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A Use of the Information
Function in Tailored Testing
Fumiko Samejima
University of Tennessee

Several important and useful implications in
latent trait theory, with direct implications for indi-
vidualized adaptive or tailored testing, are pointed
out. A way of using the information function in
tailored testing in connection with the standard er-
ror of estimation of the ability level using maxi-
mum likelihood estimation is suggested. It is em-
phasized that the standard error of estimation
should be considered as the major index of depen-
dability, as opposed to the reliability of a test. The
concept of weak parallel forms is expanded to test-
ing procedures in which different sets of items are
presented to different examinees. Examples are
given.

Researchers have tended to use latent trait theory
rather than classical test theory in research on in-
dividualized adaptive or tailored testing. This is
quite natural, since latent trait theory has definite
merits over classical test theory in many crucial mat-
ters.

Because of the lack of opportunities to really
learn the theory, however, these researchers tend to
overlook some important implications in latent trait
theory. As a result, its full use has not yet
materialized. Not only are information functions
seldom used to maximum advantage, but also those
who have tried to use latent trait theory still use
some popular concepts in classical test theory, such
as reliability.

In this paper, the author points out some im-
portant implications in latent trait theory which are
not fully understood and appreciated among re-
searchers, and gives some practical suggestions for
its use.

Reliability and Standard Error of
Estimation in Classical Test Theory

The reliability of a test has been considered as
one of the central concepts in classical test theo-
ry, and much research has been conducted on
this and related concepts. The measure of the re-
liability of a test is usually a simple correlation
coefficient between the two sets of test scores ob-
tained by two parallel measurements, or its esti-
mated value using the Spearman-Brown for-
mula. Since it is a correlation coefficient, it de-
pends not only upon the test itself but also upon
the specific group of examinees tested. This fact
has often been overlooked, and reliability has
been treated as if it were an intrinsic parameter
of the test. To give an extreme example, however
refined the test may be, the reliability coefficient
is zero if all examinees have exactly the same
true score. Conversely, it is easy to make a poorly
constructed test look good by calculating the
correlation coefficient for a group of examinees
whose ability levels are substantially different
from one another. A crucial shortcoming of clas-
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sical test theory is that all the important indices,
including reliability, coefficient alpha, and
Kuder-Richardson formulas 20 and 21, are de-
fined within a specific group of examinees;
therefore, their generalizability is limited. Yet

people tend to attach absolute meanings to these
concepts. This is a non-scientific and undesira-
ble tendency.

There have been several different indices of
the error of estimation in classical test theory.
For instance, in Lord and Novick (1968, Ch. 3),
the standard error of measurement aE is given by

where a, is the standard deviation of the ob-
served test score X, and Q-, is the reliability co-
efficient of the test, the equation which is most
widely used. The standard error of estimation of
the’true score by linear regression estimation is
given by

which has a slightly different meaning.
In spite of the differences in these indices, one

thing common to all is that they depend on a
particular group of examinees, as the reliability
coefficient does, and in most cases they are de-
rived from the reliability coefficient. Thus their
generalizability is again limited, and we cannot
treat them as intrinsic parameters of a given
test. In addition, since these indices are given for
the whole group of examinees, the best we can
do is assume the independence of true scores
and error scores and use the same index condi-

tionally, too. Even so, this assumption of inde-
pendence is hardly acceptable for true scores
and error scores (see Samejima, 1976a).
The situation is substantially different in

latent trait theory where the standard error of
estimation does have an intrinsic meaning, since
test information function is defined inde-

pendently of any specific group of examinees.
Before going into detail, however, a brief review
of information functions may be helpful.

Information Functions

One of the important and useful concepts in
latent trait theory is a group of information
functions. The item information- function for a
binary item was defined by Birnbaum (1968, p.
454) as .

where 0 is the unidimensional ability to be
measured, u,, is the binary item score of item g,
P~(0) is the item characteristic function of item
g, P§(e) is its first derivative with respect to 0,
and Qg(0) is 1 - P,(O). Birnbaum also defined
the test information function of a test consisting
of n binary items as

