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Some Applications of Optimization
Algorithms in Test Design
and Adaptive Testing
T. J. J. M. Theunissen
National Institute for Educational Measurement (CITO)
Arnhem, The Netherlands

Some test design problems can be seen as combina-
torial optimization problems. Several suggestions are
presented, with various possible applications. Results
obtained thus far are promising; the methods suggested
can also be used with highly structured test specifica-
tions.

Even in a relatively small item bank of 500 items
(calibrated with an item response model), the total
possible number of tests, 2500, is so large that the
fastest computers available would require many years
for a complete enumeration of all possible tests.
Due to physical constraints (e.g., the finite speed
of signal transmission), this will always remain so.
Many combinatorial problems simply cannot be
completely enumerated within a practical period of
time. Choosing from the set of all possible tests
would therefore be equally impractical.

Nevertheless, tests can be constructed by se-

lecting items from a pool of calibrated items. Two
considerations generally guide the test construction
process. First, the test constructor has a purpose
in mind, which is usually translated into an objec-
tive that suits the purpose. For example, if the goal
is to design a test for the selection of very gifted
students for scholarships, only the 20% most dif-
ficult items from the pool of 500 might be used.

This reduces the total number of tests to 2l00, which
is, however, still much too large for complete enu-
meration. Second, for various reasons the test con-
structor might decide to constrain his/her choices;
for example, a test must be of a certain length, say
50 items. This would reduce the number of possible
tests to (5~), which, although much less than 2 500,
is still too large for practical enumeration. Both
restrictions together result in egg) possible tests.

Because this set is also still very large, the chance
that any particular test will be chosen is extremely
small. Therefore, obviously, if items must be se-
lected according to some test specification and the
choice has to be &dquo;best&dquo; on some criterion (which
generally requires that one particular test be cho-
sen), an additional choice mechanism must be used.
Suggestions for such a mechanism are to be found
in (discrete) optimization theory.

Recently, Theunissen (1985) demonstrated the
theoretical possibility and practical feasibility of
treating test design as a multidimensional Knapsack
problem, or KP. Numerous optimization problems
in various disciplines can be modeled as KPS. A
general formulation of a KP is: Minimize

subject to
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and

where x; are variables indicating the absence or
presence of objects,

wi are their weights,
p; are profits, and
P is total profit.

Formulated this way, the KP tries to fill a knapsack
with objects so that its total weight is minimal but
its content value is never less than P. If Expression
3 is relaxed to xi -- 0, it is a general linear pro-
gramming problem; if Expression 3 is relaxed to
Xi;::;: (0, integer), it is an integer programming prob-
lem ; as it stands, it is called a binary or zero-one
problem. Expression 1 is called the objective func-
tion or target function; Expressions 2 and 3 are
called the constraints. In this paper some mean-

ingful interpretations of target functions and con-
straints will be presented in terms of psychometric
ideas.

Because accuracy of measurement plays a key
role in all types of tests, the concepts of item in-
formation and test information will play a part in
the formulation of either psychometrically mean-
ingful target functions or constraints, or both. The
development below uses an important property of
1(0, u,), the item information function, which is
its relation to 1(0) (assuming maximum likelihood
estimates of 0), given by

In many situations, interest is primarily focused
not on the total test information function but on
the information of the test at one or several im-

portant 0 points on the scale, or at most the test
information for a restricted 0 range. In the former

case, specification of a small number of points is
usually sufficient (Theunissen, 1985).

In this paper, some possible applications of dis-
crete or combinatorial optimization theory in test
design problems will be presented. First, an iso-

morphism between KPS and certain test design
problems will be demonstrated. Because large
numbers of calibrated items may result in excessive

demands on computer time, suggestions regarding
approximation algorithms are presented below. Be-

cause item collections may have quite complex
structures and the possibility exists that these struc-
tures must be mirrored in the test to be designed,
it may be useful to have the means to do so; sug-

gestions on this matter are also given. Finally, a
different optimization technique will be presented
that is useful in some circumstances, together with
several possible applications and some results.

