCM classified 
examinees more accurately (97.949) than the 3PL (95.486) (Table 5). 

The means and standard deviations for each main effect are presented in Table 5.  The 
ATL standard deviations were relatively high due to the high ATL for a few conditions (Table 2).  
The most notable result in this table is that the GPCM required less than half as many items as the 
3PL (7.122), while still classifying examinees more accurately (15.664). 
 

Table 5: Main Effects Means and SDs for PCC and ATL 
 

         PCC       ATL 
Variable Mean SD Mean SD
Bank  
   Peaked 97.091 1.09 11.298 9.91
   Uniform 96.345 1.54 11.488 10.39
Termination Criterion  
   AMT 96.732 1.39 13.953 12.56
   SPRT 96.703 1.37 8.833 5.95
Item Selection  
   CB 96.849 1.18 11.562 10.30
   EB 96.587 1.55 11.224 10.01
IRT Model  
   3PL 95.486 0.82 15.664 12.25
   GPCM 97.949 0.34 7.122 4.42
Number of Cutscores  
   1 Cutscore 96.514 1.23 3.911 1.17
   2 Cutscores 96.922 1.50 18.874 9.63

 
 

Item Banks 
 The shape of the item bank – peaked vs. uniform – had virtually no effect on ATL (η2 < 
0.001) and a moderate effect on PCC (η2 = 0.073).  The uniform bank required an average of 0.19 
more items, while producing a slightly lower PCC (96.345 vs. 97.091; Table 5).  The lack of 
difference is not surprising, given that there was a substantial amount of information available in 
both banks for the CCT algorithm to use.   

The primary reason that item bank was included as a variable was to examine its 
interaction with the item selection criteria.  Theoretically, CB item selection should be more 
efficient with a bank that has an information function peaked at the cutscore(s), while a more 
uniform bank is more appropriate for EB item selection.  However, the interaction of Item 
Selection and Bank had little effect relative to other effects in the ANOVA (ATL η2 = 0.001, PCC 
η2 = 0.010).  This might be due to the fact that not enough information was available for all 
examinees, as discussed below.   

Item bank did have a slight interaction with the number of cutscores (PCC η2 = 0.024).  
The uniform bank produced equivalent PCC for both situations (Table 6), but the peaked bank 
resulted in higher PCC for the two-cutscore situation (97.507) as opposed one cutscore (96.674). 
This is likely due to the fact that the three-classification peaked bank was different than the two-
classification peaked bank, with a bimodal distribution rather than limiting available information 
to a narrow region around a single cutscore.  This is especially interesting since the addition of 
one more cutscore increased the burden on the CCT; the bimodal distribution offset this effect to 
the point that the PCC was higher in the three-classification case.   
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Table 6: Interaction of Item Bank and 

Number of Cutscores for ATL and PCC  
 

         ATL         PCC       
Item Bank Mean SD Mean SD 
Peaked  
   1 Cutscore 3.960 2.61 96.674 7.98 
   2 Cutscores 18.636 22.03 97.507 5.01 
Uniform  
   1 Cutscore 3.863 2.50 96.353 8.12 
   2 Cutscores 19.112 23.45 96.336 7.01 

 
 
Item bank also had a moderate interaction with IRT model (PCC η2 = 0.031).  For the 

uniform bank, the GPCM had PCC that was nearly 3% higher than the 3PL (7).  For the peaked 
bank, this difference was reduced to less than 2%, as the 3PL PCC increased by about 1% while 
the GPCM PCC remained essentially the same.  This implies that the GPCM provided enough 
information across θ with both banks, while the 3PL performed better with the concentration of 
information in a single region near the cutscore.   
 

Table 7: Interaction of Item Bank and 
IRT Model for ATL and PCC  

 
         ATL         PCC 
Item Bank Mean SD Mean SD 
Peaked  
   3PL Model 15.679 21.83 96.102 8.01 
   GPCM 6.917 9.21 98.079 4.79 
Uniform  
   3PL Model 15.648 23.22 94.871 9.15 
   GPCM 7.327 9.92 97.819 5.20 

 
 
Termination Criterion 
 Termination criterion had the opposite outcome of item bank, with no effect on PCC (η2 < 
0.001) but a moderate effect on ATL (η2 = 0.064).  This was due to AMT requiring 5.12 more 
items on average (Table 5).  The lack of difference in PCC was due to the fact that AMT and 
SPRT were matched on PCC to provide a comparison of ATL on even ground, which was 
achieved in that respect. 
 Upon closer examination of the data, it was found that the reason AMT required more 
items on average was that the procedure had a difficult time classifying examinees that were very 
close to the cutscore in the three-classification situation (Table 8).  Examinees at θ = 0.50 or -0.50 
were only 0.175 units from the cutscores of 0.675 or -0.675.  For AMT to make a 95% confidence 
interval decision on an examinee with an estimated θ of 0.50, the CSEM had to be less than 
0.175/1.96 = 0.089.  The moderately sized item banks used did not have enough information 
available to reduce CSEM to this level, so these examinees were administered every item in the 
bank, increasing the average ATL for AMT (Figure 9).  Due to this specific situation, if the bank 
had contained many more highly discriminating items, this difference between AMT and the 
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SPRT would most likely have been reduced.  In any case, AMT still performed extremely 
efficiently, classifying examinees with an average of less than 14 items and a PCC of 96.732, and 
had a lower ATL than the SPRT at the extremes of θ with three classifications (Figure 9).   
 

Table 8:  Conditional Means and Standard Deviations of ATL for 
Values of θ From -3.00 to +3.00 

 
 AMT SPRT 
 1.00 2.00 1.00 2.00 

θ Mean SD Mean SD Mean SD Mean SD 
-3.00 2.10 1.17 4.72 2.59 1.63 0.73 6.13 4.12
-2.50 2.12 1.16 4.92 2.69 1.64 0.71 6.39 3.92
-2.00 2.18 1.14 5.69 3.01 1.69 0.69 7.00 3.69
-1.50 2.32 1.09 9.52 4.66 1.83 0.64 9.01 3.42
-1.00 2.61 1.04 48.10 23.04 2.12 0.59 20.73 4.42
-0.50 3.25 1.12 67.32 27.77 2.72 0.68 33.95 7.68
0.00 4.96 1.39 21.15 10.65 4.29 0.99 15.14 5.19
0.50 9.59 0.77 76.68 34.95 8.73 0.91 33.47 6.94
1.00 8.00 1.37 43.58 20.66 7.78 1.29 22.41 6.04
1.50 4.92 1.79 9.32 4.47 4.68 1.53 9.12 3.07
2.00 4.13 1.88 6.31 3.66 3.72 1.46 6.81 3.04
2.50 3.94 1.91 5.78 3.62 3.47 1.45 6.05 3.22
3.00 3.89 1.91 5.66 3.60 3.40 1.43 5.77 3.34

 
Figure 9: ATL and PCC as a Function of θ and Termination Criterion for Two Cutscores 

 
 The interaction of termination criterion and item selection method was of primary interest.  
This effect was also very small (ATL η2 < 0.001, PCC η2 < 0.001).  EB selection required slightly 
fewer items for both termination criteria (Table 9).  
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Table 9: Interaction of Termination Criterion  

and Item Selection for ATL and PCC  
 

     ATL      PCC 
Item Selection Mean SD Mean SD 

CB     
AMT 14.266 23.10 96.882 7.02 
SPRT 8.857 9.66 96.816 6.91 

EB  
AMT 13.639 23.05 96.582 7.48 
SPRT 8.808 9.37 96.591 7.20 

 
 
This result was also likely related to the above situation regarding examinees near the cutscores; 
under ideal conditions, EB item selection should have performed better with AMT.  However, in 
this case, AMT was able to easily classify examinees with the exception of the single group of 
examinees near the cutscore, regardless of item selection method.  Examinees at that point were 
administered the entire item bank with both selection methods, substantially increasing the 
average ATL for both and likely clouding any comparison.  
 
Item Selection 
 The main effect of item selection was minimal with both ATL (η2 < 0.001) and PCC (η2 = 
0.009).  CB selection used 0.338 items more on average, but also classified with slightly more 
accuracy, with 0.262 higher PCC (Table 5).  As previously discussed, this might be related to the 
fact that more items were needed to classify examinees very near the cutscore than were in the 
item bank.  Item selection method also had very little interaction with the other independent 
variables, the largest being a minimal interaction with IRT model (PCC η2 = 0.008).  The two 
item selection methods performed comparably with the GPCM in terms of ATL and PCC, but for 
the 3 PL, the PCC for EB selection was 0.513 lower than for CB selection (Table 10). 
 

Table 10: Interaction of IRT Model and  
Item Selection for ATL and PCC  

 
      ATL      PCC 
Item Selection Mean SD Mean SD 
CB  
   3PL Model 15.968 22.61 95.743 8.32 
   GPCM 7.155 9.56 97.955 5.05 
EB  
   3PL Model 15.968 22.46 95.230 8.91 
   GPCM 7.155 9.59 97.943 4.95 

 
 
IRT Model 
 IRT model had a large effect on ATL (η2 = 0.177) and a very large effect on PCC (η2 = 
0.793).  The large effect on ATL was due to the GPCM requiring less than half as many items 
(7.122) as the 3PL (15.664) on average (Table 5).  While substantial, this was actually smaller 
than expected; it was expected that the GPCM would need approximately one-third as many 
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items, since it contained three times as much information per item.  However, this shortfall was 
due to the sizable difference in PCC; the PCC with the GPCM (97.949) was much higher than the 
PCC with the 3PL (95.486).  Note that the PCC with the GPCM was above the nominal rate of 
95%; the procedure was so efficient that it actually classified examinees more accurately than it 
was designed for.  If the nominal PCC rate was relaxed to bring the observed PCC down to 95%, 
it would require even fewer items, and if it used only 2 fewer items on average, GPCM CCTs 
would indeed use one-third as many items as 3PL CCTs.  So, when this allowance is made, the 
expectation was supported. 
 IRT model also had modest two-way ATL interactions with termination criterion (η2 = 
0.033) and the number of classifications (η2 = 0.099).  When the 3PL was the psychometric 
model, the SPRT had an ATL of 11.248 and AMT had an ATL of 20.079, a difference of 8.831 
items (Table 11).   

 
Table 11: Interaction of IRT Model and 
Termination Criterion for ATL and PCC  

 
      ATL      PCC 
Termination Criterion Mean SD Mean SD 
AMT  
   3PL Model 20.079 29.35 95.510 8.78 
   GPCM 7.827 11.33 97.954 5.02 
SPRT  
   3PL Model 11.248 10.74 95.463 8.47 
   GPCM 6.417 7.36 97.944 4.98 

 
However, for the GPCM, these were 6.417 and 7.827, respectively, a difference of only 1.41 
items.  This substantial reduction in difference was again likely due to the fact that not enough 
information was available in the item bank for the AMT at examinee θ values near the cutscore, 
causing most CCTs for those examinees to administer every item in the bank.  Because the GPCM 
bank had one-third as many items, the overall average was lower. 
 The interaction between IRT model and proportion of correct classifications was also of 
primary interest in this study, and the hypothesis was supported that polytomous IRT’s advantage 
in efficiency would be greater for the two-cutscore case than the one-cutscore case (Table 12).   
 

Table 12: Interaction of IRT Model and 
Number of Cutscores for ATL and PCC  

 
    ATL      PCC 

Number of Cutscores Mean SD Mean SD
1 Cutscore 
   3PL Model 4.996 2.37 95.344 9.58
   GPCM 2.827 2.26 97.683 5.94
2 Cutscores 
   3PL Model 26.331 27.97 95.629 7.56
   GPCM 11.417 11.89 98.215 3.82

 
 
For the single-cutscore case, the 3PL ATL was 4.996 and the GPCM ATL was 2.827, for a 
reduction of approximately 44%.  In the two-cutscore case the 3PL ATL was 26.331 and the 
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GPCM ATL was 11.417, for a reduction of approximately 57%.  This interaction accounted for 
nearly 10% of the variance in ATL, and is seen in Figures 10a and 10b, where the disparity in 
ATL was much greater for the three-classification case.  Additionally, there was a moderate three-
way interaction of IRT model, number of classifications, and termination criterion (ATL η2 = 
0.026), where the advantage of the GPCM was even greater for AMT (Figure 11). 

 
Figure 10: ATL and PCC as a Function of θ and IRT Model for  

 
a. One Cutscore                                                        b.  Two Cutscores 

 
 

Figure 11: Interaction of IRT Model, Termination Criterion, and Number of Cutscores 
 

 
 

Number of Cutscores 
 The number of cutscores had a moderate effect on PCC (η2 = 0.022) and a substantial 
effect on ATL (η2 = 0.544).  The PCC for two cutscores (96.922) was slightly higher than for one 
(96.514), and the ATL for two (18.874) was much higher than for one (3.911) (Table 5).  The 
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number of cutscores also had an interaction with termination criterion (ATL η2 = 0.052).  There 
was very little difference between the termination criteria in terms of ATL for the single-cutscore 
case, with an AMT ATL of 4.155 and an SPRT ATL of 3.667 (Table 13).  However, the 
difference was large for the two-cutscore case, with an AMT ATL of 23.750 and a SPRT ATL of 
13.999.  Again, this might be due to the issue of examinees close to a cutscore in the two-cutscore 
case. 
 

Table 13: Interaction of Termination Criterion and 
Number of Cutscores for ATL and PCC  

 
      ATL      PCC 
Termination Criterion Mean SD Mean SD 
AMT  
   1 Cutscore 4.155 2.64 96.510 8.25 
   2 Cutscores 23.750 29.43 96.954 6.09 
SPRT  
   1 Cutscore 3.667 2.44 96.517 7.85 
   2 Cutscores 13.998 11.03 96.890 6.16 
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Chapter 5: Discussion and Conclusions 

 
 The 32 conditions in the study resulted in 5 main effects and 26 interactions.  The 
majority of these accounted for very small proportions of the total variance, as apparent in the 
ANOVA summary tables.  However, the primary expectation of the study was supported – that 
the advantage in efficiency offered by the GPCM would be even greater for the two-cutscore case 
than for the one-cutscore case.  This was true for both termination criteria, the SPRT and AMT, 
because the GPCM offers more information across θ, which is advantageous to AMT, and at any 
given cutscore on θ, which is advantageous to the SPRT. 
 
Main Effects 
 Several main effects had substantial strength.  The most obvious effect was that ATL was 
much higher for the two-cutscore case than for one cutscore, as found in previous multiple-
cutscore research (Spray, 1993; Eggen & Straetmans, 2000).  The presence of a second cutoff 
required the administration of more than four times as many items (18.874), on average, than the 
single cutscore case (3.911) (Table 5).  Even with more than four times as many items, the PCC 
for the two-cutscore case was only 0.412 higher.   
 Unlike the other independent variables, however, the number of cutscores is not often a 
choice that is presented to a test developer, but is usually necessitated by the intended application.  
Once the number of cutoffs required for a particular application is established, several choices are 
presented such as termination criterion and item selection algorithm.  Therefore, this effect is of 
little practical importance since it often cannot be avoided.  In any case, test developers that are 
aware of the greater test length of multiple-cutscore tests can ensure that adequate time is allotted, 
and the item bank has a sufficient amount of information to accurately classify examinees. 
 The GPCM, because of the greater amount of information per item, required less than half 
as many items (7.122) as the 3PL model (15.664) (Table 5).  This supports previous research (Lau 
& Wang, 1998; 1999) and also the use of GPCM-scored items that can be administered in a 
reasonable amount of time.  If GPCM-scored items for a certain test require three or four times as 
much time for an examinee to respond, this advantage in ATL is of little practical use. 
 The SPRT termination criterion required fewer items (8.833) to make a decision than 
AMT (13.953) with only a 0.029 difference in PCC.  However, this effect is increased by the issue 
noted in Chapter 4, where examinees with θ values of 0.5 and -0.5 were administered all the items 
in the bank because the bank did not have enough information at that point to make a decision 
with AMT.  If cutscores were more distant from these examinees, such as 0.75, the results might 
have been different, as they might have if more highly discriminating items were used. 
 CB item selection resulted in slightly higher ATL (11.562) than EB item selection 11.224, 
although it also led to slightly more accurate classification of examinees (Table 5).  There was 
also a relatively small effect of item bank, with the uniform bank resulting in slightly higher ATL 
(11.488) than the peaked bank (11.298), even though the peaked bank resulted in higher PCC 
(97.091) than the uniform bank (96.345) (Table 5).  This supports the use of a bank with more 
information near the cutscores, especially since the “uniform” bank was only uniform in its 
distribution of item location parameters and not the bank information function; the information 
function was still bell-shaped (Figure 7).  The small main effects for these two variables are not 
notable, as they were included in the study for possible interaction with the remaining dependent 
variables. 
 