Samejima (1969, Ch. 6) defined the item re-
sponse information function Ix8(O) for a graded
item score category x8 of item g as

where PxR (8) is the operating characteristic of
the graded score category xg, which assumes an
integer 0 through mg according to the degree of
attainment to the solution of item g, and AXg (e)
is the basic function which is the ratio of the first
derivative of Prg (0) with respect to 0 to Prg (0) it-
self. When the item response is a continuous
variable z,, the item response information func-
tion is given by

where Her (0) is the operating density charac-
teristic of item response 211 and AZIl (0) is the ba-
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sic function of z, (Samejima, 1973a). The item
information function for a graded response item
is given by

and it has been pointed out that Birnbaum’s
item information function, which is given by
Equation 3, is a special case of Equation 7 when
m8 = (Samejima, 1969, pp. 39-40). The item in-
formation function for a continuous response
item can be written as

The test information function for a test consist-

ing of n graded items is given in relation to the
likelihood function of the response pattern V by

Similarly, for a test of n continuous items we
have

There are many useful implications in the in-
formation functions. For instance, the item re-

sponse information function gives a measure of
steepness of the basic function, which is a com-
ponent of the derivative of the log likelihood in
the likelihood equation such that

It has also been pointed out that the basic func-
tion on the continuous response level is the

asymptotic basic function (Samejima, 1972) on
the graded response level, and if this function is
strictly decreasing in 0, then the unique local
maximum for the likelihood function is assured
for every response pattern on the continuous re-
sponse level, as well as for every response pattern
(except for the two extreme cases where all the -
item scores are zero or the full item scores) on
the graded response level. In such a case, the
item response information function is positive
almost everywhere, and this condition is satis-
fied in both the normal ogive and the logistic
models, but not in the three-parameter normal
or logistic model. In the latter case the unique
maximum is not assured for every response pat-
tern (Samejima, 1973b). This fact deserves spe-
cial emphasis, since, without considering the
item response information function, we may be
tempted to use, for instance, the item informa-
tion function I(0, u,) as the measure of accuracy
in maximum likelihood estimation of the exam-
inee’s ability, and from Equation 3 it is obvious
that I(0, u.) is always non-negative, whether
both of the item response information functions
are positive or not.
The test information function provides the

limit of the amount of information given by a
test in which any scoring strategy is used, as
Birnbaum has pointed out (Birnbaum, 1968, p.
454). Perhaps the most useful property of the
test information function is, however, that the
conditional distribution of the maximum like-
lihood estimate 6 is asymptoticallv normal with

when the number of items increases (Birnbaum,
1968, p. 457; Samejima, 1975; cf. Cramer, 1946,
Section 33.3). In fact, this is the property which
can be effectively used in the tailored testing
situation, as we shall see in the following sec-
tions.
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Standard Error of
Estimation in Latent Trait Theory

In contrast to classical test theory, latent trait
theory gives us the standard error of estimation
free from any specific group or population of
examinees. Let c be the discrepancy between the
maximum likelihood estimate 6 and ability a,
such that

By virtue of the asymptotic property of the maxi-
mum likelihood estimate described at the end of
the preceding section, the distribution of the er-
ror E is asymptotically N(O, 1(9-1), and 1(9)-112
can be used as the standard error of estimation
when the number of items and the amount of in-
formation given by the test are sufficiently large.
This function does not depend on any specific
group of examinees, as is obvious from Equa-
tions 4, 10 and 11.

It might be asked: How large should 1(9) be in
order to tolerate the approximate normal distri-
bution for the error E ? To answer this, we must
depend, more or less, on our subjective judg-
ment. Some examples were given elsewhere

(Samejima,1975,1976a) in which 100 maximum
likelihood estimates were produced on the same
ability level by the monte carlo method and the
cumulative frequency distributions were given
together with the normal distribution functions.
In these examples, the values of the test infor-
mation functions were approximately 22.1, 17.3
and 7.4 respectively. Figure 1 shows two more
such examples, in which 1(0) = 21.8 at 0 = -0.6
and 1(0) = 12.4 at 0 = 1.5 respectively. We can
see that in these examples the fits are fairly
good.
Another important point is whether or not