Some Test Design Problems as KPs

Consider the following continuous KP: Maximize

and assume the xZ ordered as in

then a theorem by Dantzig (1957) says that the
optimal solution to this KP is

and r is the largest index for which

Ifs is the maximum number of items, w, the item
information at orce specified 0 point for all items,
all pi are equal to 1, and the ordering is as in

Equation 8, Dantzig’s theorem says that the opti-
mal result is found by ranking all items according
to their information at the specified 0 point and
taking the first P items, which of course is in ac-
cordance with item response theory for the case
where a test needs to be designed, with test infor-
mation maximized at one 0 point and at most of
length P.
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The KP as defined by Equations 1-3 is called a
one-dimensional KP, because there is only one con-
straint, Equation 2. If several constraints are im-
posed on the assignment of objects to one knap-
sack, the problem is called a multidimensional KP.
Test design problems as multidimensional KPS are
treated in Theunissen (1985) and Timminga (1985).
In Theunissen (1985) the test information desired
is specified for m 0 points and the purpose is to
construct a test according to that specification with
the minimum number of items (e.g., for reasons
of economy). In matrix notation: Minimize

where V is an n vector with all elements equal
to 1,

X is an rz vector with elements x; ,
b is an m vector with elements being the

test information specification at m 0 points,
and

A is an m X n matrix where the elements of
each one of the m rows are the item in-

formation function values for all items
for the corresponding 0 point and n is the
number of items (for example, in an item
bank).

(The target VTX is thus a minimum-length test that
fulfills the test specification Ax ~ b.)

In Timminga (1985), again test information de-
sired is specified for m 0 points, but the purpose
now is to construct a test so that the information

function has minimal distance (approaching from
above) to the specified information function (a
quadratic criterion is not used, since this leads to
quadratic programming, for which computer pro-
grams are relatively scarce). Another restriction
used is to fix the number of items (taking care that
a feasible set of solutions remains). In formal no-
tation : Minimize

where aii is the item information for item a at 0
point j,

bj is the specified test information at 0 point
j, and

p is the number of items to be selected.

(The target is thus a minimal deviation from

one of the test specifications, in this case

2.:;= ¡x¡a¡j ?: bi.)
In linear programming, the maximization of a

function is equivalent to the minimization of the
negative of the same function. Rao (1984, section
3.2) presented some examples. However, some test
design problems are more naturally formulated as
minimization problems (as in Equations 13-15)
and others as maximization problems (for instance,
when information is to be maximized at several 0

points, given a certain test length). The most nat-
ural formulation will be presented each time. Each
programming problem can be formulated in stan-
dard form by turning it into a minimization form
and, where necessary, by changing constraints to
equalities by adding or subtracting so-called slack
variables.
A number of results using Equations 13-15 are

presented in Theunissen (1985). A substantial num-
ber of results using Equations 16-18 can be found
in Timminga (1985). Timminga presented one set
of results that corresponds to (part of) Table 2 in
Theunissen (1985). These results are presented in
Table 1. The same problem identification as in

Theunissen’s Table 2 is used. Timminga (1985)
found that for the one-parameter logistic (Rasch)
model, the number of necessary items becomes

larger using Equations 16-18, while the selected
items differ markedly. For the three-parameter
model, the results are very similar for both sets of

equations.
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Table 1
Number of Items Selected (n) and Number of Iterations Required (IT)

from Item Banks of Size N Using Equations 16-19 and a Multidimensional
KP with Specified Information Functions

Numerous algorithms for the solution of these
types of combinatorial optimization problems have
been developed (for details see Syslo, Deck Ko-
walik, 1983; Taha, 1975). These algorithms try to
find an exact solution. Unfortunately, none of them
is efficient in the sense of Papadimitriou and Steig-
litz (1982), where an efficient algorithm is defined
as one that requires a number of computational
steps that grows as a polynomial in the size of the
input. Integer programming is known as N(on)-
P(olynomial)-complete (Papadimitriou & Steiglitz,
1982), which means that a correct solution may
require an exponential amount of time, although
occasions where computer time requirements were
really excessive have not yet been encountered.
However, as the number of items in a bank grows

and the number of constraints grows (e.g., due to
complex subdomain specifications), it might be very
useful to have approximation algorithms that are
much faster and produce solutions that are near
optimal.

Approximations

Approximation algorithms for one-dimensional
KPS are numerous, but are rather trivial in the con-
text of the test design problems as specified in this
paper. Attempts at approximation of multidimen-
sional KPS with test design problems of the kind
specified above have been made by Boomsma (1986)
and Verstralen (Theunissen & Verstralen, 1986).