 
Interactions 
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 The primary expectation of the current study was demonstrated, that polytomous CCTs 
are very efficient in their classification of examinees, and this was especially true for the multiple 
cutscore case.  With two cutscores, examinees were classified by the polytomous CCT with an 
ATL of only 11.418 items and a PCC of 98.215, compared with dichotomous ATL of 26.331 and 
PCC of 95.629 (Table 12).  The advantages were even greater when AMT was the termination 
criterion of the CCT, again possibly due to the inability of AMT to make a decision for the two-
cutscore case with dichotomous IRT.  
 The interaction of IRT model and the number of cutscores is important for two types of 
practical applications, both with one cutscore and multiple cutscores: testing programs that 
currently use CCT but not polytomous IRT, and testing programs that currently use polytomous 
IRT but not CCT.  The former is the common situation of testing programs that use variable-
length CCT methods to administer tests, but only make use of the ubiquitous dichotomously-
scored multiple-choice item.  But while polytomous IRT might offer substantial reductions in 
testing time with increased accuracy, not all testing applications lend themselves to the GPCM as 
it requires an explicit ordering of the item responses.  The nominal response IRT model (Bock, 
1972) represents an alternative option, where the item responses are not explicitly ordered but still 
scored polytomously.  The application of the nominal response model to CCT offers an 
opportunity for future research.  
 The latter situation is not as common, but represents the more appropriate opportunity for 
polytomous CCT.  In this situation, a polytomous IRT model such as the GPCM is already 
assumed as the psychometric model.  However, the examinations are being administered as 
conventional tests in which the examinee receives the same items in the same order, often with 
substantial numbers of items, especially if the test is primarily dichotomously scored and only a 
few polytomous items are present.  This is the case in testing programs that principally rely on 
dichotomous multiple-choice items, but also require a few higher-fidelity polytomous items such 
as an open-response item or a performance simulation.   
 The second most important result was the interaction of termination criterion and number 
of cutscores. In the one-cutscore case, the ATL for AMT (4.155) was only a fraction of an item 
more than the ATL for the SPRT (3.667), though this might be related to ATL being so low that it 
prevented any difference from being more noticeable.  The PCC for these two cases was also 
similar, with AMT PCC of 96.510 and SPRT PCC of 96.517 (Table 13).  Yet for the two-cutscore 
case, the difference between AMT and the SPRT was substantial: the ATL for AMT was 23.750 
and the ATL for the SPRT was 13.999, a difference of nearly 10 items.  PCC remained similar at 
96.954 for AMT and 96.890 for the SPRT.  This suggests that while AMT might be highly 
efficient and commonly used for one-cutscore CCT, it would be more advantageous for the test 
user to use the SPRT as the termination criterion for multiple-cutscore CCT.  However, it may be 
due to the aforementioned situation of there not being enough information in the bank at the two 
cutscores to classify those examinees whose θ value falls near the cutscore. 
 The next largest interaction with ATL as the dependent variable was termination criterion 
and IRT model, with results similar to the interaction with number of cutscores.  As found in 
previous CCT research with dichotomous IRT, the SPRT used fewer items (11.248) than AMT 
(20.079) but also had lower PCC (95.463) than AMT (95.510) (Table 11), though it should be 
noted that this might again be due to the lack of information in the dichotomous bank near the 
cutscores.  With the GPCM, the difference in ATL was much less (6.417 vs. 7.827), but the SPRT 
was more accurate (97.944) than AMT (95.510).  When considered in conjunction with the 
interaction of termination criterion and number of cutscores, it appears that termination criterion is 
of little consequence for single-cutscore tests with the GPCM. 
 An important expected effect that was not found was an interaction between termination 
criterion and item selection method.  It was expected that AMT would perform better with EB 
selection and SPRT with CB selection.  Since this does not agree with the results of previous 
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research (Spray & Reckase, 1994; Eggen, 1999; Eggen & Straetmans, 2000), it also presents an 
appropriate target for future research.  Lack of effect might be due to the previously described 
situation with examinees near the cutoff.  The bank information functions might have also played 
a part. 
 As expected, ATL with the GPCM (7.122) was much lower than ATL with the 3PL 
(15.664), as the GPCM offered a considerable advantage in available information.  This was 
previously demonstrated in the one-cutscore case by Lau and Wang (1998; 1999; 2000).  The 
difference between GPCM and the 3PL in the current study was accentuated by the fact that 
GPCM conditions had noticeably higher PCC even though they required less than half as many 
items.  IRT model does present a choice to the test developer, though this is occasionally 
restricted by the content of the test.  If items cannot easily be written so that the responses 
represent ordered steps, then an alternative IRT model must be chosen.  Frequently, this is the 
3PL, as it is appropriate for many types of multiple-choice items where examinee guessing is a 
factor, but other polytomous IRT models exist that can be applied, such as the nominal response 
model. 
 Additionally, the observed difference in nominal and observed PCC with the GPCM is of 
practical significance.  When designing a CCT with the GPCM, it is important for the test 
designer to remember that the observed error might result in less than nominal error.  In this case, 
it was less than half the nominal error of 5%.  In the case where the purpose of the test is to screen 
a large number of examinees, and a modest amount of misclassification is acceptable, the nominal 
PCC might be relaxed so that classifications can be made with fewer items.  This effect differs 
from all others in that it is a comparison of nominal and observed error within each condition, 
rather than the comparison of observed error across conditions. 
 
 
Future Research 
 Although this study had a discrete uniform θ distribution so that results could be 
examined conditional on θ, future research could consider a continuous distribution of examinees.  
This would likely affect observed PCC, as large numbers of examinees would not be clustered in 
close proximity to the cutscores used in this study, though other studies would likely use different 
cutscores.  However, the researcher would need to justify the use of a specific distribution, such as 
if it is previously established as in Eggen and Straetmans (2000).  
 Additionally, an interesting variable would be polytomous/dichotomous model 
misspecification.  IRT model misspecification in terms of assumed dimensions and number of 
parameters has been previously investigated with the SPRT termination criterion.  Although IRT-
based CCT with the SPRT is fairly robust in terms of the assumption of unidimensionality (Spray, 
Abdel-fattah, Huang, and Lau, 1997; Lau, 1998), it has been shown not to be robust to the choice 
of the number of IRT model parameters (Reckase, 1983; Kalohn & Spray, 1999; Jiao & Lau, 
2003).   The current study used separately generated sets of items that were explicitly 3PL or 
GPCM, but it is possible to take a data set of items that is able to be calibrated with a polytomous 
model and also calibrate it with a dichotomous model. 
 The lack of involvement of real data is itself a limitation of the current study.  Monte 
carlo simulations are useful and appropriate for preliminary research on a topic, but the absence of 
real data hampers generalizability.  A post hoc (real-data) simulation methodology would be quite 
useful for extending the line of research on polytomous multiple-cutscore CCT.  This would 
obviously provide greater fidelity to a specific application, but it would also enable the even 
comparison of polytomous IRT and dichotomous IRT, because the sample could be used to 
calibrate the items with competing models.  The use of a subset of the sample in a cross-validation 
approach might not be necessary, as that approach has little effect on post hoc simulation in one 
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study (Thompson & Weiss, 2007).  The limitation with post hoc simulation is the requirement of a 
large enough data set to obtain accurate item parameter estimates. 
 Three other suggestions for future research are related to items and their IRT parameters.   
Future research along these lines should use larger item banks.  A smaller bank size was chosen 
because past research (Lau & Wang, 1998; 1999; 2000) indicated that very few items are 
necessary, on average, to obtain accurate decisions.  However, in an effort to make more 
information available at regions of θ where it was most needed, another option would be to 
generate a larger item bank, but place a maximum constraint on test length so that the entire large 
bank is not administered to some examinees. 
 To provide a clearer comparison between bank characteristics, future research could 
generate item banks to reflect specific intended characteristics.  Uniform bank information 
functions could be higher and flatter, to provide more opportunity for adaptive item selection to 
select highly discriminating items across θ.  Likewise, the banks with bimodal distributions of 
item location/difficulty parameters could have bimodal information functions.  This can be 
accomplished by having more items in a narrower region around each cutoff. 
 Additionally, this study provided an optimal situation for polytomous multiple-cutscore 
CCT because the distance between item boundaries was specifically chosen so that items would 
provide a large amount of information at both cutoffs simultaneously.  In an actual testing 
program, it is unrealistic to expect this to be the case with every item.  A more realistic item pool, 
especially with real items, would provide a more accurate assessment of polytomous multiple-
cutscore CCT in realistic situations.  However, the use of a real item pool would preclude any 
manipulation of the bank information function. 
 Future research should also explore the gains in efficiency offered by polytomous CCT in 
the four-classification case.  This is the scoring situation of the NAEP examinations (Loomis & 
Bourque, 2001), which classifies examinees as Below Basic, Basic, Proficient, or Advanced.  The 
NAEP is a nationwide testing program where the cost/benefit ratio of developing a CCT program 
would be favorable, as it becomes more beneficial for larger-scale programs.  It can also be 
applied to testing for five categories, which represents the use of CCT to assign academic grades 
(Kingsbury & Weiss, 1984).  However, it must be noted that the efficiency of the test will likely 
decrease with an increase in the number of cutscores (Spray, 1993). 
 In addition, the relationship between nominal and observed error rates should be explored 
further.  Previous research has found a difference (e.g., Spray, 1993; Lin and Spray, 2000), but has 
yet to be explored as the primary focus of a study to determine the factors that play a major role in 
affecting this difference.  A higher amount of information available in the item bank would reduce 
observed error.  So would a cutscore that falls nearer to the extremes of the examinee distribution, 
which would make it easier to classify most examinees.  Maximum test lengths, on the other hand, 
end the test before the termination criterion can be satisfied, increasing error (Spray, 1993; 
Rudner, 2002). 
 Future research should also consider the application of composite hypotheses with the 
SPRT (Weitzman, 1982), where the statistical test evaluates whether the examinee’s θ is in the 
region of θ above or below the cutscore, rather than equal to the arbitrarily defined points θ1 and 
θ2.  This more accurately reflects the conceptual goal of CCT.  Additionally, this approach is 
equivalent to that of AMT under certain conditions (Thompson, 2007b), leading to a more unified 
theory of CCT. 
 
 
 
 
Conclusions 
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 This study demonstrated that the advantages offered by CCT with a polytomous IRT 
model (Lau & Wang, 1998; 1999; 2000) are present to an even greater extent with CCT with 
multiple cutscores.  Future research is necessary to further explore the relationship of secondary 
independent variables to this effect, but it is important to note just how efficient multiple-cutscore 
CCTs were with polytomous IRT:  only 11.418 items were needed, on average, and 98.215% of 
the simulated examinees were correctly classified.  The savings of testing time and expense across 
large numbers of examinees would be considerable if this CCT model was applied, and it presents 
a significant opportunity to testing programs where the model is feasible.  
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Appendix A: Dichotomous IRT Item Parameters 
 

Item 
Uniform 

b 
Normal 

b 
Bimodal 

b a  Item
Uniform 

b 
Normal 

b 
Bimodal 

b a 
1 -3.00 0.28 -0.47 1.24  46 -1.50 0.08 -0.26 1.23 
2 -2.97 1.30 -0.64 0.88  47 -1.47 -1.03 -0.98 0.89 
3 -2.93 -0.39 -0.89 1.13  48 -1.43 0.22 -1.64 0.99 
4 -2.90 0.78 -0.65 1.02  49 -1.40 -0.27 -0.83 1.29 
5 -2.87 0.58 -0.64 0.87  50 -1.37 -0.97 -0.59 1.10 
6 -2.83 -0.24 -1.04 0.84  51 -1.33 0.16 -0.25 1.09 
7 -2.80 0.94 -0.57 0.89  52 -1.30 1.70 -0.45 1.11 
8 -2.77 -0.54 -0.81 1.08  53 -1.27 0.36 -0.63 0.98 
9 -2.73 0.90 -0.84 0.87  54 -1.23 -0.28 -0.54 1.28 

10 -2.70 0.50 -0.51 1.22  55 -1.20 0.38 -0.61 0.95 
11 -2.67 -0.14 -1.02 1.21  56 -1.17 0.17 -0.76 0.97 
12 -2.63 -1.00 -0.88 1.12  57 -1.13 0.53 -0.48 1.32 
13 -2.60 -0.14 -0.60 0.54  58 -1.10 -0.20 -0.69 1.26 
14 -2.57 0.04 -0.93 1.08  59 -1.07 -0.12 -0.98 1.14 
15 -2.53 -0.72 -0.71 0.70  60 -1.03 -1.02 -0.82 1.02 
16 -2.50 0.77 -0.28 0.97  61 -1.00 -0.93 -0.52 1.33 
17 -2.47 -1.08 -0.88 0.96  62 -0.97 -1.41 -0.69 0.66 
18 -2.43 -0.80 -0.58 1.14  63 -0.93 1.27 -0.43 1.04 
19 -2.40 -2.30 -0.81 1.01  64 -0.90 0.42 -0.84 0.81 
20 -2.37 -1.04 -0.85 1.20  65 -0.87 1.56 -0.63 1.04 
21 -2.33 0.27 -0.94 0.82  66 -0.83 -1.08 -0.81 1.21 
22 -2.30 -0.69 -0.68 1.08  67 -0.80 -0.31 -0.63 0.94 
23 -2.27 0.23 -0.89 1.22  68 -0.77 1.67 -0.26 0.73 
24 -2.23 1.25 -0.57 0.88  69 -0.73 -0.52 -0.68 1.13 
25 -2.20 -0.85 -0.26 1.15  70 -0.70 1.41 -0.73 1.05 
26 -2.17 -0.71 -0.80 1.08  71 -0.67 -1.24 -0.35 1.02 
27 -2.13 -1.47 -0.89 0.98  72 -0.63 0.23 -0.93 1.20 
28 -2.10 -0.50 -0.33 0.85  73 -0.60 0.26 -0.78 1.05 
29 -2.07 2.03 -0.61 0.94  74 -0.57 0.89 -0.48 0.81 
30 -2.03 0.02 -1.41 0.84  75 -0.53 1.61 -0.75 1.03 
31 -2.00 0.23 -0.54 0.88  76 -0.50 -0.09 -0.45 0.91 
32 -1.97 1.07 -0.80 1.03  77 -0.47 0.14 -0.40 0.67 
33 -1.93 0.59 -0.73 1.02  78 -0.43 -1.02 -1.10 0.94 
34 -1.90 -0.15 -0.92 1.19  79 -0.40 0.24 -1.18 1.13 
35 -1.87 -0.78 -0.64 0.88  80 -0.37 -0.41 -0.51 0.46 
36 -1.83 -0.24 -0.04 0.95  81 -0.33 -0.87 -0.81 1.19 
37 -1.80 -0.09 -0.70 0.73  82 -0.30 -0.33 -0.85 0.80 
38 -1.77 -1.95 -0.54 1.04  83 -0.27 -0.20 -0.38 1.09 
39 -1.73 -0.60 -0.81 0.98  84 -0.23 -1.23 -0.82 0.98 
40 -1.70 -0.04 -0.51 1.01  85 -0.20 -0.49 -0.71 0.62 
41 -1.67 -1.41 -0.45 1.01  86 -0.17 -0.97 -0.28 0.76 
42 -1.63 -0.47 -0.47 0.94  87 -0.13 -0.94 -0.48 0.62 
43 -1.60 1.29 -0.46 1.28  88 -0.10 1.89 -0.63 0.90 
44 -1.57 0.84 -0.77 0.71  89 -0.07 0.35 -0.72 0.92 
45 -1.53 -0.18 -0.35 0.72  90 -0.03 1.83 -0.82 0.86 
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Appendix A (cont.): Dichotomous IRT Item Parameters 