E(êI9) has a systematic bias, or E(Ef9) is a func-
tion of 0. If this is the case, then even if Equa-
tions 12 and 13 are asymptotically true, the ap-
proximate characteristics of the behavior of E,
and hence that of0, which will be presented and
discussed in later sections, will not necessarily
hold. However, observation of the five maximum

likelihood estimates, which were produced by
the monte carlo method for each of one hundred

ability levels equally spaced between 0 = -2.475
and 0 = 2.475, contradicts such a possibility,
and from this result there is no reason to believe
that E(£10) varies as a function of 0 when I(0) is
as large as 21.6 (Samejima, 1976c).
Three similar sets of results, which will be

given in the following section of this paper (Ta-
bles 2 and 3) with I(0) = 25, 20 and 16 respec-
tively, also contradict this possibility, and again
there is no reason to believe that E(s~0) varies as
a function of O with these values of 1(0). On the
other hand, the distribution of E was tested
against the null hypothesis, N(O, 1(0)-1), for each
of the ten different levels of ability in the above
three cases, using the chi-square test with 2 de-
grees of freedom in the first case and 1 in the
other two cases. The ten results of each case
were categorized into four classes with respect to
their probabilities obtained by the test, which
turried out to be 3, 2, 3 and 2; 4, 3, 2 and 1; and
2, 3, 3 and 2 in frequencies for the intervals of
probability, (.00, .25), (.25, .50), (.50, .75) and
(.75, 1.00) respectively. Since the expected fre-
quencies are 2.5, 2.5, 2.5 and 2.5 for all cases,
these results suggest the acceptability of the null
hypothesis in all cases. The chi-square test was
also conducted for the total ten ability levels
with 20, 10 and 10 degrees of freedom, and the.
resulting values of the test statistic were 19.5900,
13.6440 and 8.5632 respectively. In all three

cases they were not statistically significant at the
.10 level.
From these findings, we will assume that

E(£10) does not vary as a function of 0. Equa-
tions 12 and 13 are both sufficiently satisfied
with our data. (For simplicity, in the remaining
sections of the paper, the symbol ~, which is
used in- Equations 12 and 13, will be replaced by
an equality sign.) >
Thus, unlike classical test theory, latent trait

theory provides us with the standard error of es-
timation as a measure independent of any par-
ticular group of examinees, and given locally, or
as a function of ability 0. For this reason, we can
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Figure 1

Two examples of cumulative frequency distributions of 100 maximum likelihood estimates produced by the’
monte carlo method at ability levels of -0.6 and 1.5 respectively, in contrast to the normal distribution func-
tions. 

’
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consider this as an intrinsic property of the test
itself, as long as the populations of our interest
belong to the complete latent space (Lord and
Novick, 1968, pp. 359-360).

Weak Parallel Forms and Tailored Testing

In latent trait theory, parallel forms are de-
fined as a pair of tests which measure the same
ability, and whose items have a one-to-one corre-
spondence with respect to their identity of the
numbers of score categories and their operating
characteristics. Samejima (1976a, b) has sug-
gested the term strong parallel forms for this
situation, and has defined weak parallel forms
as a pair of tests which measure the same ability
and whose test information functions are identi-
cal. Thus two tests can be parallel, regardless of
the possible differences in the numbers of items,
in their scoring strategies and operating charac-
teristics, and in other characteristics.

This definition of weak parallel forms goes be-
yond the level of fixed item tests, such as paper-
and-pencil tests, and is applicable to tailored
testing. Thus in spite of the fact that in in-
dividualized adaptive testing no fixed set of
items are given to all the examinees, as long as
the test information function is kept identical
for two sessions of administration, they are con-
sidered as weak parallel forms.

In computer-assisted individualized adaptive
testing, one criterion for terminating the presen-
tation of new items is when the change in the
values of the maximum likelihood estimate be-
comes less than a certain small value. Another

method, which is probably more logical and jus-
tifiable, may be to terminate the presentation
when the test information function has reached
a certain value or when the standard error of es-
timation has reached a certain small value. This
critical value can be a constant for all she levels
of ability, or can be defined locally as a function
of ability 0.
To give an example, suppose that our purpose

for testing is selection, and we want to accept
any candidate whose ability level is greater than
or equal to a certain critical value, and reject

anyone whose ability level is less than that value.
Figure 2 presents the amount of test information
necessary to make such a selection with the
levels of confidence .841, .933, .977, .994 and
.999 respectively, using the normal approxima-
tion to the conditional distribution of the error E.