Consider the following maximization problem
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(which can always be translated back to a min-
imization problem as in Equations 13-15): Maxi-
mize

where the symbols have the same meaning as in
Equations 13-15. Then a theorem by Everett (Salkin,
1975) states that if k is an m-column vector of

Lagrange multipliers, and x° solves for the follow-
ing Lagrangian function: Maximize

L(X) = Vex ÀAx (23)

subject to

xi = 0 or 1 , (24)
x° will also solve Equations 20-22, with b replaced
by x°.
Boomsma (1986) investigated an algorithm that

systematically varies X, until a vector x° is found
which either gives b = x°, or approximates it as

closely as possible. Several methods for finding
have been suggested (see Salkin, 1975). Boomsma
investigated this algorithm from various points of
view. Some intermediate results concerning com-
puter time requirements will be presented below.

It is known, however, that the quality of the
solutions of this algorithm (quality in the sense of
approaching the optimal solution) depends strongly
on the density of the constraint equations, S, de-
fined as

If S approaches 1, the approximations are very
good. If S is small, the algorithm does not work
well. Closer inspection of these results suggests
that (for the Rasch model) S is dependent on the
distribution of difficulties in relation to the test

specification. If a uniform test information function

is specified (e.g., for a diagnostic test) for a wide
0 continuum and the difficulties are distributed as,
for example, N(O, 1), many au values will be low,
and S will be large. Equation 25 also suggests that
test specifications with high values of information
for the selected 0 points (high b) will increase S;
the algorithm might work better for large than for
small tests, given the same item bank. Further in-
vestigation by Boomsma is in progress.

Verstralen (Theunissen & Verstralen, 1986) has
developed a simple and fast algorithm that, so far,
reaches the optimum or comes very close to it (al-
though it is not yet known whether this will always
be the case). The algorithm consists of the follow-
ing steps:
1. Using the same indices as in Equations 13-

15, apply Dantzig’s theorem by sorting the
indices i for each b.

2. Find the largest value bj ( j = 1, 2, ... , m).
3. Remove the first (rank ordered) index from

all rows j = 1, ..., rrt.

4. Add item i to the test.

5. Compute new bj, b’f = bj - au for all j. Go
back to Step 2 if any b, > 0, else stop.

Further refinements (such as backtracking) of this
algorithm led to more frequent optimal solutions
(for details, see Theunissen & Verstralen, 1986).

Structured Optimal Item Selection

It may often be necessary to define a structure
on the item bank; an example is when sampling
from content subdomains is considered desirable.
If the number of items is fixed, this can simply be
done by adding constraints of the following form:

where n, + nz + n3 = N (the number of items in the
test), t is the number of items in the bank, and it
is assumed that the items are previously ordered
into three subdomains. If the number of items for
the test to be designed is not fixed, proportional
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drawing of items from subdomains can be done by
restrictions of the following type:

The ratio of a to b determines the proportions.
Frequently, it may be useful to structure the se-

lection process in more detail. A simple case where
this might be necessary is the situation where the
bank is filled with a set of items that contains sub-

sets, the members of which differ only in trivial
detail (e.g., simple arithmetic items that only differ
in numerical detail). In such cases it is useful to

specify conditional constraints of the form

if x; > 0 then xj = 0,

xi and x, = 0 or 1 , (30)

meaning that when item i is selected, item j must
not be selected. Formulating Equation 30 is equiv-
alent to

By introducing the binary variable q, q = 0 or 1,
Equation 31 can be written as constraints, as fol-
lows :

Occasionally, it may be necessary (e.g., for di-
agnostic purposes; see McArthur & Choppin, 1984)
to direct the item selection procedure in a more
complex and subtle manner. Such specifications
can be captured in Boolean formulas. In a Boolean
formula, any expression between brackets is called
a clause; ’ +’ stands for logical ’or’ where (a +
b) means either a or b or both; ’.’ stands for ’and’;
fit stands for ’not a’; exclusive ’or’ is designated
by (a.b + a.b); and the implication of b by ca is

formulated as a.b = 0 or, alternatively, fit + b =

1. A restricted example may demonstrate the point.
Suppose the test specification is as follows (assum-
ing an item bank consisting of seven items, or seven
types of items).
1. Of three items x,, x2, and x,, one must be

chosen.