Item 
Uniform 

b 
Normal 

b 
Bimodal 

b a  Item
Uniform 

b 
Normal 

b 
Bimodal 

b a 
91 0.00 -0.79 0.70 1.34  136 1.50 0.35 0.42 0.93 
92 0.03 1.30 0.76 1.03  137 1.53 -0.02 0.63 0.60 
93 0.07 1.15 1.16 0.96  138 1.57 1.02 0.18 1.08 
94 0.10 -0.32 0.77 0.56  139 1.60 -0.19 0.64 0.68 
95 0.13 -0.84 0.68 0.94  140 1.63 0.00 0.99 0.90 
96 0.17 -0.30 0.64 1.10  141 1.67 -0.58 0.68 0.94 
97 0.20 0.56 0.55 0.96  142 1.70 -0.29 0.77 0.93 
98 0.23 2.51 0.67 0.81  143 1.73 -1.47 0.95 0.60 
99 0.27 1.13 0.44 1.17  144 1.77 0.87 0.59 1.31 

100 0.30 1.18 0.53 0.71  145 1.80 1.64 0.62 0.98 
101 0.33 -0.13 0.61 0.94  146 1.83 -1.31 0.27 0.87 
102 0.37 0.18 0.71 1.30  147 1.87 1.00 0.75 0.98 
103 0.40 0.46 0.60 1.26  148 1.90 0.35 0.65 0.65 
104 0.43 -0.97 1.01 1.27  149 1.93 0.33 1.31 1.12 
105 0.47 0.55 0.46 0.90  150 1.97 0.15 0.40 0.63 
106 0.50 -1.60 0.94 0.90  151 2.00 -1.09 0.54 1.21 
107 0.53 -0.72 0.83 1.24  152 2.03 -0.49 0.17 0.76 
108 0.57 0.07 0.23 1.05  153 2.07 -0.59 0.50 1.26 
109 0.60 -0.89 0.28 0.90  154 2.10 2.31 0.30 1.05 
110 0.63 -0.61 0.83 1.05  155 2.13 0.52 0.64 1.11 
111 0.67 0.33 0.71 1.06  156 2.17 0.13 0.57 1.15 
112 0.70 -0.90 0.90 0.94  157 2.20 1.22 0.67 0.89 
113 0.73 -0.60 0.78 0.94  158 2.23 0.88 0.68 0.99 
114 0.77 0.82 0.59 0.84  159 2.27 -0.58 0.52 1.10 
115 0.80 0.68 0.92 0.75  160 2.30 -0.70 0.51 0.98 
116 0.83 0.35 0.90 1.00  161 2.33 -0.01 0.53 0.78 
117 0.87 -1.07 0.98 0.96  162 2.37 -0.15 0.74 0.69 
118 0.90 1.25 0.43 1.24  163 2.40 -1.03 0.74 1.05 
119 0.93 0.59 1.05 0.69  164 2.43 1.49 0.42 0.86 
120 0.97 -0.26 0.61 0.86  165 2.47 0.69 0.40 1.28 
121 1.00 -0.15 0.07 1.01  166 2.50 0.19 0.74 0.88 
122 1.03 0.83 0.93 1.32  167 2.53 -1.46 0.35 0.70 
123 1.07 -0.82 0.93 0.85  168 2.57 -1.35 1.16 1.29 
124 1.10 1.26 0.47 0.80  169 2.60 -0.89 0.67 0.79 
125 1.13 0.06 0.61 1.17  170 2.63 0.74 1.15 1.02 
126 1.17 1.50 0.67 1.06  171 2.67 0.39 0.78 1.28 
127 1.20 -2.01 0.89 0.75  172 2.70 -0.16 0.89 1.21 
128 1.23 -0.37 0.54 0.76  173 2.73 -0.92 0.51 1.25 
129 1.27 0.04 0.85 1.11  174 2.77 -0.94 0.70 0.86 
130 1.30 -0.34 0.28 1.20  175 2.80 -0.63 0.48 0.81 
131 1.33 -1.41 0.70 0.53  176 2.83 -0.10 0.92 0.92 
132 1.37 0.81 0.51 0.95  177 2.87 0.72 0.79 0.52 
133 1.40 0.03 0.83 1.18  178 2.90 -0.46 0.63 1.35 
134 1.43 0.91 0.94 1.02  179 2.93 -0.93 0.96 1.19 
135 1.47 0.05 0.60 1.36  180 2.97 0.97 0.64 0.69 

      181 3.00 0.33 0.53 1.04 
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Appendix B:  Polytomous IRT Item Parameters 
 

   Uniform   Normal   Bimodal  
Item a b1 b2 b3 b1 b2 b3 b1 b2 b3 

1 1.04 -4.35 -3.00 -1.65 0.14 1.49 2.84 -1.89 -0.54 0.81 
2 0.83 -4.25 -2.90 -1.55 -1.04 0.31 1.66 -2.63 -1.28 0.07 
3 1.14 -4.15 -2.80 -1.45 -1.40 -0.05 1.30 -2.28 -0.93 0.42 
4 0.96 -4.05 -2.70 -1.35 -3.25 -1.90 -0.55 -2.08 -0.73 0.62 
5 1.34 -3.95 -2.60 -1.25 -0.22 1.13 2.48 -2.17 -0.82 0.53 
6 1.17 -3.85 -2.50 -1.15 -1.21 0.14 1.49 -1.87 -0.52 0.83 
7 1.00 -3.75 -2.40 -1.05 -0.37 0.98 2.33 -2.24 -0.89 0.46 
8 0.61 -3.65 -2.30 -0.95 -1.57 -0.22 1.13 -2.27 -0.92 0.43 
9 1.04 -3.55 -2.20 -0.85 -0.11 1.24 2.59 -1.67 -0.32 1.03 

10 0.88 -3.45 -2.10 -0.75 -1.44 -0.09 1.26 -1.58 -0.23 1.12 
11 1.17 -3.35 -2.00 -0.65 -1.11 0.24 1.59 -1.74 -0.39 0.96 
12 0.97 -3.25 -1.90 -0.55 -2.29 -0.94 0.41 -1.79 -0.44 0.91 
13 0.97 -3.15 -1.80 -0.45 -3.08 -1.73 -0.38 -1.71 -0.36 0.99 
14 0.97 -3.05 -1.70 -0.35 -1.30 0.05 1.40 -2.26 -0.91 0.44 
15 0.91 -2.95 -1.60 -0.25 -0.43 0.92 2.27 -1.92 -0.57 0.78 
16 1.38 -2.85 -1.50 -0.15 -0.86 0.49 1.84 -1.60 -0.25 1.10 
17 1.03 -2.75 -1.40 -0.05 -0.57 0.78 2.13 -2.05 -0.70 0.65 
18 1.02 -2.65 -1.30 0.05 -0.82 0.53 1.88 -1.55 -0.20 1.15 
19 1.25 -2.55 -1.20 0.15 -1.65 -0.30 1.05 -1.99 -0.64 0.71 
20 1.07 -2.45 -1.10 0.25 0.37 1.72 3.07 -2.01 -0.66 0.69 
21 1.31 -2.35 -1.00 0.35 -1.38 -0.03 1.32 -2.81 -1.46 -0.11 
22 0.96 -2.25 -0.90 0.45 -1.38 -0.03 1.32 -1.69 -0.34 1.01 
23 1.37 -2.15 -0.80 0.55 -1.05 0.30 1.65 -1.93 -0.58 0.77 
24 1.24 -2.05 -0.70 0.65 -0.86 0.49 1.84 -2.46 -1.11 0.24 
25 1.30 -1.95 -0.60 0.75 -1.32 0.03 1.38 -2.06 -0.71 0.64 
26 0.82 -1.85 -0.50 0.85 -1.33 0.02 1.37 -2.18 -0.83 0.52 
27 0.73 -1.75 -0.40 0.95 -1.35 0.00 1.35 -1.95 -0.60 0.75 
28 0.98 -1.65 -0.30 1.05 -0.24 1.11 2.46 -2.02 -0.67 0.68 
29 1.08 -1.55 -0.20 1.15 -0.42 0.93 2.28 -2.18 -0.83 0.52 
30 0.95 -1.45 -0.10 1.25 -2.28 -0.93 0.42 -1.78 -0.43 0.92 
31 0.99 -1.35 0.00 1.35 0.38 1.73 3.08 -0.72 0.63 1.98 
32 1.01 -1.25 0.10 1.45 -1.58 -0.23 1.12 -0.82 0.53 1.88 
33 1.24 -1.15 0.20 1.55 -1.09 0.26 1.61 -0.88 0.47 1.82 
34 1.40 -1.05 0.30 1.65 -0.11 1.24 2.59 -0.69 0.66 2.01 
35 0.85 -0.95 0.40 1.75 -2.17 -0.82 0.53 -0.53 0.82 2.17 
36 1.06 -0.85 0.50 1.85 -2.72 -1.37 -0.02 -0.59 0.76 2.11 
37 1.12 -0.75 0.60 1.95 -0.04 1.31 2.66 -0.49 0.86 2.21 
38 1.18 -0.65 0.70 2.05 -1.52 -0.17 1.18 -0.68 0.67 2.02 
39 1.25 -0.55 0.80 2.15 -2.74 -1.39 -0.04 -0.61 0.74 2.09 
40 0.68 -0.45 0.90 2.25 -3.41 -2.06 -0.71 -0.40 0.95 2.30 
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Appendix B (cont.):  Polytomous IRT Item Parameters 

 
   Uniform   Normal   Bimodal  

Item a b1 b2 b3 b1 b2 b3 b1 b2 b3 
41 0.83 -0.35 1.00 2.35 -1.47 -0.12 1.23 -0.50 0.85 2.20 
42 1.33 -0.25 1.10 2.45 -1.46 -0.11 1.24 -0.19 1.16 2.51 
43 1.00 -0.15 1.20 2.55 -1.74 -0.39 0.96 -0.44 0.91 2.26 
44 0.66 -0.05 1.30 2.65 -3.24 -1.89 -0.54 -0.62 0.73 2.08 
45 0.69 0.05 1.40 2.75 -1.14 0.21 1.56 -0.76 0.59 1.94 
46 1.20 0.15 1.50 2.85 -1.25 0.10 1.45 -0.91 0.44 1.79 
47 1.14 0.25 1.60 2.95 -3.09 -1.74 -0.39 -0.67 0.68 2.03 
48 0.94 0.35 1.70 3.05 -0.91 0.44 1.79 -0.67 0.68 2.03 
49 1.01 0.45 1.80 3.15 -1.47 -0.12 1.23 -0.21 1.14 2.49 
50 0.76 0.55 1.90 3.25 -3.60 -2.25 -0.90 -0.76 0.59 1.94 
51 1.04 0.65 2.00 3.35 -2.22 -0.87 0.48 -0.31 1.04 2.39 
52 1.16 0.75 2.10 3.45 -0.57 0.78 2.13 -0.27 1.08 2.43 
53 0.96 0.85 2.20 3.55 -1.26 0.09 1.44 -0.32 1.03 2.38 
54 0.94 0.95 2.30 3.65 -1.54 -0.19 1.16 -0.74 0.61 1.96 
55 0.89 1.05 2.40 3.75 -3.09 -1.74 -0.39 -1.03 0.32 1.67 
56 1.31 1.15 2.50 3.85 -2.02 -0.67 0.68 -0.53 0.82 2.17 
57 1.07 1.25 2.60 3.95 -1.07 0.28 1.63 -1.37 -0.02 1.33 
58 0.89 1.35 2.70 4.05 -0.73 0.62 1.97 -1.14 0.21 1.56 
59 1.11 1.45 2.80 4.15 -2.33 -0.98 0.37 -0.55 0.80 2.15 
60 0.71 1.55 2.90 4.25 -1.56 -0.21 1.14 -0.74 0.61 1.96 
61 0.85 1.65 3.00 4.35 -2.17 -0.82 0.53 -0.73 0.62 1.97 
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Appendix C: Dichotomous IRT Observed and Predicted Responses 
 θ = -3 θ = -2 θ = -1 θ = 0 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 

1 0.26 0.25 0.00 0.30 0.28 0.02 0.42 0.44 -0.01 0.80 0.80 0.00 
2 0.26 0.27 -0.01 0.33 0.34 -0.01 0.50 0.53 -0.02 0.78 0.79 -0.01 
3 0.27 0.26 0.00 0.33 0.33 0.00 0.59 0.59 0.00 0.89 0.89 0.00 
4 0.26 0.26 0.00 0.31 0.32 0.00 0.51 0.51 -0.01 0.82 0.82 0.01 
5 0.29 0.27 0.02 0.34 0.34 0.01 0.53 0.53 0.01 0.80 0.79 0.01 
6 0.29 0.29 0.00 0.43 0.40 0.03 0.63 0.64 -0.01 0.85 0.86 -0.01 
7 0.28 0.27 0.01 0.30 0.33 -0.03 0.52 0.51 0.01 0.77 0.78 -0.01 
8 0.23 0.26 -0.03 0.37 0.33 0.04 0.57 0.56 0.01 0.85 0.86 -0.01 
9 0.29 0.28 0.01 0.36 0.36 -0.01 0.59 0.58 0.01 0.84 0.83 0.01 