Figure 3 presents the corresponding standard
errors of estimation for the above five cases. In
these cases the critical value of 0 is 1.5. Thus as

long as we use these locally determined amounts
of information, or the standard errors of estima-
tion, as our criterion in terminating testing, two
or more such sessions are weakly parallel. With
this kind of strategy, examinees whose ability
levels are far more or far less than 1.5 do not
have to try many test items, but those who are
close to 1.5 in their ability have to take many test
items. In fact, theoretically, anyone whose abili-
ty is exactly 1.5, must be presented infinitely
many test items; in practice, some suitable com-
promise will have to be made. It should also be
kept in mind that our observation is 6, not 0 it-
self, so the termination of presenting new items
should wait until the amount of information has
reached the criterion value at the level of 0
which is somewhat closer to the critical value 1.5
than the examinee’s current maximum likeli-
hood estimate. This will maintain the accuracy
of selection. 

’

If we want to measure different ability levels
with equal accuracies, then we should set the
criterion information constant at every ability
level in our consideration. In such a case, we
have an additional advantage that the distribu-
tions of the error E and ability O are almost inde-
pendent. This situation is beneficial when we
want to estimate the operating characteristics of
new items which are to be added to our item li-

brary, as was pointed out by Samejima (1976b,
c). If we use such a criterion for selection pur-
poses, it is much less likely that the candidates
whose ability levels are far less than the critical
value will be accepted, or that those whose abili-
ty levels are much higher than the critical value
will be rejected. It will waste computer time,
however, by measuring too accurately appli-
cants’ ability levels which are far from the criti-
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Figure 2

Five test information functions required to make a selection at the ability level of 1.5, with the levels of confi-
dence 0.841, 0.933, 0.994 and 0.999 respectively.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



240

Figure 3

Five curves of the standard error of estimation corresponding to the five test information functions presented
in Figure 1.

cal value.

On the other hand, if we use one of the strate-

gies shown in Figures 2 and 3, it is equally prob-
able that an applicant whose ability level is far
less than the critical value will be accepted, as
one whose ability level is close to the critical

point, although the probability is very small.

Perhaps a good compromise is to use the strate-
gy or criterion shown by the dashed line in

Figure 3. Following this curve, those whose abil-
ity levels are less than 0.0 will be accepted, and
those whose ability levels are greater than 3.0
will be rejected, with the probability a little more
than .0013. If we take the values of ability 1.0

and 2.0 instead of 0.0 and 3.0 respectively, the
probability is no greater than .0062, and at 0 =
1.3 and 0 = 1.7, this probability is .1587. At 0 =
1.5 the chances are equal.
To give another example, consider a hypothe-

tical tailored testing situation in which there is a
set of many binary items, whose item character-
istic functions follow the normal ogive model
such that
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and whose discrimination parameters, a,, and

difficulty parameters, bg, form nine different
sets as shown in Table 1. Let us assume that ten

subjects, whose ability levels are -1.52, -1.02,

TABLE 1

Item Parameters of Ten Hypothetical Binary
Items

-0.87, -0.46, -0.21, 0.15, 0.53, 0.89, 1.24 and
1.63, have taken the test, with the criterion test
information 25.00, i.e., the standard error of es-
timation .20. Also assume that the number of
items whose item parameters are one of the nine
sets shown in Table 1 is so large that there is-no
chance that we will run out of items to present to
a single subject from each category. Item 5,
whose difficulty is intermediate, was used as the
initial item, and, using the monte carlo method,
a response was given to the item. If the response
was correct, then item 9 was given repeatedly
until an incorrect answer was given and the like-
lihood function provided a local maximum. If
the response to item 5 was incorrect, then item 1
was given in the same way, until the likelihood
function provided a local maximum. From then
on, an item whose information is the greatest at
the current maximum likelihood estimate was
selected and presented to the subject each time,
until the amount of test information reached

25.00. Table 2 presents the number of items
used for each subject and the resulting maxi-
mum likelihood estimates obtained in two re-

peated sessions, using the same criterion, for
each subject. Figure 4 presents the eventual
amount of information in the vicinity of the true
ability level of each subject for Session 1 (solid
curve) and for Session 2 (dashed curve), and the
similar amounts of information assuming that
the presentation of new items is terminated with
the criterion test information 20.00 and 16.00 in
Session 2 respectively (dotted curves). Although
there are some discrepancies in the amount of
information when the same criterion test infor-
mation is used, these two sessions can be con-
sidered weakly parallel.