2. If x, is chosen, neither x2 nor x, may be chosen.
3. If x, is chosen, X7 must also be chosen.

4. If items x, or X3 are chosen, X6 must also be
chosen.

5. X4 and x5 are mutually exclusive.
6. x6 and x, are mutually exclusive.
These conditions can be presented in 4 clauses:

To fulfill all demands, the following is necessary:
C1.G2.C3.C4 = 1. Some (Boolean) algebraic ma-
nipulation yields the expression

For this expression to be equal to 1 (Boolean), at
least one of the terms of this sum must be equal
to 1 (and of course, the expression must be satis-
fiable, i.e., internally consistent). xl.x2.x3.x,.x5 =
1 means that the item selection X,,X7.Xl is a pos-

sibility (x4 because of specification 2). x,.x2..~3
.~~..~5 = 1 means that the item selection x2.x6.x4 is
a possibility. x, .x2.x3.x~ = I implies the item se-
lection x3.x6. Since the choice between X4 and xs is
indifferent, there are two item selection possibili-
ties, x3.x6.x4 or x3.x6.x5. Each of these selections
can be evaluated with respect to their information
value at one or more specified 0 points. If neces-
sary, the highest value selection is chosen. In adap-
tive testing, the selection corresponding best with
a person’s current 0 may be chosen. In this way,
very detailed and complex test specifications can
be made and added as (potential) variables to the
binary programming problem.

Discussion

Another possible application of KPS lies in the
area of two-stage testing procedures (Lord, 1980,
chap. 9). Assume the availability of a pool of cal-
ibrated items, a small subset of which is used as
the routing test. Then, for Rasch-calibrated items,
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compute all possible 0 estimates that are possible
with the (short) routing test. Divide the range of
values in a number of (sequential) segments, the
number being equal to the number of desired sec-
ond-stage tests (generally few; see Lord, 1980).
For each segment, specify for the 0 points within
it the second-stage test information such that the
relative efficiency is as desired. Subsequently, for
a fixed number of items use Equations 16-18, or
more efficiently, use the minimum number of items
from Equations 13-15.

For items calibrated by a three-parameter model,
compute the lowest and highest possible 0 estimate
and divide the range in equal parts. For each seg-
ment, specify 0 points, including both borderline
points and proceed as above. If a person’s 0 esti-
mate coincides with one of these borderline values,
he or she is randomly routed to a more or less
difficult second-stage test. Advantages of this pro-
cedure are that the second-stage levels are opti-
mally adapted to the initial 0 estimates and that

there is no need to find cutting points on the routing
test.

Another possible application is text-banking for
reading comprehension tests or listening compre-
hension tests for native and foreign languages. These
tests generally consist of subtests, each one accom-
panying a particular text (written or spoken). The
information function for each subtest can be stored.

After 0 points are specified, the subtest information
function value for these 0 points can be determined,
and subtests can be treated as items in the previous
programming problem. For the three-parameter
model, it might be more efficient to store poly-
nomial approximations of the subtest information
functions. All advantages that derive from item
banks also hold for text banks (e.g., adaptive test-
ing).

If, as Lord (1980, section 11.11) suggests, the
effectiveness of a mastery test is often to be eval-
uated by test information, several issues have a
straightforward solution. If masters and nonmasters
are to be separated at 0 = eo, optimal item selection
is obviously a simple application of Danzig’ theo-
rem. If a common upper bound 0, and a common
lower bound &reg; (common for a group of test content

specialists) for nonmastery and mastery, respec-
tively, are defined, optimal item selection is a two-
dimensional KP (i.e., when 61 and 62 are far apart).
Treating this KP as a minimization problem (as in
Equations 13-15) will automatically give the min-
imum test length with specified standard errors of
estimation for 0, and 0, (using the information
function), given a particular pool of calibrated items.
It is interesting to note that if 62 and &reg; are relatively
close together, persons with 6 between 0, and 61
belong to the group of most accurately measured
persons. Still, these persons are disregarded. In-
tuitions concerning the cost of passing a nonmaster
or failing a master could (at least partly) be mir-
rored in the specification of the length of the con-
fidence intervals for 62 and 81 respectively, at least
if they are not too close together (because if they
are, majoring the higher information value for either
0, or 61 would imply majoring the other).

Finally, as a rather obvious application, Knap-
sack test design is very appropriate for designing
parallel tests, not only in the sense of tests having
identical test information functions but by speci-
fying the constraints of the KP in sufficient detail.