10 0.26 0.25 0.00 0.26 0.28 -0.02 0.47 0.45 0.02 0.83 0.81 0.02 
11 0.25 0.26 -0.01 0.35 0.34 0.02 0.62 0.63 -0.02 0.91 0.92 -0.01 
12 0.27 0.26 0.01 0.34 0.33 0.02 0.58 0.58 0.00 0.88 0.88 -0.01 
13 0.30 0.32 -0.02 0.39 0.41 -0.02 0.58 0.56 0.02 0.75 0.73 0.02 
14 0.26 0.27 -0.01 0.32 0.34 -0.03 0.62 0.60 0.02 0.86 0.89 -0.03 
15 0.31 0.30 0.01 0.37 0.38 -0.01 0.56 0.56 0.00 0.75 0.78 -0.03 
16 0.24 0.26 -0.02 0.24 0.29 -0.05 0.45 0.43 0.02 0.70 0.71 -0.01 
17 0.28 0.27 0.01 0.32 0.35 -0.04 0.59 0.59 0.00 0.87 0.86 0.01 
18 0.25 0.26 -0.01 0.32 0.30 0.02 0.47 0.48 -0.01 0.81 0.82 -0.01 
19 0.25 0.27 -0.02 0.33 0.34 0.00 0.55 0.56 -0.01 0.85 0.85 0.00 
20 0.26 0.26 0.00 0.31 0.32 -0.01 0.58 0.57 0.02 0.88 0.89 -0.01 
21 0.26 0.29 -0.03 0.38 0.39 -0.01 0.61 0.61 0.00 0.82 0.84 -0.02 
22 0.26 0.26 0.00 0.30 0.31 -0.01 0.52 0.52 0.00 0.83 0.83 0.00 
23 0.26 0.26 0.01 0.32 0.32 0.00 0.59 0.58 0.01 0.91 0.90 0.01 
24 0.26 0.27 -0.01 0.32 0.33 -0.01 0.50 0.51 0.00 0.79 0.78 0.02 
25 0.24 0.25 -0.01 0.27 0.27 0.00 0.38 0.39 -0.01 0.71 0.72 -0.01 
26 0.26 0.26 0.00 0.32 0.32 -0.01 0.55 0.56 -0.01 0.85 0.86 -0.01 
27 0.28 0.27 0.01 0.36 0.35 0.01 0.60 0.59 0.01 0.87 0.86 0.01 
28 0.25 0.27 -0.01 0.28 0.31 -0.03 0.46 0.46 0.01 0.70 0.71 -0.01 
29 0.27 0.27 0.00 0.32 0.32 0.00 0.52 0.51 0.00 0.81 0.80 0.01 
30 0.32 0.32 0.00 0.50 0.48 0.03 0.74 0.73 0.01 0.90 0.91 -0.01 
31 0.27 0.27 0.00 0.33 0.33 0.00 0.50 0.50 0.00 0.78 0.77 0.01 
32 0.27 0.27 0.00 0.31 0.33 -0.03 0.55 0.56 -0.02 0.86 0.85 0.01 
33 0.27 0.26 0.01 0.34 0.32 0.01 0.53 0.54 -0.01 0.84 0.84 0.00 
34 0.27 0.26 0.00 0.33 0.33 0.00 0.60 0.60 0.01 0.91 0.90 0.01 
35 0.30 0.27 0.03 0.33 0.34 0.00 0.53 0.53 0.00 0.79 0.79 0.00 
36 0.26 0.26 0.01 0.29 0.28 0.01 0.42 0.38 0.04 0.64 0.64 0.00 
37 0.27 0.29 -0.02 0.41 0.37 0.04 0.55 0.56 -0.01 0.77 0.78 -0.01 
38 0.28 0.26 0.02 0.29 0.30 -0.01 0.47 0.48 -0.01 0.78 0.79 -0.01 
39 0.27 0.27 0.00 0.34 0.34 0.00 0.57 0.57 0.00 0.85 0.85 0.00 
40 0.27 0.26 0.01 0.31 0.30 0.01 0.48 0.48 0.01 0.76 0.78 -0.02 
41 0.26 0.26 0.00 0.30 0.30 0.00 0.46 0.46 0.00 0.75 0.76 -0.01 
42 0.24 0.26 -0.02 0.29 0.31 -0.02 0.49 0.48 0.01 0.75 0.76 -0.01 
43 0.25 0.25 0.00 0.28 0.28 0.00 0.41 0.43 -0.02 0.80 0.80 0.00 
44 0.30 0.30 0.00 0.39 0.39 0.00 0.54 0.57 -0.03 0.78 0.79 -0.01 
45 0.26 0.28 -0.02 0.36 0.34 0.03 0.48 0.48 0.00 0.72 0.70 0.02 
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Appendix C (cont.): Dichotomous IRT Observed and Predicted Responses 
 θ = 1 θ = 2 θ = 3 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 

1 0.97 0.97 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
2 0.94 0.94 0.00 0.98 0.99 0.00 1.00 1.00 0.00 
3 0.98 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
4 0.95 0.96 -0.01 0.99 0.99 0.00 1.00 1.00 0.00 
5 0.94 0.94 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
6 0.96 0.96 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
7 0.93 0.94 -0.01 0.99 0.99 0.00 0.99 1.00 0.00 
8 0.98 0.97 0.01 1.00 1.00 0.00 1.00 1.00 0.00 
9 0.95 0.95 0.00 0.99 0.99 0.00 1.00 1.00 0.00 

10 0.97 0.97 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
11 0.99 0.99 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
12 0.98 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
13 0.85 0.86 -0.01 0.94 0.94 0.00 0.99 0.97 0.01 
14 0.98 0.98 0.01 1.00 1.00 0.00 1.00 1.00 0.00 
15 0.92 0.91 0.01 0.97 0.97 -0.01 0.99 0.99 0.00 
16 0.90 0.92 -0.02 0.98 0.98 0.00 1.00 1.00 0.00 
17 0.97 0.97 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
18 0.97 0.97 0.00 0.99 1.00 0.00 1.00 1.00 0.00 
19 0.97 0.97 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
20 0.98 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
21 0.96 0.95 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
22 0.97 0.97 0.00 0.99 1.00 0.00 1.00 1.00 0.00 
23 0.98 0.99 -0.01 1.00 1.00 0.00 1.00 1.00 0.00 
24 0.92 0.94 -0.01 0.98 0.98 0.00 1.00 1.00 0.00 
25 0.93 0.94 -0.01 0.99 0.99 0.00 1.00 1.00 0.00 
26 0.96 0.97 -0.01 1.00 1.00 0.00 1.00 1.00 0.00 
27 0.97 0.97 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
28 0.93 0.90 0.02 0.97 0.98 0.00 0.99 0.99 0.00 
29 0.95 0.95 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
30 0.98 0.98 0.01 1.00 0.99 0.00 1.00 1.00 0.00 
31 0.93 0.93 0.00 0.98 0.98 0.00 1.00 1.00 0.00 
32 0.96 0.97 -0.01 0.99 1.00 -0.01 1.00 1.00 0.00 
33 0.95 0.97 -0.01 0.99 0.99 0.00 1.00 1.00 0.00 
34 0.98 0.99 -0.01 1.00 1.00 0.00 1.00 1.00 0.00 
35 0.94 0.94 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
36 0.89 0.88 0.00 0.98 0.97 0.00 0.99 1.00 -0.01 
37 0.90 0.92 -0.02 0.97 0.98 0.00 0.99 0.99 0.00 
38 0.95 0.95 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
39 0.96 0.97 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
40 0.94 0.95 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
41 0.95 0.94 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
42 0.95 0.94 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
43 0.96 0.97 -0.01 1.00 1.00 0.00 1.00 1.00 0.00 
44 0.93 0.92 0.01 0.98 0.98 0.00 0.99 0.99 0.00 
45 0.88 0.88 0.00 0.96 0.96 0.00 0.99 0.99 0.00 
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Appendix C (cont.): Dichotomous IRT Observed and Predicted Responses 
 θ = -3 θ = -2 θ = -1 θ = 0 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
46 0.25 0.25 -0.01 0.27 0.27 0.00 0.38 0.38 0.00 0.73 0.73 0.01 
47 0.28 0.28 -0.01 0.36 0.38 -0.03 0.62 0.62 0.00 0.85 0.86 -0.01 
48 0.34 0.32 0.02 0.54 0.52 0.02 0.81 0.81 0.00 0.95 0.96 -0.01 
49 0.26 0.26 0.00 0.30 0.30 -0.01 0.57 0.56 0.02 0.87 0.90 -0.03 
50 0.25 0.26 -0.01 0.33 0.30 0.03 0.50 0.49 0.01 0.84 0.81 0.03 
51 0.25 0.26 -0.01 0.30 0.28 0.02 0.40 0.40 0.00 0.71 0.71 0.00 
52 0.25 0.26 0.00 0.29 0.29 0.00 0.42 0.45 -0.03 0.77 0.78 0.00 
53 0.27 0.26 0.00 0.34 0.32 0.02 0.47 0.51 -0.04 0.79 0.81 -0.02 
54 0.26 0.25 0.00 0.29 0.28 0.00 0.46 0.45 0.01 0.82 0.82 -0.01 
55 0.26 0.27 -0.01 0.30 0.32 -0.02 0.51 0.51 -0.01 0.79 0.80 0.00 
56 0.27 0.27 0.00 0.30 0.34 -0.04 0.55 0.55 0.00 0.83 0.83 -0.01 
57 0.22 0.25 -0.03 0.27 0.27 0.00 0.43 0.43 0.00 0.82 0.81 0.00 
58 0.26 0.26 0.01 0.29 0.29 0.00 0.50 0.51 0.00 0.87 0.86 0.01 
59 0.25 0.27 -0.01 0.32 0.34 -0.02 0.63 0.62 0.01 0.90 0.90 0.00 
60 0.27 0.27 0.01 0.33 0.34 -0.01 0.55 0.57 -0.01 0.85 0.85 -0.01 
61 0.26 0.25 0.01 0.29 0.28 0.02 0.46 0.44 0.02 0.81 0.82 -0.02 
62 0.33 0.30 0.03 0.39 0.39 0.00 0.56 0.56 0.00 0.73 0.76 -0.03 
63 0.25 0.26 -0.01 0.29 0.29 -0.01 0.45 0.45 0.00 0.75 0.76 -0.01 
64 0.28 0.29 -0.01 0.40 0.38 0.02 0.59 0.58 0.01 0.82 0.82 0.00 
65 0.28 0.26 0.02 0.32 0.31 0.00 0.51 0.51 0.00 0.81 0.82 -0.01 
66 0.25 0.26 -0.01 0.31 0.31 0.00 0.54 0.55 -0.01 0.88 0.88 0.00 
67 0.26 0.27 0.00 0.33 0.33 0.00 0.49 0.52 -0.02 0.81 0.80 0.01 
68 0.28 0.27 0.01 0.29 0.33 -0.04 0.46 0.46 -0.01 0.69 0.69 0.00 
69 0.28 0.26 0.02 0.31 0.31 0.00 0.52 0.51 0.01 0.85 0.84 0.01 
70 0.27 0.26 0.00 0.33 0.32 0.01 0.56 0.54 0.03 0.84 0.84 0.00 
71 0.24 0.26 -0.02 0.29 0.29 0.00 0.44 0.43 0.00 0.71 0.74 -0.03 
72 0.26 0.26 0.00 0.33 0.33 0.00 0.62 0.60 0.02 0.90 0.90 0.00 
73 0.24 0.26 -0.03 0.35 0.33 0.03 0.54 0.55 -0.01 0.83 0.85 -0.02 
74 0.29 0.27 0.01 0.32 0.33 -0.02 0.51 0.50 0.02 0.78 0.75 0.04 
75 0.26 0.26 0.00 0.33 0.33 0.00 0.55 0.54 0.01 0.85 0.84 0.01 
76 0.24 0.26 -0.02 0.30 0.31 -0.01 0.49 0.47 0.02 0.76 0.75 0.01 
77 0.26 0.29 -0.03 0.35 0.35 -0.01 0.50 0.50 0.00 0.71 0.71 0.00 
78 0.30 0.28 0.01 0.41 0.39 0.02 0.64 0.66 -0.01 0.87 0.89 -0.02 
79 0.28 0.27 0.00 0.36 0.38 -0.02 0.70 0.69 0.01 0.93 0.93 -0.01 
80 0.35 0.34 0.01 0.43 0.43 0.00 0.53 0.55 -0.02 0.71 0.70 0.01 
81 0.27 0.26 0.01 0.32 0.31 0.01 0.54 0.55 -0.01 0.88 0.88 0.00 
82 0.30 0.29 0.01 0.36 0.38 -0.02 0.59 0.59 0.00 0.80 0.82 -0.02 
83 0.23 0.26 -0.03 0.26 0.29 -0.02 0.42 0.43 -0.01 0.75 0.75 0.00 
84 0.26 0.27 -0.01 0.34 0.34 0.00 0.56 0.57 -0.01 0.84 0.85 0.00 
85 0.31 0.31 0.00 0.39 0.40 -0.02 0.57 0.57 0.01 0.75 0.76 -0.01 
86 0.29 0.27 0.02 0.33 0.32 0.01 0.47 0.46 0.01 0.68 0.69 -0.01 
87 0.29 0.30 -0.01 0.36 0.38 -0.02 0.51 0.53 -0.01 0.74 0.72 0.03 
88 0.29 0.27 0.02 0.33 0.33 0.00 0.50 0.52 -0.02 0.78 0.79 -0.01 
89 0.25 0.27 -0.02 0.36 0.34 0.02 0.55 0.54 0.01 0.83 0.82 0.01 
90 0.27 0.28 -0.01 0.37 0.36 0.01 0.58 0.58 0.01 0.84 0.83 0.02 
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Appendix C (cont.): Dichotomous IRT Observed and Predicted Responses 
 θ = 1 θ = 2 θ = 3 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
46 0.95 0.95 0.00 1.00 0.99 0.00 1.00 1.00 0.00 
47 0.97 0.96 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
48 0.99 0.99 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
49 0.99 0.99 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
50 0.96 0.96 0.00 1.00 0.99 0.00 1.00 1.00 0.00 
51 0.94 0.93 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
52 0.96 0.95 0.00 1.00 0.99 0.00 1.00 1.00 0.00 
53 0.96 0.95 0.01 0.99 0.99 -0.01 1.00 1.00 0.00 
54 0.98 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
55 0.95 0.95 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
56 0.97 0.96 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
57 0.97 0.97 -0.01 1.00 1.00 0.00 1.00 1.00 0.00 
58 0.98 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
59 0.99 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
60 0.97 0.97 0.00 1.00 0.99 0.00 1.00 1.00 0.00 
61 0.98 0.98 0.01 1.00 1.00 0.00 1.00 1.00 0.00 
62 0.90 0.90 0.00 0.98 0.97 0.01 0.99 0.99 0.00 
63 0.95 0.95 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
64 0.95 0.95 0.01 0.98 0.99 -0.01 1.00 1.00 0.00 
65 0.96 0.96 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
66 0.98 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
67 0.95 0.95 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
68 0.87 0.87 0.00 0.97 0.96 0.01 0.99 0.99 0.00 
69 0.97 0.97 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
70 0.97 0.97 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
71 0.93 0.93 -0.01 0.99 0.99 0.00 1.00 1.00 0.00 
72 0.98 0.99 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
73 0.96 0.97 -0.01 1.00 1.00 0.00 1.00 1.00 0.00 
74 0.91 0.91 -0.01 0.98 0.98 0.00 0.99 0.99 0.00 
75 0.96 0.97 -0.01 1.00 0.99 0.00 1.00 1.00 0.00 
76 0.93 0.93 0.00 0.98 0.98 0.00 1.00 1.00 0.00 
77 0.88 0.87 0.01 0.96 0.95 0.00 0.99 0.99 0.00 
78 0.98 0.98 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
79 0.99 0.99 0.00 1.00 1.00 0.00 1.00 1.00 0.00 
80 0.83 0.82 0.01 0.91 0.91 0.00 0.95 0.96 -0.01 
81 0.99 0.98 0.01 1.00 1.00 0.00 1.00 1.00 0.00 
82 0.95 0.94 0.00 0.99 0.99 0.01 1.00 1.00 0.00 
83 0.96 0.95 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
84 0.97 0.97 0.01 1.00 0.99 0.00 1.00 1.00 0.00 
85 0.90 0.89 0.01 0.95 0.96 -0.01 0.99 0.99 0.00 
86 0.87 0.88 -0.01 0.97 0.96 0.00 0.99 0.99 0.00 
87 0.88 0.87 0.01 0.95 0.95 0.00 0.99 0.98 0.01 
88 0.95 0.94 0.01 0.99 0.99 0.00 1.00 1.00 0.00 
89 0.94 0.95 -0.01 0.99 0.99 0.00 0.99 1.00 0.00 
90 0.95 0.95 0.00 0.99 0.99 0.00 1.00 1.00 0.00 
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Appendix C (cont.): Dichotomous IRT Observed and Predicted Responses 
 θ = -3 θ = -2 θ = -1 θ = 0 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
91 0.24 0.25 -0.01 0.26 0.25 0.01 0.28 0.27 0.01 0.39 0.38 0.02 
92 0.25 0.25 0.00 0.24 0.26 -0.01 0.27 0.28 -0.01 0.44 0.41 0.04 
93 0.25 0.25 0.00 0.27 0.25 0.02 0.26 0.27 -0.01 0.34 0.35 -0.01 
94 0.27 0.27 0.00 0.30 0.30 0.00 0.38 0.37 0.01 0.49 0.49 -0.01 
95 0.25 0.25 -0.01 0.27 0.26 0.01 0.28 0.30 -0.02 0.45 0.44 0.01 
96 0.24 0.25 -0.01 0.26 0.26 0.01 0.28 0.28 -0.01 0.41 0.42 -0.02 
97 0.24 0.25 -0.01 0.27 0.26 0.01 0.33 0.31 0.02 0.47 0.47 0.00 
98 0.25 0.26 -0.01 0.28 0.27 0.01 0.31 0.32 -0.01 0.46 0.46 -0.01 
99 0.24 0.25 -0.02 0.27 0.26 0.01 0.28 0.29 -0.01 0.46 0.47 -0.01 