TABLE 2

Maximum Likelihood Estimate of Ability and the
Number of Items Used in Each of Two Sessions
of Tailored Testing Using the Same Criterion,

for Each of the Ten Subjects

The sample error variances, which are un-
biased estimates of the population error vari-
ance for any population to which these subjects
belong and for which this specific procedure of
tailored testing can be applied, were .010 and
.022 respectively for the two sessions, whereas
the theoretical population error variance was
1 /20, or .040.

In this example, the same set of items, or item
library, was used in two sessions. We can use two
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completely different sets of items in two sessions,
however, for the purpose of repeating the meas-
urement or giving two parallel tests, as long as
these two sets of items are constructed to meas-
ure the same ability.
The way the local maximum likelihood esti-

mate changes in both sessions after each presen-
tation of a new item is shown for each of the ten

subjects in the Appendix.

Correlation Between the

Repeated Testing Results

Since the standard error of estimation is de-
fined independently of any specific group of sub-
jects and can be considered solely as a property
of the test or of the test procedure, as in tailored
testing, this concept, instead of reliability,
should be considered as fundamental in test

theory. A strong merit of such a standard error
of estimation is the fact that it is defined locally,
or as a function of ability 0, unlike in classical
test theory. For this reason, reliability is a dead
concept in test theory since it differs from one

group of subjects to another, and its generaliza-
bility is narrowly limited. Curiosity may prompt
us however, to determine what the correlation
coefficient would be if we administer tailored

testing twice with the same procedure, or with
two different procedures, to a specific group of
people in whom we are particularly interested. If
we can actually repeat the same procedure twice,
or administer two different procedures, to the
group of people, we can simply calculate the
product-moment correlation coefficient between
the two sets of p, and obtain the answer. The
question is, therefore, can we estimate the cor-
relation from the result of a single administra-
tion of a test? In fact, such an estimation is rela-
tively easy, if the amount of information used as
a criterion in terminating the testing is large
enough to let us apply the normal approxima-
tion for the error distribution at every point of 0
under consideration. Under such conditions, by
virtue of Equation 12, the covariance between

ability O and error E is zero for any group of ex-
aminees (Samejima, 1976c), and the correlation

coefficient between the two sets of maximum
likelihood estimates is given by

Thus the only term which we need to estimate is
E[1(0)-’]. We could use, for instance, the mean
of 1(<31)-1 over an the examinees in a single ad-
ministration of the test as an estimate of

E[I(0)-1].
It is interesting to note that such an estimate

of the correlation coefficient is obtainable even if
two different strategies or criteria are used in
two tailored testing procedures. Suppose that we
have actually administered the first tailored test
with a certain strategy, and wish to know the
correlation coefficient for the specific examinee
group if we repeat the procedure with a different
strategy. In such a non-parallel case, we obtain
instead of Equation 16, the following:

where 1(1)(8) is the criterion information func-
tion of the first testing, and 1(2) (8) is that of the
second testing which is not actually conducted.
Thus all we need to estimate are E{J<1)(8jl} and

E{I~(0)’’}. and again we could use the means
Of I < ’ > (%1 )~’ and I’ 2’ (O, )-’ respectively.

If the criterion information function is con-
stant for the entire range of 0 under considera-
tion, then we have

and

Thus we can rewrite Equation 17 in the form
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Peie2=~-~)-~

[Var. (61)~Var. (91) - Qi + a2})-1/2 . . [20]

In a special case where a; = a,2 = a2, we have

the replacement for Equation 16. Clearly, all the
necessary information in calculating the correla-
tion coefficient through Equations 20 or 21 is

observable in these simplified situations.
For the purpose of illustration, the product-

moment correlation coefficient between the two
sets of maximum likelihood estimates given in
Table 2 was calculated, and it was .987. The

sample variances of 19, and 62 were .891949 and
1.000265 respectively, and, using 0.04 for 02 in
Equation 21, the estimated correlation coeffi-
cient is .955; the similar estimate obtained from
the set 0f ê2 is .960. The reason the actual corre-
lation is higher than these two estimated values
is that the sample error variances, which were
presented in the preceding section, are .010 and
.022 for the two sessions; both are less than .040.
In fact, if these values are used instead of .040,
the estimated correlation coefficients, though
not observable with actual data, are .989 and
.978 respectively, which are closer to the actual
correlation, .987.