Occasionally, it may be useful to have a rela-

tively large number of tests of equal length and of
slowly increasing difficulty, where no pair of tests
has an item in common. An example is a classroom
situation where it is desired to present each student
with a test adapted to his or her (known) level of
competence, or when it is desired to measure prog-
ress in a student over a period of time (with 6
confidence intervals that are non-overlapping). For
this type of test design, an optimization problem
with some pleasant characteristics is available.

(Applying Dantzig’s theorem here for each test would
not guarantee non-overlap of items.)

Suppose 1V 6 points are specified for the 1V tests
under consideration, that each test consists of t

items, and that there are n items in the bank. The
purpose is to find N non-overlapping tests, each
with maximum information for its specified 6 point.
Items and abilities can now be regarded as nodes
in a bipartite graph G(V,E), where V consists of a
subset VI of n items, and V, is a subset of l~ ~ t
ability specifications, with t equal specifications for

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



388

each test. The set E has as elements the edges
connecting all elements of V, with those of V,. A
weight au is associated with each edge, where au
is the information value of item x; at a particular
1, 2, ..., NX t~.

This test design problem can then be formulated
as a maximum weight matching in a bipartite graph,
where a matching is a set of edges where no two
edges have a node in common. If Yu is allowed to
be associated with edges connecting items with as,
this problem may be formulated as: Maximize

Note that no integer constraints are added to Equa-
tions 39-41, with respect to yi~ . Surprisingly, this
is not necessary, due to the special structure of this
problem. (In the following it is assumed that both
subsets are of equal size and the number of nodes
is even; if not, add dummy nodes with zero-weight
edges incident upon them.) If Equations 39-41 are
written in matrix notation, taking into consideration
the above assumption, the result is the constraint
matrix A with element ~4~~ . An integer matrix A is
called totally unimodular if every square, nonsin-
gular submatrix B of A is unimodular. B is uni-
modular whenever det(B) = ± 1 holds. Matrix A
is in fact a node-edge incidence matrix of an un-
directed bipartite graph. In Papadimitriou and

Steiglitz (1982, chap. 13), it is demonstrated that

A in this context is always totally unimodular, and
theorems and proofs of sufficiency are presented
therein to show that this implies that solving Equa-
tions 39-41 with standard linear programming (LP)
will automatically produce integer (binary) solu-
tions. In Chapter 11 of the same text, a constructive
proof is given by transforming this matching prob-
lem into another problem for which this LP result
was already known.

Given the isomorphism between certain test de-

sign problems and certain discrete optimization
problems (problems that have been very thoroughly
studied), it should not be a surprise that algorithms
developed for these optimization problems are also
relevant for test design problems. Results presented
by Theunissen (1985) were obtained by a general
purpose integer programming problem, designed
to obtain exact solutions. For Rasch-calibrated item

banks, for KPS as in Equations 13-15, with the
number of items variously 300 or 500 and the num-
ber of specified 0 points ranging from 1 to 5, com-
puter central processor (cpu) time requirements were
from 41 to 130 seconds on a DEC-10 computer
(problems lA to IE in Theunissen, 1985, Table
2). One of Verstralen’s (Theunissen & Verstralen,
1986) approximation algorithms for Rasch-cali-
brated items, with the same set of problems, reached
the optimum solution in all five cases, with cpu
time ranging from 6 to 14 seconds on an Epson
QX-lO personal computer. Boomsma’s (1986) ap-
proximations of KPS as in Equations 13-15, for
those cases where the exact or near-exact solution

was obtained, typically took only approximately 2
seconds on a DEC-10 computer with problems of
similar size.

These results suggest that making use of the spe-
cial structure of test design problem formulated in
this paper may lead to significant reduction in cpu
time requirements. Both maximum matching and
maximum weight matching can be done in poly-
nomial time (at worst, time grows as n3, where n
is the number of nodes). For general matching al-
gorithms, very fast algorithms have been devel-
oped ; in one case, for 500 nodes and 2,500 edges,
.04 seconds on an Amdahl 470V/8 computer were

necessary (see Table 3.6 in Syslo et al., 1983). An
issue for future research is the relation between the

performance of the exact algorithms and approxi-
mation algorithms under varying distributions of
item parameters within an item bank.
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