100 0.29 0.26 0.03 0.27 0.28 -0.01 0.37 0.35 0.02 0.49 0.51 -0.02 
101 0.26 0.25 0.00 0.28 0.26 0.02 0.31 0.30 0.00 0.44 0.46 -0.01 
102 0.21 0.25 -0.04 0.23 0.25 -0.02 0.27 0.27 0.01 0.35 0.38 -0.03 
103 0.24 0.25 -0.01 0.25 0.25 0.00 0.27 0.27 0.00 0.42 0.41 0.01 
104 0.26 0.25 0.01 0.28 0.25 0.03 0.28 0.26 0.02 0.31 0.33 -0.02 
105 0.27 0.25 0.02 0.29 0.27 0.02 0.33 0.32 0.01 0.51 0.50 0.01 
106 0.26 0.25 0.01 0.27 0.26 0.01 0.28 0.29 0.00 0.38 0.39 -0.01 
107 0.26 0.25 0.01 0.24 0.25 -0.02 0.26 0.27 -0.01 0.38 0.36 0.01 
108 0.25 0.25 0.00 0.27 0.26 0.01 0.33 0.33 0.01 0.58 0.55 0.03 
109 0.26 0.26 0.01 0.27 0.27 0.00 0.36 0.34 0.02 0.54 0.55 0.00 
110 0.25 0.25 -0.01 0.28 0.26 0.03 0.28 0.28 0.00 0.40 0.39 0.01 
111 0.24 0.25 -0.01 0.28 0.26 0.02 0.26 0.28 -0.02 0.42 0.41 0.01 
112 0.27 0.25 0.02 0.23 0.26 -0.02 0.30 0.28 0.02 0.42 0.39 0.02 
113 0.24 0.25 -0.01 0.27 0.26 0.01 0.31 0.29 0.02 0.40 0.42 -0.02 
114 0.27 0.25 0.01 0.28 0.27 0.01 0.32 0.32 0.00 0.48 0.48 0.00 
115 0.28 0.26 0.02 0.28 0.27 0.01 0.31 0.31 0.00 0.43 0.43 0.01 
116 0.26 0.25 0.01 0.26 0.26 0.01 0.27 0.28 -0.01 0.40 0.38 0.02 
117 0.29 0.25 0.04 0.26 0.26 0.01 0.28 0.28 0.00 0.35 0.38 -0.03 
118 0.26 0.25 0.01 0.25 0.25 -0.01 0.25 0.29 -0.03 0.46 0.47 -0.01 
119 0.27 0.26 0.01 0.29 0.27 0.02 0.32 0.31 0.01 0.42 0.42 0.00 
120 0.25 0.25 -0.01 0.28 0.27 0.01 0.33 0.32 0.02 0.48 0.47 0.01 
121 0.26 0.25 0.00 0.27 0.27 0.00 0.35 0.35 0.00 0.61 0.60 0.01 
122 0.25 0.25 0.00 0.24 0.25 -0.01 0.25 0.26 -0.01 0.32 0.33 -0.01 
123 0.23 0.25 -0.03 0.26 0.26 0.00 0.32 0.29 0.02 0.40 0.41 -0.01 
124 0.26 0.26 0.01 0.29 0.28 0.02 0.34 0.34 0.00 0.52 0.51 0.01 
125 0.22 0.25 -0.04 0.26 0.25 0.01 0.28 0.28 0.00 0.41 0.42 -0.01 
126 0.27 0.25 0.02 0.25 0.26 -0.01 0.29 0.29 0.01 0.44 0.42 0.02 
127 0.25 0.26 -0.01 0.24 0.27 -0.03 0.32 0.31 0.01 0.41 0.43 -0.02 
128 0.27 0.26 0.01 0.30 0.28 0.02 0.34 0.34 0.00 0.50 0.50 0.00 
129 0.25 0.25 -0.01 0.26 0.25 0.01 0.28 0.27 0.01 0.38 0.38 0.00 
130 0.28 0.25 0.03 0.24 0.26 -0.02 0.30 0.30 0.00 0.53 0.52 0.01 
131 0.30 0.28 0.03 0.32 0.31 0.01 0.41 0.38 0.03 0.52 0.51 0.01 
132 0.25 0.25 -0.01 0.26 0.26 -0.01 0.30 0.31 -0.01 0.50 0.48 0.02 
133 0.24 0.25 -0.01 0.23 0.25 -0.02 0.24 0.27 -0.03 0.42 0.37 0.05 
134 0.25 0.25 0.00 0.26 0.26 0.00 0.26 0.28 -0.02 0.39 0.37 0.02 
135 0.25 0.25 0.00 0.27 0.25 0.02 0.26 0.27 -0.01 0.39 0.40 -0.01 
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Appendix C (cont.): Dichotomous IRT Observed and Predicted Responses 
 θ = 1 θ = 2 θ = 3 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
91 0.75 0.75 0.00 0.97 0.96 0.00 1.00 1.00 0.00 
92 0.69 0.70 -0.01 0.93 0.92 0.00 0.99 0.99 0.01 
93 0.56 0.58 -0.01 0.88 0.85 0.03 0.97 0.97 0.00 
94 0.68 0.67 0.01 0.82 0.82 0.00 0.93 0.92 0.01 
95 0.76 0.72 0.04 0.92 0.92 0.00 0.98 0.98 0.00 
96 0.74 0.75 0.00 0.95 0.95 0.00 0.99 0.99 0.00 
97 0.76 0.76 0.00 0.94 0.94 0.00 0.99 0.99 0.00 
98 0.72 0.71 0.01 0.91 0.90 0.01 0.97 0.97 -0.01 
99 0.80 0.82 -0.02 0.97 0.97 0.00 1.00 1.00 0.00 
100 0.75 0.73 0.02 0.89 0.89 0.00 0.97 0.96 0.00 
101 0.70 0.74 -0.03 0.94 0.93 0.01 0.99 0.98 0.00 
102 0.77 0.74 0.03 0.96 0.96 0.00 1.00 1.00 0.00 
103 0.77 0.78 -0.01 0.96 0.97 -0.01 0.99 1.00 0.00 
104 0.64 0.62 0.02 0.90 0.92 -0.02 0.99 0.99 0.00 
105 0.79 0.77 0.01 0.94 0.94 0.00 0.99 0.99 0.00 
106 0.67 0.64 0.03 0.90 0.88 0.03 0.97 0.97 0.00 
107 0.68 0.69 -0.01 0.94 0.94 -0.01 0.99 0.99 0.00 
108 0.84 0.85 -0.01 0.96 0.97 -0.02 1.00 1.00 0.00 
109 0.82 0.81 0.00 0.93 0.95 -0.02 0.98 0.99 -0.01 
110 0.69 0.68 0.01 0.91 0.92 -0.01 0.99 0.99 0.01 
111 0.71 0.72 -0.01 0.93 0.93 0.00 0.99 0.99 0.00 
112 0.63 0.66 -0.02 0.90 0.89 0.01 0.97 0.98 0.00 
113 0.70 0.69 0.01 0.90 0.91 -0.01 0.98 0.98 0.00 
114 0.73 0.73 0.00 0.92 0.91 0.01 0.98 0.98 0.00 
115 0.62 0.64 -0.02 0.85 0.85 0.00 0.94 0.95 -0.01 
116 0.63 0.66 -0.02 0.90 0.90 -0.01 0.98 0.98 0.00 
117 0.65 0.63 0.02 0.88 0.88 0.00 0.99 0.97 0.01 
118 0.83 0.83 0.00 0.97 0.97 0.00 1.00 1.00 0.00 
119 0.63 0.61 0.01 0.82 0.82 0.00 0.93 0.93 -0.01 
120 0.74 0.73 0.01 0.93 0.91 0.02 0.98 0.98 0.00 
121 0.87 0.87 0.00 0.97 0.97 0.00 0.99 1.00 0.00 
122 0.64 0.65 -0.01 0.94 0.94 0.00 0.99 0.99 0.00 
123 0.66 0.64 0.01 0.87 0.87 0.00 0.96 0.96 0.00 
124 0.77 0.76 0.01 0.93 0.92 0.01 0.96 0.98 -0.01 
125 0.75 0.76 -0.02 0.96 0.96 0.01 0.99 0.99 0.00 
126 0.74 0.73 0.01 0.94 0.94 0.00 0.99 0.99 0.00 
127 0.67 0.65 0.02 0.85 0.85 0.00 0.95 0.95 0.00 
128 0.75 0.73 0.02 0.91 0.90 0.00 0.97 0.97 -0.01 
129 0.67 0.68 -0.01 0.95 0.92 0.02 0.99 0.99 0.00 
130 0.86 0.86 0.00 0.97 0.98 -0.01 1.00 1.00 0.00 
131 0.67 0.68 -0.01 0.83 0.82 0.00 0.92 0.92 0.01 
132 0.79 0.77 0.03 0.94 0.94 0.00 0.99 0.99 0.00 
133 0.69 0.69 0.00 0.93 0.94 0.00 0.99 0.99 0.00 
134 0.62 0.65 -0.03 0.88 0.90 -0.02 0.98 0.98 0.00 
135 0.80 0.79 0.01 0.97 0.97 0.00 1.00 1.00 0.00 
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Appendix C (cont.): Dichotomous IRT Observed and Predicted Responses 
 θ = -3 θ = -2 θ = -1 θ = 0 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
136 0.25 0.25 -0.01 0.29 0.27 0.02 0.32 0.32 0.00 0.52 0.51 0.01 
137 0.26 0.27 -0.01 0.29 0.30 -0.01 0.37 0.37 0.00 0.48 0.51 -0.03 
138 0.23 0.25 -0.03 0.26 0.26 0.00 0.33 0.33 0.00 0.58 0.56 0.01 
139 0.29 0.26 0.03 0.29 0.28 0.01 0.37 0.35 0.02 0.51 0.49 0.01 
140 0.26 0.25 0.01 0.27 0.26 0.01 0.28 0.28 0.00 0.38 0.39 0.00 
141 0.25 0.25 0.00 0.25 0.26 -0.01 0.29 0.30 0.00 0.44 0.44 0.00 
142 0.28 0.25 0.03 0.27 0.26 0.01 0.29 0.29 0.00 0.44 0.42 0.02 
143 0.23 0.26 -0.03 0.28 0.29 -0.01 0.32 0.34 -0.02 0.44 0.46 -0.01 
144 0.27 0.25 0.02 0.24 0.25 -0.01 0.25 0.27 -0.02 0.44 0.41 0.03 
145 0.24 0.25 -0.01 0.26 0.26 0.00 0.29 0.30 0.00 0.43 0.45 -0.01 
146 0.24 0.26 -0.01 0.28 0.28 0.00 0.35 0.35 0.00 0.56 0.55 0.01 
147 0.24 0.25 -0.01 0.28 0.26 0.02 0.29 0.29 0.00 0.40 0.42 -0.02 
148 0.30 0.26 0.04 0.29 0.29 0.00 0.36 0.35 0.00 0.49 0.50 0.00 
149 0.24 0.25 -0.01 0.26 0.25 0.01 0.26 0.26 0.00 0.31 0.31 0.00 
150 0.25 0.27 -0.02 0.31 0.30 0.01 0.37 0.39 -0.02 0.54 0.55 -0.01 
151 0.26 0.25 0.00 0.26 0.25 0.00 0.28 0.28 0.00 0.44 0.44 0.01 
152 0.26 0.26 0.00 0.29 0.29 0.00 0.37 0.39 -0.01 0.62 0.58 0.03 
153 0.26 0.25 0.01 0.27 0.25 0.02 0.29 0.28 0.01 0.46 0.44 0.02 
154 0.27 0.25 0.01 0.28 0.26 0.02 0.32 0.32 0.00 0.53 0.53 0.01 
155 0.25 0.25 0.00 0.26 0.26 0.01 0.30 0.28 0.02 0.42 0.42 0.00 
156 0.26 0.25 0.01 0.25 0.26 -0.01 0.25 0.28 -0.04 0.41 0.44 -0.02 
157 0.26 0.25 0.01 0.27 0.26 0.01 0.30 0.31 -0.01 0.45 0.45 -0.01 
158 0.24 0.25 -0.02 0.26 0.26 0.00 0.29 0.29 0.00 0.43 0.43 0.00 
159 0.23 0.25 -0.02 0.25 0.26 -0.01 0.30 0.29 0.01 0.45 0.46 -0.01 
160 0.23 0.25 -0.02 0.28 0.26 0.02 0.28 0.31 -0.03 0.49 0.47 0.01 
161 0.27 0.26 0.01 0.28 0.28 0.00 0.33 0.34 -0.01 0.50 0.50 0.00 
162 0.24 0.26 -0.02 0.28 0.28 0.00 0.35 0.34 0.01 0.49 0.47 0.01 
163 0.26 0.25 0.00 0.23 0.26 -0.03 0.27 0.28 -0.02 0.42 0.41 0.01 
164 0.28 0.26 0.02 0.29 0.27 0.02 0.36 0.33 0.03 0.52 0.51 0.00 
165 0.24 0.25 -0.01 0.27 0.25 0.02 0.30 0.28 0.02 0.46 0.47 -0.01 
166 0.28 0.25 0.03 0.25 0.26 -0.02 0.33 0.30 0.03 0.42 0.44 -0.02 
167 0.26 0.26 0.00 0.27 0.29 -0.03 0.37 0.38 0.00 0.56 0.55 0.01 
168 0.24 0.25 -0.01 0.25 0.25 0.00 0.27 0.26 0.02 0.31 0.30 0.01 
169 0.25 0.26 -0.01 0.30 0.27 0.03 0.30 0.32 -0.03 0.48 0.47 0.01 
170 0.24 0.25 -0.01 0.25 0.25 0.00 0.26 0.27 -0.01 0.34 0.34 0.00 
171 0.26 0.25 0.01 0.26 0.25 0.01 0.26 0.27 -0.01 0.36 0.37 -0.01 
172 0.25 0.25 0.00 0.28 0.25 0.03 0.26 0.27 -0.01 0.35 0.35 0.00 
173 0.24 0.25 -0.01 0.22 0.25 -0.04 0.28 0.28 0.00 0.43 0.44 -0.01 
174 0.25 0.25 0.00 0.27 0.26 0.01 0.34 0.31 0.03 0.46 0.45 0.01 
175 0.27 0.26 0.01 0.28 0.27 0.01 0.32 0.34 -0.02 0.49 0.51 -0.01 
176 0.25 0.25 0.00 0.27 0.26 0.02 0.29 0.29 0.01 0.39 0.39 0.00 
177 0.27 0.28 0.00 0.32 0.31 0.01 0.39 0.38 0.01 0.49 0.50 -0.01 
178 0.24 0.25 -0.01 0.28 0.25 0.03 0.26 0.27 -0.01 0.40 0.39 0.01 
179 0.24 0.25 -0.01 0.25 0.25 -0.01 0.27 0.26 0.00 0.33 0.34 -0.01 
180 0.25 0.26 -0.01 0.27 0.28 -0.01 0.34 0.35 -0.01 0.49 0.49 0.00 
181 0.28 0.25 0.03 0.26 0.26 0.00 0.31 0.30 0.02 0.46 0.46 0.00 
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Appendix C (cont.): Dichotomous IRT Observed and Predicted Responses 
 θ = 1 θ = 2 θ = 3 
Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
136 0.79 0.79 0.01 0.94 0.94 -0.01 0.99 0.99 0.00 
137 0.69 0.70 -0.01 0.87 0.85 0.01 0.93 0.94 -0.01 
138 0.86 0.86 -0.01 0.97 0.97 0.00 0.99 1.00 0.00 
139 0.72 0.70 0.01 0.87 0.87 0.00 0.95 0.95 0.00 
140 0.62 0.63 -0.01 0.86 0.87 -0.01 0.97 0.97 0.00 
141 0.73 0.72 0.01 0.93 0.92 0.01 0.98 0.98 0.00 
142 0.68 0.69 -0.01 0.90 0.91 -0.01 0.98 0.98 0.00 
143 0.65 0.64 0.01 0.80 0.81 -0.01 0.94 0.92 0.02 
144 0.77 0.79 -0.01 0.97 0.97 0.00 1.00 1.00 0.00 
145 0.76 0.74 0.02 0.94 0.93 0.01 0.99 0.99 0.01 
146 0.82 0.81 0.01 0.94 0.95 0.00 0.99 0.99 0.00 
147 0.72 0.70 0.02 0.93 0.92 0.02 0.98 0.98 0.00 
148 0.71 0.70 0.01 0.85 0.86 -0.01 0.94 0.95 -0.01 
149 0.49 0.52 -0.03 0.85 0.84 0.01 0.97 0.97 0.00 
150 0.74 0.74 -0.01 0.89 0.89 0.00 0.94 0.96 -0.01 
151 0.78 0.79 -0.01 0.97 0.97 0.01 1.00 1.00 0.00 
152 0.79 0.81 -0.02 0.93 0.94 -0.01 0.98 0.98 0.00 
153 0.82 0.81 0.01 0.97 0.97 0.00 1.00 1.00 0.00 
154 0.83 0.83 0.00 0.96 0.97 -0.01 1.00 0.99 0.00 
155 0.74 0.75 -0.01 0.94 0.95 -0.01 0.99 0.99 0.00 
156 0.80 0.77 0.02 0.96 0.96 0.01 1.00 0.99 0.00 
157 0.74 0.72 0.03 0.91 0.91 0.00 0.99 0.98 0.01 
158 0.70 0.72 -0.03 0.94 0.93 0.01 0.99 0.99 0.00 
159 0.78 0.78 -0.01 0.95 0.96 0.00 1.00 0.99 0.00 
160 0.78 0.77 0.01 0.94 0.94 0.00 0.99 0.99 0.00 
161 0.75 0.74 0.01 0.91 0.91 0.00 0.98 0.97 0.00 
162 0.67 0.68 -0.01 0.87 0.86 0.01 0.95 0.95 0.00 
163 0.73 0.71 0.02 0.94 0.93 0.01 0.98 0.99 -0.01 
164 0.78 0.78 0.01 0.93 0.93 0.00 0.99 0.98 0.00 
165 0.84 0.84 0.00 0.97 0.98 -0.01 1.00 1.00 0.00 
166 0.70 0.70 0.01 0.90 0.90 0.00 0.98 0.98 0.00 
167 0.76 0.76 -0.01 0.91 0.91 0.00 0.97 0.97 0.00 
168 0.56 0.56 0.00 0.90 0.90 0.00 0.99 0.99 0.00 
169 0.71 0.71 0.01 0.88 0.89 -0.02 0.97 0.97 0.01 
170 0.57 0.58 0.00 0.85 0.86 -0.01 0.96 0.97 -0.01 
171 0.72 0.71 0.01 0.96 0.95 0.01 1.00 0.99 0.00 
172 0.67 0.67 0.00 0.93 0.93 0.00 0.99 0.99 0.00 
173 0.82 0.80 0.01 0.97 0.97 0.00 1.00 1.00 0.00 
174 0.72 0.71 0.01 0.90 0.90 -0.01 0.97 0.98 0.00 
175 0.76 0.75 0.01 0.92 0.92 0.01 0.97 0.98 -0.01 
176 0.65 0.65 0.00 0.89 0.88 0.01 0.97 0.97 0.00 
177 0.67 0.66 0.01 0.83 0.81 0.02 0.90 0.91 -0.01 
178 0.78 0.78 0.01 0.98 0.97 0.01 0.99 1.00 0.00 
179 0.63 0.64 -0.01 0.92 0.92 0.00 0.99 0.99 0.00 
180 0.70 0.70 0.00 0.86 0.87 -0.01 0.96 0.96 0.00 
181 0.78 0.77 0.01 0.95 0.95 0.00 0.99 0.99 0.00 