If we use the mean of 1(0)’* as the estimate of
E[I(0)-’] in Equation 16, these values are

.038006 and .038708 for the two sessions respec-
tively, and the estimated correlation coefficients
through Equation 16 are .957 and .961. Since
our data are simulated data, we can compute the
mean of I(0)-’ for each session, and with these
values, .038680 and .041667, the estimated cor-
relation coefficients through Equation 16 are
.957 and .958 respectively, although they are not
observable with actual data. These two sets of
results are practically the same as the set of re-
sults obtained by using a’ = 0.040 in Equation
16, i.e., 0.955 and 0.960.

Figure.4 presents the amounts of test informa-

tion assuming the criterion test information is
20.00 and 16.00 respectively, in the vicinity of
the ability level of each subject. The maximum
likelihood estimates for the ten examinees for
the two situations in Session 2 are shown in
Table 3. The actual correlation coefficient be-

TABLE 3

Maximum Likelihood Estimate of Ability and the
Number of Items Used in Session 2, When Each
of the Tvo Criterion Informations, 20.00 and

16.00, Is Used

tween each of these two sets of maximum likeli-
hood estimates and the set of 0, given in Table 2
was computed, and these values were .987 and
.992 respectively. The estimated correlation co-
efficient using the set of 0, given in Table 2 and
.040 and .050 for the estimates of o; and off re-

spectively in Equation 20 were .950, and the
similar estimate using the set of ten observations
in the third column of Table 3 and reversing the
estimates of o; and 02 was .959. The correspond-
ing estimated correlation coefficients for the
case in which the criterion information in Ses-
sion 2 is 16.00 instead of 20.00 were .943 and
.956. Again these estimated values are less than
the actual correlation coefficients, i.e., .950, .959
as opposed to .987, and .943, .956 against .992.
The sample error variances were .072 for the
case in which the criterion test information is

20.00, and 0.062 when it is 16.00. The means of
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I(ê)-l for the two cases were .046901 and

.058462 respectively. Using each of them and

.038680, the corresponding value for the result
of Session 1, the two estimates of the correlation
coefficient through Equation 17 were computed
for each of the two cases, treating Session 1 as
the first testing and then Session 2 as the first
testing in each case. These estimates were .952
and .961 for the case in which 20.00 is used as
the criterion test information, and .946 and .958
for the case where 16.00 is used. Again these
values are very close to those obtained through
Equation 20, i.e., .950 and .-959 for the first case,
and .943 and .956 for the second case. The

means of 1(8)-1 for the two cases, which are not
observable with actual data, were .051190 and
.063070. These values are still close enough to
.0500 and .0625, which are used for the criteria
for termination of testing in these two cases, i.e.,
[20.00]-1 and [16.00]-‘, in spite of the fact that
the values of criterion test information are less

and, therefore, the distance from the true ability
level to the maximum likelihood estimate, at
which the amount of information was measured
for the criterion purpose, is great with high
probabilities.

Discussion

It has been approximately thirty years since
psychometricians initiated the idea of item-

oriented test theory using the item characteristic
function, and yet the theory has rarely been
studied or appreciated by people in the areas
of applied psychology and educational measure-
ment, in spite of its superiority over classical test
theory and its broader area of applicability. One
of the main reasons for this unfortunate fact

may be the mathematical complexity of the
theory in comparison with classical test theory,
and the only solution for this problem may be to
try to invite people with a stronger mathematical
background to these areas. On the other hand,
since some applied areas like tailored testing re-
quire better foundations than classical test

theory can provide, there has been a tendency
among these researchers to try to adopt the

theory. The information function is apparently

one of the difficult topics in latent trait theory,
judging from various questions and comments
the author has personally received. However, it
is one of the most useful concepts in the theory,
and it is desirable that it be used in its full

power. In the present paper, the attempt has
been made to clarify some useful implications of
the information function, and to suggest a way
of using it in actual tailored testing.
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Appendix

Graphic presentation of the change of the local maximum likelihood estimate after the presentation of each
new item for each of the ten subjects.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 