Polytomous CCT for Multiple Cutscores  81  

Appendix D: Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
-3 1 0.87 0.88 -0.01 0.13 0.12 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 2 0.62 0.61 0.02 0.34 0.36 -0.02 0.03 0.03 0.00 0.00 0.00 0.00 
-3 3 0.79 0.80 -0.01 0.21 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 4 0.82 0.81 0.01 0.17 0.18 -0.01 0.01 0.00 0.01 0.00 0.00 0.00 
-3 5 0.87 0.87 0.00 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 6 0.91 0.90 0.00 0.09 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 7 0.80 0.78 0.02 0.20 0.21 -0.01 0.00 0.01 0.00 0.00 0.00 0.00 
-3 8 0.65 0.66 -0.01 0.32 0.31 0.01 0.03 0.04 0.00 0.00 0.00 0.00 
-3 9 0.92 0.91 0.00 0.08 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 10 0.91 0.89 0.02 0.09 0.11 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 
-3 11 0.94 0.92 0.01 0.06 0.08 -0.02 0.00 0.00 0.00 0.00 0.00 0.00 
-3 12 0.87 0.88 -0.01 0.13 0.12 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
-3 13 0.88 0.89 -0.01 0.12 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 14 0.78 0.77 0.02 0.21 0.23 -0.01 0.00 0.01 0.00 0.00 0.00 0.00 
-3 15 0.85 0.84 0.01 0.15 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 16 0.96 0.96 0.00 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 17 0.81 0.84 -0.03 0.19 0.16 0.03 0.00 0.00 0.00 0.00 0.00 0.00 
-3 18 0.93 0.93 0.00 0.07 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 19 0.90 0.90 0.00 0.10 0.10 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 20 0.86 0.86 0.00 0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 21 0.59 0.60 -0.01 0.40 0.39 0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-3 22 0.88 0.89 -0.01 0.11 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 23 0.93 0.92 0.01 0.07 0.08 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 24 0.77 0.75 0.01 0.23 0.24 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 
-3 25 0.89 0.89 0.00 0.11 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 26 0.73 0.75 -0.02 0.25 0.24 0.01 0.02 0.01 0.00 0.00 0.00 0.00 
-3 27 0.77 0.78 0.00 0.21 0.21 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
-3 28 0.82 0.83 -0.02 0.18 0.16 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
-3 29 0.83 0.82 0.01 0.17 0.18 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 30 0.88 0.88 0.01 0.12 0.12 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
-3 31 0.98 0.98 0.01 0.02 0.02 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 32 0.97 0.98 0.00 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 33 0.99 0.99 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 34 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 35 0.97 0.97 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 36 1.00 0.99 0.01 0.01 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 37 1.00 0.99 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 38 0.98 0.99 -0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 39 0.99 0.99 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 40 0.96 0.95 0.01 0.04 0.05 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 41 0.98 0.97 0.01 0.02 0.03 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 42 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 43 0.99 0.99 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 44 0.91 0.94 -0.03 0.09 0.06 0.03 0.00 0.00 0.00 0.00 0.00 0.00 
-3 45 0.94 0.93 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 46 0.99 0.99 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 47 0.99 0.99 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 48 0.97 0.98 -0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 49 0.99 0.99 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 50 0.94 0.95 0.00 0.06 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 51 0.99 0.99 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 52 1.00 1.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 53 0.99 0.99 0.01 0.01 0.01 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 54 0.97 0.97 -0.01 0.03 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 55 0.95 0.95 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 56 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 57 0.96 0.95 0.01 0.04 0.05 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 58 0.93 0.94 -0.01 0.07 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-3 59 0.99 0.99 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 60 0.94 0.94 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-3 61 0.96 0.96 -0.01 0.04 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
-2 1 0.55 0.53 0.02 0.42 0.44 -0.01 0.03 0.03 0.00 0.00 0.00 0.00 
-2 2 0.20 0.23 -0.03 0.58 0.56 0.02 0.21 0.20 0.01 0.01 0.01 0.00 
-2 3 0.34 0.34 0.00 0.58 0.59 -0.01 0.08 0.07 0.01 0.00 0.00 0.00 
-2 4 0.43 0.44 0.00 0.50 0.50 0.00 0.07 0.06 0.00 0.00 0.00 0.00 
-2 5 0.40 0.39 0.01 0.56 0.57 -0.02 0.05 0.04 0.01 0.00 0.00 0.00 
-2 6 0.54 0.55 -0.02 0.44 0.43 0.02 0.02 0.02 0.00 0.00 0.00 0.00 
-2 7 0.37 0.37 0.01 0.55 0.55 0.00 0.08 0.08 -0.01 0.00 0.00 0.00 
-2 8 0.35 0.36 -0.01 0.49 0.47 0.02 0.15 0.16 0.00 0.01 0.01 0.00 
-2 9 0.65 0.63 0.02 0.33 0.35 -0.02 0.02 0.02 0.00 0.00 0.00 0.00 
-2 10 0.64 0.64 0.01 0.33 0.34 -0.01 0.02 0.02 0.00 0.00 0.00 0.00 
-2 11 0.62 0.62 0.00 0.38 0.37 0.01 0.01 0.02 -0.01 0.00 0.00 0.00 
-2 12 0.56 0.57 -0.01 0.40 0.40 0.00 0.04 0.03 0.01 0.00 0.00 0.00 
-2 13 0.61 0.60 0.01 0.37 0.37 -0.01 0.02 0.03 0.00 0.00 0.00 0.00 
-2 14 0.39 0.36 0.03 0.52 0.55 -0.03 0.10 0.09 0.01 0.00 0.00 0.00 
-2 15 0.50 0.51 0.00 0.45 0.45 0.00 0.05 0.05 0.00 0.00 0.00 0.00 
-2 16 0.72 0.72 0.01 0.27 0.28 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-2 17 0.44 0.45 -0.01 0.51 0.50 0.01 0.05 0.05 0.00 0.00 0.00 0.00 
-2 18 0.68 0.68 0.01 0.30 0.31 -0.01 0.02 0.01 0.00 0.00 0.00 0.00 
-2 19 0.49 0.49 0.00 0.48 0.48 0.00 0.02 0.03 -0.01 0.00 0.00 0.00 
-2 20 0.46 0.47 -0.02 0.50 0.48 0.02 0.04 0.04 0.00 0.00 0.00 0.00 
-2 21 0.10 0.11 -0.01 0.69 0.68 0.01 0.21 0.20 0.01 0.00 0.00 0.00 
-2 22 0.62 0.61 0.01 0.37 0.37 0.00 0.02 0.02 -0.01 0.00 0.00 0.00 
-2 23 0.54 0.53 0.01 0.45 0.45 0.00 0.01 0.02 0.00 0.00 0.00 0.00 
-2 24 0.24 0.25 -0.01 0.65 0.65 0.00 0.11 0.10 0.01 0.00 0.00 0.00 
-2 25 0.43 0.45 -0.02 0.54 0.52 0.02 0.03 0.03 0.00 0.00 0.00 0.00 
-2 26 0.41 0.39 0.02 0.49 0.51 -0.02 0.09 0.10 -0.01 0.00 0.00 0.00 
-2 27 0.46 0.47 -0.02 0.46 0.45 0.02 0.08 0.08 0.00 0.00 0.00 0.00 
-2 28 0.47 0.47 0.01 0.47 0.48 -0.01 0.06 0.05 0.00 0.00 0.00 0.00 
-2 29 0.38 0.39 -0.02 0.56 0.55 0.02 0.06 0.06 0.00 0.00 0.00 0.00 
-2 30 0.54 0.57 -0.03 0.44 0.40 0.04 0.02 0.03 -0.01 0.00 0.00 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
-2 31 0.89 0.90 0.00 0.11 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 32 0.89 0.88 0.00 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 33 0.90 0.91 -0.01 0.10 0.09 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 34 0.96 0.96 0.00 0.05 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 35 0.88 0.89 -0.01 0.12 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 36 0.92 0.93 -0.01 0.08 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 37 0.94 0.95 -0.01 0.06 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 38 0.94 0.93 0.00 0.06 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 39 0.95 0.95 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 40 0.87 0.86 0.01 0.12 0.14 -0.01 0.01 0.00 0.00 0.00 0.00 0.00 
-2 41 0.89 0.89 0.00 0.11 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 42 0.99 0.98 0.00 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 43 0.93 0.93 -0.01 0.08 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 44 0.83 0.82 0.01 0.16 0.17 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-2 45 0.79 0.80 -0.01 0.20 0.19 0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-2 46 0.90 0.90 0.00 0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 47 0.94 0.93 0.01 0.07 0.07 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 48 0.88 0.89 -0.01 0.12 0.11 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 49 0.96 0.96 0.00 0.05 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 50 0.81 0.83 -0.02 0.19 0.17 0.02 0.01 0.01 0.00 0.00 0.00 0.00 
-2 51 0.96 0.95 0.01 0.04 0.05 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 52 0.97 0.97 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 53 0.95 0.94 0.01 0.05 0.06 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-2 54 0.89 0.88 0.00 0.11 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 55 0.82 0.81 0.01 0.17 0.19 -0.02 0.01 0.01 0.00 0.00 0.00 0.00 
-2 56 0.97 0.96 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 57 0.76 0.75 0.01 0.24 0.24 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
-2 58 0.81 0.78 0.03 0.18 0.21 -0.03 0.01 0.01 0.00 0.00 0.00 0.00 
-2 59 0.94 0.94 0.00 0.06 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-2 60 0.79 0.82 -0.03 0.20 0.18 0.02 0.01 0.01 0.00 0.00 0.00 0.00 
-2 61 0.86 0.86 0.00 0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
-1 1 0.12 0.12 0.00 0.59 0.60 -0.01 0.27 0.27 0.01 0.02 0.01 0.01 
-1 2 0.03 0.03 0.00 0.33 0.34 -0.01 0.54 0.51 0.03 0.10 0.11 -0.02 
-1 3 0.03 0.04 -0.01 0.49 0.50 0.00 0.45 0.43 0.01 0.03 0.03 0.00 
-1 4 0.10 0.09 0.01 0.53 0.54 -0.01 0.34 0.35 0.00 0.02 0.03 0.00 
-1 5 0.03 0.04 -0.01 0.58 0.57 0.01 0.38 0.38 0.00 0.01 0.01 0.00 
-1 6 0.10 0.11 -0.01 0.64 0.64 0.00 0.25 0.25 0.01 0.00 0.01 0.00 
-1 7 0.05 0.06 -0.02 0.51 0.50 0.02 0.41 0.41 0.00 0.03 0.03 0.00 
-1 8 0.11 0.11 0.00 0.44 0.42 0.02 0.37 0.38 -0.01 0.08 0.09 -0.01 
-1 9 0.18 0.19 -0.01 0.63 0.62 0.01 0.18 0.19 0.00 0.01 0.01 0.00 
-1 10 0.24 0.24 0.00 0.56 0.57 -0.01 0.19 0.18 0.01 0.01 0.01 0.00 
-1 11 0.13 0.15 -0.02 0.68 0.65 0.03 0.18 0.19 -0.01 0.00 0.00 0.00 
-1 12 0.15 0.16 -0.01 0.60 0.59 0.01 0.24 0.24 0.00 0.01 0.01 0.00 
-1 13 0.19 0.19 0.00 0.60 0.60 0.00 0.21 0.21 0.00 0.01 0.01 0.00 
-1 14 0.05 0.06 -0.01 0.47 0.48 -0.02 0.44 0.42 0.02 0.04 0.04 0.00 
-1 15 0.15 0.14 0.02 0.56 0.56 0.00 0.27 0.29 -0.02 0.02 0.02 0.00 
-1 16 0.18 0.17 0.01 0.69 0.71 -0.02 0.13 0.12 0.01 0.00 0.00 0.00 
-1 17 0.08 0.09 -0.01 0.58 0.56 0.02 0.32 0.33 -0.01 0.02 0.02 0.00 
-1 18 0.24 0.24 0.00 0.61 0.61 0.00 0.14 0.15 -0.01 0.01 0.00 0.00 
-1 19 0.07 0.08 0.00 0.63 0.63 0.01 0.28 0.29 -0.01 0.01 0.01 0.01 
-1 20 0.08 0.09 -0.02 0.60 0.58 0.02 0.31 0.31 0.00 0.01 0.01 0.00 
-1 21 0.00 0.00 0.00 0.24 0.24 0.00 0.68 0.67 0.02 0.08 0.09 -0.02 
-1 22 0.19 0.19 -0.01 0.62 0.60 0.03 0.18 0.20 -0.02 0.01 0.01 0.00 
-1 23 0.09 0.08 0.01 0.68 0.67 0.01 0.23 0.25 -0.02 0.00 0.00 0.00 
-1 24 0.02 0.02 0.00 0.42 0.42 0.00 0.52 0.53 0.00 0.04 0.04 0.00 
-1 25 0.06 0.06 0.00 0.63 0.61 0.02 0.30 0.32 -0.02 0.01 0.01 0.00 
-1 26 0.08 0.09 -0.01 0.48 0.48 0.00 0.39 0.38 0.01 0.05 0.05 0.00 
-1 27 0.14 0.16 -0.02 0.50 0.50 -0.01 0.32 0.31 0.02 0.04 0.04 0.01 
-1 28 0.10 0.10 0.00 0.54 0.56 -0.02 0.34 0.32 0.02 0.02 0.02 0.00 
-1 29 0.05 0.06 -0.02 0.55 0.53 0.02 0.39 0.39 0.00 0.02 0.02 0.00 
-1 30 0.16 0.17 0.00 0.56 0.59 -0.03 0.27 0.23 0.04 0.01 0.01 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
-1 31 0.59 0.60 -0.02 0.39 0.38 0.02 0.02 0.02 0.00 0.00 0.00 0.00 
-1 32 0.57 0.56 0.01 0.40 0.41 -0.01 0.03 0.03 0.00 0.00 0.00 0.00 
-1 33 0.56 0.55 0.01 0.42 0.43 -0.01 0.02 0.02 0.00 0.00 0.00 0.00 
-1 34 0.67 0.67 0.00 0.32 0.32 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
-1 35 0.64 0.65 -0.01 0.34 0.33 0.01 0.03 0.02 0.00 0.00 0.00 0.00 
-1 36 0.68 0.67 0.01 0.31 0.32 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-1 37 0.71 0.72 -0.01 0.28 0.27 0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-1 38 0.66 0.65 0.01 0.33 0.34 -0.01 0.02 0.01 0.01 0.00 0.00 0.00 
-1 39 0.70 0.69 0.01 0.30 0.30 0.00 0.01 0.01 0.00 0.00 0.00 0.00 
-1 40 0.63 0.64 -0.01 0.33 0.32 0.00 0.04 0.03 0.01 0.00 0.00 0.00 
-1 41 0.65 0.65 0.00 0.32 0.32 0.00 0.03 0.02 0.00 0.00 0.00 0.00 
-1 42 0.86 0.86 0.00 0.14 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
-1 43 0.75 0.71 0.03 0.25 0.28 -0.03 0.01 0.01 0.00 0.00 0.00 0.00 
-1 44 0.57 0.57 0.00 0.37 0.37 0.00 0.06 0.05 0.01 0.00 0.00 0.00 
-1 45 0.55 0.53 0.01 0.38 0.40 -0.02 0.08 0.06 0.01 0.00 0.00 0.00 
-1 46 0.54 0.53 0.01 0.44 0.44 0.00 0.02 0.02 -0.01 0.00 0.00 0.00 
-1 47 0.63 0.65 -0.02 0.35 0.34 0.01 0.02 0.01 0.00 0.00 0.00 0.00 
-1 48 0.63 0.61 0.01 0.35 0.36 -0.01 0.02 0.03 0.00 0.00 0.00 0.00 
-1 49 0.79 0.79 0.00 0.20 0.20 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-1 50 0.54 0.55 0.00 0.40 0.40 0.00 0.05 0.05 0.00 0.00 0.00 0.00 
-1 51 0.78 0.77 0.01 0.22 0.23 -0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-1 52 0.82 0.81 0.01 0.18 0.19 -0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-1 53 0.76 0.75 0.02 0.23 0.25 -0.02 0.01 0.01 0.00 0.00 0.00 0.00 
-1 54 0.59 0.59 0.00 0.38 0.39 0.00 0.03 0.03 0.00 0.00 0.00 0.00 
-1 55 0.45 0.46 -0.01 0.49 0.48 0.01 0.06 0.07 -0.01 0.00 0.00 0.00 
-1 56 0.73 0.74 -0.01 0.26 0.26 0.01 0.00 0.00 0.00 0.00 0.00 0.00 
-1 57 0.30 0.30 0.00 0.60 0.60 0.01 0.10 0.10 0.00 0.00 0.00 0.00 
-1 58 0.39 0.41 -0.02 0.53 0.51 0.02 0.08 0.08 0.00 0.00 0.00 0.00 
-1 59 0.69 0.69 -0.01 0.30 0.30 0.01 0.01 0.01 0.00 0.00 0.00 0.00 
-1 60 0.54 0.54 0.00 0.41 0.40 0.01 0.05 0.06 -0.01 0.00 0.00 0.00 
-1 61 0.58 0.57 0.01 0.38 0.39 -0.01 0.04 0.04 0.01 0.00 0.00 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
0 1 0.01 0.01 0.00 0.24 0.24 0.01 0.61 0.61 -0.01 0.15 0.15 0.00 
0 2 0.00 0.00 0.00 0.08 0.08 0.00 0.49 0.48 0.01 0.43 0.44 -0.01 
0 3 0.00 0.00 0.00 0.11 0.10 0.01 0.62 0.62 0.00 0.27 0.28 -0.01 
0 4 0.01 0.01 0.00 0.18 0.18 -0.01 0.58 0.60 -0.02 0.24 0.22 0.02 
0 5 0.00 0.00 0.00 0.13 0.11 0.02 0.68 0.69 -0.01 0.19 0.21 -0.01 
0 6 0.01 0.01 0.00 0.26 0.23 0.03 0.63 0.64 -0.01 0.10 0.12 -0.02 
0 7 0.00 0.00 0.00 0.14 0.13 0.00 0.61 0.60 0.01 0.26 0.27 -0.01 
0 8 0.02 0.02 0.00 0.20 0.19 0.01 0.49 0.49 0.01 0.30 0.31 -0.02 
0 9 0.01 0.02 0.00 0.32 0.32 -0.01 0.58 0.57 0.01 0.09 0.09 -0.01 
0 10 0.03 0.03 0.00 0.35 0.36 -0.01 0.50 0.51 -0.01 0.12 0.10 0.02 
0 11 0.01 0.01 0.00 0.29 0.28 0.01 0.62 0.62 0.00 0.08 0.09 -0.01 
0 12 0.02 0.02 0.00 0.25 0.28 -0.03 0.61 0.58 0.03 0.13 0.13 0.00 
0 13 0.02 0.02 0.00 0.29 0.31 -0.02 0.57 0.56 0.01 0.13 0.11 0.02 
0 14 0.00 0.00 0.00 0.13 0.13 0.00 0.58 0.58 -0.01 0.29 0.28 0.01 
0 15 0.01 0.01 0.00 0.25 0.24 0.01 0.58 0.58 0.00 0.16 0.17 -0.01 
0 16 0.01 0.01 0.00 0.35 0.34 0.02 0.59 0.61 -0.02 0.05 0.05 0.00 
0 17 0.00 0.01 0.00 0.19 0.18 0.01 0.62 0.62 0.00 0.20 0.20 0.00 
0 18 0.01 0.03 -0.01 0.34 0.37 -0.03 0.57 0.53 0.04 0.08 0.07 0.00 
0 19 0.00 0.00 0.00 0.18 0.17 0.00 0.67 0.68 0.00 0.15 0.15 0.00 
0 20 0.01 0.01 0.00 0.20 0.19 0.01 0.62 0.63 -0.01 0.18 0.18 0.00 
0 21 0.00 0.00 0.00 0.01 0.02 0.00 0.42 0.43 -0.01 0.57 0.55 0.01 
0 22 0.02 0.02 0.00 0.34 0.32 0.02 0.53 0.56 -0.03 0.11 0.11 0.01 
0 23 0.00 0.00 0.00 0.18 0.18 -0.01 0.70 0.70 0.00 0.12 0.12 0.00 
0 24 0.00 0.00 0.00 0.06 0.06 0.00 0.58 0.59 -0.01 0.36 0.36 0.00 
0 25 0.00 0.00 0.00 0.17 0.14 0.03 0.66 0.69 -0.02 0.17 0.17 0.00 
0 26 0.01 0.01 0.00 0.17 0.17 0.00 0.55 0.55 -0.01 0.27 0.27 0.01 
0 27 0.02 0.02 0.00 0.25 0.25 0.00 0.53 0.52 0.01 0.20 0.21 0.00 
0 28 0.01 0.01 0.00 0.20 0.20 0.01 0.59 0.60 -0.01 0.20 0.19 0.01 
0 29 0.00 0.00 0.00 0.14 0.14 0.00 0.62 0.62 0.00 0.24 0.24 0.01 
0 30 0.01 0.02 -0.01 0.27 0.29 -0.02 0.59 0.57 0.02 0.13 0.13 0.01 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
0 31 0.17 0.18 -0.01 0.63 0.60 0.03 0.19 0.21 -0.02 0.01 0.01 0.00 
0 32 0.14 0.15 -0.01 0.63 0.60 0.02 0.23 0.24 -0.01 0.01 0.01 0.00 
0 33 0.11 0.10 0.01 0.64 0.65 -0.01 0.25 0.24 0.00 0.00 0.01 0.00 
0 34 0.15 0.14 0.01 0.72 0.71 0.01 0.13 0.15 -0.01 0.00 0.00 0.00 
0 35 0.26 0.26 0.00 0.55 0.56 -0.01 0.18 0.17 0.01 0.01 0.01 0.00 
0 36 0.21 0.22 0.00 0.61 0.62 -0.02 0.17 0.16 0.01 0.01 0.00 0.00 
0 37 0.23 0.25 -0.02 0.64 0.63 0.01 0.13 0.12 0.01 0.00 0.00 0.00 
0 38 0.17 0.17 0.00 0.65 0.66 -0.01 0.18 0.17 0.01 0.00 0.00 0.00 
0 39 0.18 0.18 0.00 0.69 0.67 0.01 0.13 0.14 -0.02 0.00 0.00 0.00 
0 40 0.32 0.32 0.00 0.50 0.50 -0.01 0.18 0.17 0.01 0.01 0.01 0.00 
0 41 0.26 0.27 -0.02 0.55 0.55 0.00 0.18 0.17 0.01 0.01 0.01 0.01 
0 42 0.41 0.38 0.03 0.56 0.58 -0.02 0.04 0.04 -0.01 0.00 0.00 0.00 
0 43 0.27 0.28 -0.01 0.60 0.59 0.01 0.13 0.13 0.00 0.00 0.00 0.00 
0 44 0.28 0.25 0.03 0.48 0.51 -0.03 0.23 0.22 0.01 0.02 0.02 0.00 
0 45 0.18 0.21 -0.03 0.51 0.51 0.00 0.27 0.26 0.02 0.03 0.03 0.01 
0 46 0.10 0.10 0.00 0.62 0.64 -0.02 0.28 0.26 0.02 0.01 0.01 0.00 
0 47 0.18 0.18 0.00 0.65 0.65 0.01 0.17 0.17 -0.01 0.00 0.00 0.00 
0 48 0.20 0.20 0.00 0.60 0.59 0.01 0.19 0.20 -0.01 0.01 0.01 0.00 
0 49 0.38 0.38 0.01 0.54 0.54 0.00 0.08 0.08 0.00 0.00 0.00 0.00 
0 50 0.21 0.20 0.01 0.51 0.53 -0.02 0.26 0.25 0.01 0.02 0.02 0.00 
0 51 0.32 0.33 -0.01 0.58 0.58 0.01 0.09 0.09 0.00 0.00 0.00 0.00 
0 52 0.33 0.34 -0.01 0.60 0.59 0.01 0.07 0.07 0.00 0.00 0.00 0.00 
0 53 0.31 0.33 -0.02 0.58 0.56 0.02 0.11 0.10 0.00 0.00 0.00 0.00 
0 54 0.17 0.18 -0.01 0.59 0.59 0.00 0.24 0.22 0.01 0.01 0.01 0.00 
0 55 0.12 0.11 0.01 0.52 0.53 -0.02 0.33 0.33 0.00 0.04 0.03 0.01 
0 56 0.21 0.21 0.00 0.69 0.68 0.01 0.10 0.11 -0.01 0.00 0.00 0.00 
0 57 0.03 0.04 -0.01 0.43 0.45 -0.02 0.51 0.47 0.04 0.03 0.04 -0.01 
0 58 0.08 0.09 -0.01 0.51 0.51 0.01 0.37 0.37 0.01 0.03 0.04 0.00 
0 59 0.23 0.22 0.00 0.65 0.63 0.02 0.12 0.14 -0.02 0.00 0.00 0.00 
0 60 0.21 0.21 0.00 0.54 0.52 0.02 0.22 0.25 -0.02 0.03 0.02 0.00 
0 61 0.22 0.20 0.03 0.55 0.56 -0.01 0.22 0.23 -0.01 0.01 0.01 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
1 1 0.00 0.00 0.00 0.03 0.03 0.00 0.40 0.41 -0.01 0.58 0.57 0.01 
1 2 0.00 0.00 0.00 0.01 0.01 0.01 0.19 0.21 -0.02 0.79 0.78 0.01 
1 3 0.00 0.00 0.00 0.01 0.01 0.00 0.23 0.24 -0.01 0.76 0.75 0.01 
1 4 0.00 0.00 0.00 0.02 0.02 0.00 0.35 0.34 0.01 0.64 0.64 0.00 
1 5 0.00 0.00 0.00 0.00 0.00 0.00 0.24 0.25 -0.02 0.76 0.74 0.02 
1 6 0.00 0.00 0.00 0.02 0.02 -0.01 0.39 0.41 -0.02 0.60 0.57 0.03 
1 7 0.00 0.00 0.00 0.01 0.01 0.00 0.30 0.28 0.02 0.69 0.71 -0.02 
1 8 0.00 0.00 0.00 0.05 0.05 0.01 0.35 0.34 0.01 0.60 0.61 -0.01 
1 9 0.00 0.00 0.00 0.04 0.05 0.00 0.49 0.49 0.00 0.47 0.46 0.00 
1 10 0.00 0.00 0.00 0.08 0.08 0.00 0.52 0.50 0.02 0.41 0.42 -0.01 
1 11 0.00 0.00 0.00 0.04 0.03 0.01 0.45 0.47 -0.02 0.52 0.51 0.01 
1 12 0.00 0.00 0.00 0.04 0.04 0.00 0.44 0.44 -0.01 0.52 0.52 0.01 
1 13 0.00 0.00 0.00 0.05 0.05 0.00 0.48 0.47 0.01 0.48 0.48 0.00 
1 14 0.00 0.00 0.00 0.01 0.01 0.00 0.29 0.28 0.01 0.70 0.71 -0.01 
1 15 0.00 0.00 0.00 0.03 0.04 -0.01 0.42 0.40 0.02 0.56 0.56 -0.01 
1 16 0.00 0.00 0.00 0.03 0.03 0.00 0.57 0.54 0.02 0.41 0.43 -0.02 
1 17 0.00 0.00 0.00 0.02 0.02 0.00 0.33 0.35 -0.01 0.65 0.64 0.01 
1 18 0.00 0.00 0.00 0.07 0.07 0.00 0.55 0.53 0.02 0.39 0.41 -0.02 
1 19 0.00 0.00 0.00 0.02 0.01 0.01 0.37 0.35 0.02 0.62 0.64 -0.03 
1 20 0.00 0.00 0.00 0.03 0.02 0.01 0.34 0.36 -0.02 0.64 0.63 0.01 
1 21 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.08 -0.01 0.93 0.92 0.01 
1 22 0.00 0.00 0.00 0.05 0.05 -0.01 0.48 0.48 0.00 0.48 0.47 0.01 
1 23 0.00 0.00 0.00 0.01 0.01 0.00 0.36 0.37 -0.01 0.64 0.63 0.01 
1 24 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.17 -0.01 0.84 0.83 0.01 
1 25 0.00 0.00 0.00 0.00 0.01 0.00 0.30 0.31 -0.01 0.70 0.68 0.01 
1 26 0.00 0.00 0.00 0.02 0.03 0.00 0.29 0.33 -0.04 0.68 0.64 0.04 
1 27 0.00 0.00 0.00 0.06 0.06 0.01 0.39 0.40 -0.01 0.55 0.55 0.01 
1 28 0.00 0.00 0.00 0.02 0.02 0.00 0.35 0.36 -0.01 0.63 0.62 0.02 
1 29 0.00 0.00 0.00 0.01 0.01 0.00 0.27 0.29 -0.02 0.72 0.70 0.02 
1 30 0.00 0.00 0.00 0.05 0.04 0.01 0.45 0.45 0.00 0.50 0.51 -0.01 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 
  Response = 1 Response = 2 Response = 3 Response = 4 

θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
1 31 0.02 0.02 0.00 0.31 0.31 0.00 0.56 0.57 -0.01 0.11 0.11 0.00 
1 32 0.01 0.01 0.00 0.26 0.26 -0.01 0.60 0.59 0.01 0.13 0.13 0.00 
1 33 0.00 0.00 0.00 0.22 0.22 0.00 0.67 0.66 0.01 0.11 0.12 -0.01
1 34 0.01 0.01 0.00 0.31 0.29 0.02 0.63 0.65 -0.02 0.05 0.06 -0.01
1 35 0.04 0.04 0.00 0.38 0.38 0.00 0.49 0.49 0.00 0.09 0.09 0.00 
1 36 0.02 0.02 0.00 0.35 0.36 0.00 0.55 0.55 0.00 0.08 0.07 0.00 
1 37 0.01 0.02 -0.01 0.38 0.40 -0.02 0.55 0.52 0.02 0.06 0.05 0.01 
1 38 0.01 0.01 0.00 0.30 0.31 -0.01 0.61 0.60 0.01 0.08 0.08 0.00 
1 39 0.01 0.01 0.00 0.32 0.34 -0.02 0.62 0.59 0.03 0.05 0.06 -0.01
1 40 0.08 0.08 0.00 0.39 0.40 -0.01 0.44 0.43 0.01 0.10 0.09 0.00 
1 41 0.05 0.05 0.00 0.40 0.39 0.01 0.47 0.48 -0.01 0.09 0.09 0.00 
1 42 0.04 0.04 0.00 0.55 0.56 -0.01 0.40 0.39 0.01 0.01 0.01 -0.01
1 43 0.04 0.04 0.01 0.42 0.42 0.00 0.48 0.49 -0.01 0.06 0.06 0.00 
1 44 0.07 0.06 0.01 0.33 0.34 -0.01 0.45 0.46 -0.01 0.15 0.14 0.01 
1 45 0.03 0.04 -0.01 0.29 0.31 -0.01 0.49 0.49 0.00 0.19 0.16 0.02 
1 46 0.00 0.00 0.00 0.21 0.21 0.00 0.65 0.66 0.00 0.14 0.13 0.01 
1 47 0.01 0.01 0.00 0.32 0.32 0.00 0.60 0.59 0.01 0.07 0.08 -0.01
1 48 0.02 0.02 -0.01 0.33 0.33 0.01 0.55 0.55 0.00 0.11 0.11 0.00 
1 49 0.06 0.06 0.00 0.51 0.51 0.00 0.41 0.40 0.01 0.02 0.03 -0.01
1 50 0.03 0.03 0.00 0.31 0.30 0.01 0.50 0.51 -0.01 0.15 0.15 0.00 
1 51 0.04 0.05 -0.01 0.49 0.47 0.01 0.43 0.44 -0.01 0.04 0.04 0.01 
1 52 0.05 0.04 0.01 0.48 0.50 -0.02 0.44 0.43 0.01 0.03 0.03 0.00 
1 53 0.05 0.05 0.00 0.48 0.46 0.02 0.42 0.44 -0.02 0.05 0.05 0.00 
1 54 0.02 0.02 0.00 0.30 0.30 -0.01 0.56 0.56 0.00 0.13 0.12 0.01 
1 55 0.01 0.01 0.00 0.20 0.21 0.00 0.59 0.58 0.01 0.20 0.21 -0.01
1 56 0.01 0.01 0.00 0.39 0.38 0.01 0.57 0.57 0.00 0.04 0.04 -0.01
1 57 0.00 0.00 0.00 0.08 0.09 -0.01 0.61 0.59 0.02 0.31 0.32 -0.01
1 58 0.00 0.01 0.00 0.18 0.17 0.00 0.58 0.57 0.01 0.24 0.25 -0.01
1 59 0.02 0.02 0.00 0.36 0.37 -0.02 0.55 0.55 0.01 0.07 0.06 0.01 
1 60 0.05 0.04 0.01 0.29 0.31 -0.02 0.51 0.50 0.01 0.16 0.16 0.00 
1 61 0.02 0.03 0.00 0.31 0.31 0.00 0.56 0.54 0.02 0.12 0.13 -0.02
 



Polytomous CCT for Multiple Cutscores  91  

Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
2 1 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.11 0.01 0.88 0.89 -0.01 
2 2 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 -0.01 0.95 0.94 0.01 
2 3 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.96 0.96 0.00 
2 4 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.10 0.00 0.90 0.90 0.00 
2 5 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.97 0.97 0.00 
2 6 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.09 0.00 0.91 0.91 0.00 
2 7 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.07 -0.01 0.94 0.93 0.01 
2 8 0.00 0.00 0.00 0.01 0.01 0.00 0.18 0.16 0.02 0.81 0.83 -0.02 
2 9 0.00 0.00 0.00 0.01 0.00 0.00 0.15 0.15 0.00 0.85 0.85 0.00 
2 10 0.00 0.00 0.00 0.01 0.01 0.00 0.24 0.21 0.03 0.75 0.78 -0.03 
2 11 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.11 0.00 0.89 0.89 0.00 
2 12 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.14 0.02 0.84 0.86 -0.02 
2 13 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.16 0.01 0.84 0.84 0.00 
2 14 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.07 -0.01 0.94 0.93 0.01 
2 15 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.13 0.00 0.87 0.87 0.00 
2 16 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.00 0.89 0.89 0.00 
2 17 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.09 0.02 0.90 0.91 -0.02 
2 18 0.00 0.00 0.00 0.01 0.00 0.00 0.18 0.19 -0.01 0.82 0.81 0.00 
2 19 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.06 0.01 0.93 0.94 -0.01 
2 20 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 -0.01 0.92 0.92 0.01 
2 21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.01 1.00 0.99 0.01 
2 22 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.17 0.00 0.84 0.83 0.00 
2 23 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 -0.01 0.96 0.95 0.01 
2 24 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 -0.01 0.98 0.98 0.01 
2 25 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.95 0.95 0.00 
2 26 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.00 0.89 0.89 0.00 
2 27 0.00 0.00 0.00 0.01 0.01 0.01 0.15 0.17 -0.03 0.84 0.82 0.02 
2 28 0.00 0.00 0.00 0.01 0.00 0.00 0.10 0.10 0.00 0.89 0.90 -0.01 
2 29 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.06 0.01 0.93 0.94 -0.01 
2 30 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.15 0.01 0.85 0.85 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
2 31 0.00 0.00 0.00 0.05 0.05 0.01 0.46 0.47 -0.01 0.49 0.49 0.01 
2 32 0.00 0.00 0.00 0.03 0.04 0.00 0.43 0.43 0.00 0.54 0.53 0.01 
2 33 0.00 0.00 0.00 0.01 0.02 -0.01 0.40 0.40 0.00 0.59 0.58 0.01 
2 34 0.00 0.00 0.00 0.02 0.02 0.00 0.50 0.50 0.00 0.48 0.48 0.00 
2 35 0.00 0.00 0.00 0.08 0.09 -0.01 0.49 0.51 -0.01 0.42 0.40 0.03 
2 36 0.00 0.00 0.00 0.04 0.06 -0.01 0.53 0.52 0.01 0.43 0.43 0.01 
2 37 0.00 0.00 0.00 0.05 0.06 -0.01 0.57 0.56 0.01 0.38 0.38 0.00 
2 38 0.00 0.00 0.00 0.03 0.03 0.00 0.51 0.49 0.02 0.46 0.47 -0.02 
2 39 0.00 0.00 0.00 0.04 0.04 0.00 0.52 0.53 -0.01 0.44 0.44 0.01 
2 40 0.01 0.01 0.00 0.18 0.15 0.03 0.48 0.50 -0.02 0.34 0.35 -0.01 
2 41 0.00 0.00 0.00 0.11 0.10 0.01 0.51 0.51 0.00 0.37 0.39 -0.01 
2 42 0.00 0.00 0.00 0.10 0.10 0.00 0.67 0.68 -0.01 0.23 0.22 0.02 
2 43 0.00 0.00 0.00 0.08 0.09 0.00 0.57 0.56 0.01 0.35 0.36 -0.01 
2 44 0.01 0.01 0.00 0.10 0.11 -0.01 0.48 0.46 0.02 0.41 0.42 -0.01 
2 45 0.01 0.00 0.00 0.07 0.08 -0.02 0.43 0.44 -0.01 0.50 0.47 0.02 
2 46 0.00 0.00 0.00 0.02 0.02 0.00 0.41 0.39 0.02 0.58 0.60 -0.02 
2 47 0.00 0.00 0.00 0.04 0.04 0.00 0.48 0.50 -0.02 0.48 0.47 0.01 
2 48 0.00 0.00 0.00 0.07 0.06 0.01 0.47 0.48 -0.01 0.46 0.46 0.00 
2 49 0.00 0.00 0.00 0.14 0.14 0.00 0.57 0.60 -0.04 0.29 0.26 0.04 
2 50 0.00 0.00 0.00 0.08 0.07 0.01 0.43 0.45 -0.01 0.49 0.48 0.00 
2 51 0.00 0.00 0.00 0.11 0.11 0.00 0.59 0.59 0.00 0.30 0.30 0.01 
2 52 0.00 0.00 0.00 0.10 0.10 0.00 0.64 0.63 0.01 0.26 0.27 -0.01 
2 53 0.00 0.00 0.00 0.12 0.12 0.00 0.58 0.57 0.01 0.30 0.31 -0.01 
2 54 0.00 0.00 0.00 0.04 0.05 -0.01 0.48 0.46 0.02 0.48 0.49 -0.01 
2 55 0.00 0.00 0.00 0.03 0.03 0.00 0.37 0.37 0.00 0.61 0.60 0.00 
2 56 0.00 0.00 0.00 0.05 0.04 0.01 0.54 0.57 -0.03 0.41 0.39 0.02 
2 57 0.00 0.00 0.00 0.01 0.01 0.00 0.23 0.23 0.00 0.77 0.77 0.00 
2 58 0.00 0.00 0.00 0.02 0.02 0.00 0.34 0.33 0.01 0.64 0.65 -0.01 
2 59 0.00 0.00 0.00 0.05 0.06 -0.01 0.55 0.54 0.01 0.40 0.41 -0.01 
2 60 0.00 0.00 0.00 0.07 0.08 -0.01 0.45 0.45 0.01 0.47 0.47 0.00 
2 61 0.00 0.00 0.00 0.06 0.06 0.00 0.46 0.46 0.00 0.48 0.48 0.00 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
3 1 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.98 0.98 0.00 
3 2 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.99 0.98 0.00 
3 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 1.00 0.99 0.00 
3 4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.98 0.98 0.00 
3 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 
3 6 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.99 0.99 0.00 
3 7 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.99 0.99 0.00 
3 8 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.07 0.00 0.94 0.93 0.00 
3 9 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.97 0.97 0.00 
3 10 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.06 0.00 0.94 0.94 0.00 
3 11 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.98 0.98 0.00 
3 12 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.97 0.97 0.00 
3 13 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.01 0.96 0.97 -0.01
3 14 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.98 0.99 0.00 
3 15 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.97 0.97 0.00 
3 16 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.01 0.98 0.99 -0.01
3 17 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.98 0.98 0.00 
3 18 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.04 0.00 0.96 0.96 0.00 
3 19 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.99 0.99 0.00 
3 20 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.01 0.98 0.99 -0.01
3 21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 
3 22 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.97 0.96 0.00 
3 23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 1.00 1.00 0.00 
3 24 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 1.00 1.00 0.00 
3 25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 1.00 1.00 0.00 
3 26 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 -0.01 0.98 0.97 0.01 
3 27 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.06 -0.01 0.95 0.94 0.01 
3 28 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.98 0.98 0.00 
3 29 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.99 0.99 0.00 
3 30 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.97 0.97 0.01 
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Appendix D (cont.): Polytomous IRT Observed and Predicted Responses 
 

  Response = 1 Response = 2 Response = 3 Response = 4 
θ Item Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias Obs. Pred. Bias 
3 31 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.13 -0.01 0.88 0.87 0.01 
3 32 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.08 0.00 0.93 0.92 0.00 
3 33 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.09 0.00 0.91 0.91 0.00 
3 34 0.00 0.00 0.00 0.01 0.01 0.00 0.24 0.23 0.01 0.76 0.76 0.00 
3 35 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.17 -0.01 0.84 0.83 0.01 
3 36 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.18 0.01 0.80 0.82 -0.01
3 37 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.12 -0.01 0.89 0.88 0.01 
3 38 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.13 0.00 0.88 0.87 0.00 
3 39 0.00 0.00 0.00 0.03 0.03 0.00 0.31 0.30 0.01 0.66 0.67 -0.01
3 40 0.00 0.00 0.00 0.01 0.01 0.00 0.26 0.24 0.02 0.73 0.75 -0.02
3 41 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.75 0.75 0.00 
3 42 0.00 0.00 0.00 0.01 0.01 0.00 0.22 0.22 -0.01 0.78 0.77 0.00 
3 43 0.00 0.00 0.00 0.02 0.02 -0.01 0.28 0.26 0.02 0.70 0.72 -0.02
3 44 0.00 0.00 0.00 0.02 0.01 0.01 0.23 0.22 0.01 0.75 0.77 -0.01
3 45 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.00 0.92 0.92 0.00 
3 46 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.13 0.00 0.87 0.87 0.00 
3 47 0.00 0.00 0.00 0.01 0.00 0.00 0.20 0.17 0.03 0.80 0.82 -0.03
3 48 0.00 0.00 0.00 0.01 0.01 0.00 0.30 0.29 0.01 0.69 0.70 -0.01
3 49 0.00 0.00 0.00 0.00 0.01 -0.01 0.21 0.20 0.01 0.79 0.79 0.00 
3 50 0.00 0.00 0.00 0.01 0.01 0.00 0.26 0.25 0.01 0.73 0.74 -0.01
3 51 0.00 0.00 0.00 0.00 0.01 0.00 0.25 0.24 0.00 0.75 0.75 0.00 
3 52 0.00 0.00 0.00 0.01 0.01 0.00 0.25 0.26 -0.01 0.74 0.73 0.01 
3 53 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.16 0.00 0.84 0.84 0.00 
3 54 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.12 -0.02 0.90 0.88 0.02 
3 55 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.00 0.86 0.86 0.00 
3 56 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 -0.01 0.96 0.95 0.01 
3 57 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.10 0.00 0.90 0.90 0.00 
3 58 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.17 0.01 0.83 0.83 -0.01
3 59 0.00 0.00 0.00 0.01 0.01 0.00 0.21 0.22 -0.01 0.78 0.77 0.01 
3 60 0.00 0.00 0.00 0.01 0.01 0.00 0.17 0.18 -0.01 0.82 0.81 0.01 
3 61 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.13 -0.01 0.88 0.87 0.01 
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