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Using Bayesian Decision Theory to
Design a Computerized Mastery Test
Charles Lewis and Kathleen Sheehan
Educational Testing Service

A theoretical framework for mastery testing
based on item response theory and Bayesian deci-
sion theory is described. The idea of sequential
testing is developed, with the goal of providing
shorter tests for individuals who have clearly
mastered (or clearly not mastered) a given subject
and longer tests for those individuals for whom

the mastery decision is not as clear-cut. In a simulat-
ed application of the approach to a professional
certification examination, it is shown that average
test lengths can be reduced by half without sacrifi-
cing classification accuracy. Index terms: Bayesian
decision theory, computerized mastery testing, item
response theory, sequential testing, variable-length tests.

Mastery testing is used in educational and certification contexts to decide, on the basis of test
performance, whether an individual has attained a specified level of knowledge, or mastery, of a
given subject. A central problem in designing a mastery test is that of maximizing the probability
of making a correct mastery decision while simultaneously minimizing test length. A similar problem
is frequently encountered in the field of quality control: Acceptance sampling plans must be designed
to maximize the probability of correctly classifying the quality of a lot of manufactured material
while simultaneously minimizing the number of items inspected. The solution to the acceptance sam-
pling problem that was proposed by Wald (1947), called the sequential probability ratio test (SPRT),
exploited the fact that a lot of very poor quality can be expected to reveal its character in a very
small sample, whereas lots of medium quality will always require more extensive testing. This is done
by testing one randomly selected unit at a time, while allowing for the possibility of a decision on
the quality of the lot as a whole after each selection.

In an early application of the sequential testing approach to the mastery testing problem, Fergu-
son (1969a, 1969b) designed a sequential mastery test that treated examinees’ responses to items as
a sequence of independent Bernoulli trials. This design requires a pool of calibrated items that can
be sampled randomly. The test is conducted by presenting items to examinees one at a time. After
each item has been presented, a decision is made either to classify the examinee (as a master or a non-
master) or to present another item. Ferguson also specified a maximum test length for those individuals
for whom the mastery classification is very difficult to make. The decision rule assumes a binomial

probability model for item responses and, as in the SPRT, is based on a likelihood ratio statistic.
A major advantage of this approach is that it allows for shorter tests for individuals who have

clearly mastered (or clearly not mastered) the subject matter, and longer tests for those individuals
for whom the mastery decision is not as clear-cut. The use of the binomial model implies that the
probability of a correct response to an item is the same for all items in the pool, or that items are
sampled at random.

Alternative sequential mastery testing procedures have been proposed by Reckase (1983) and by
Kingsbury and Weiss (1983). Both of these procedures employ non-random adaptive item selection
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algorithms and are designed to be used with item pools containing items that vary in difficulty and
discrimination. In each procedure, the next item to be presented to an individual is selected based
on the amount of information that the item provides concerning the individual’s achievement level
estimate at that point in the testing process. This adaptive item sampling algorithm is implemented
using methods derived from item response theory (IRT). The decision rule proposed by Reckase is
a modification of the SPRT, in which the probability of a correct response to an item is allowed to
vary from one item to the next. This probability is estimated using an IRT model. The procedure pro-
posed by Kingsbury and Weiss differs from the Reckase procedure in that classification decisions
are made using Bayesian confidence intervals.
An alternative IRT-based mastery testing procedure has been proposed by Lord (1980) and im-

plemented by Stocking (1987). In this alternative approach, all examinees receive the same fixed-length
test, but the test is designed, constructed, and scored using methods derived from IRT. An optimal
test length is determined by specifying a maximum value for the length of the asymptotic confidence
interval for estimating ability (0) from test score in the region of the cutscore. This approach places
no restrictions on the variability of items in the pool, but it does require that all examinees take the
same fixed-length test.
A new type of mastery testing procedure is introduced in this paper that is constructed using IRT,

like Lord (1980), and using Wald’s sequential testing approach to provide an adaptive stopping rule,
like Ferguson (1969a, 1969b) and Reckase (1983). This approach differs from those presented previ-
ously in that (1) the sequential testing process operates on blocks of items, called testlets, rather than
individual items, and (2) the decision rule is determined using Bayesian decision theory. This new
mastery test is called a computerized mastery test (CMT), because it is designed to be administered
and scored using personal computers.

Design for a Computerized Mastery Test

Testlets

A testlet is an ordered collection of items that has been designed to be administered as a unit.
One of the advantages of a testlet-based item presentation algorithm is that, regardless of the selec-
tion methodology employed, it is never necessary to restrict the item pool to equivalent items.

For example, a test that calls for adaptive testlet selection requires a pool of variably peaked test-
lets, or testlets that have been designed to be optimally discriminating at a series of fixed points along
the 0 scale. The fixed-length mastery testing procedure proposed by Lord (1980) could be used to
construct such a pool. In contrast, a test that calls for random testlet selection requires a pool of
parallel peaked testlets, or testlets that have been designed to be optimally discriminating at the same
8 value (i.e., the cutscore). Lord’s procedure again could be used to construct such a pool, in which
each testlet would contain items that varied in difficulty and discrimination, but all testlets would
be constructed to provide equivalent measurement at the cutscore. The feasibility of Lord’s proce-
dure for the case of equivalent testlets has been demonstrated by Stocking (1987). Because a testlet
is basically a short test, it is not unreasonable to assume that any procedure developed to construct
peaked tests could be modified to construct peaked testlets; also, any procedure developed to con-
struct parallel test forms could be modified to construct parallel testlets, or testlets with equivalent
measurement properties.

Testlet-based item presentation algorithms also provide a number of secondary advantages. For
example, they allow for greater control over problems related to item-ordering and context effects
(Wainer & Kiely, 1987). Context effects arise when the appearance of a particular item has an effect
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on the difficulty of a subsequent item. Controlling this type of problem can be quite difficult when
individual items are randomly selected from a pool. When items are ordered within testlets, however,
a careful screening procedure can eliminate most dependency problems before they occur. Although
individual testlet screenings cannot control for problems occurring between testlets, the impact of
between-testlet item dependencies is lessened by the fact that items in separate testlets are typically
spaced further apart in the presentation sequence.

Two additional advantages are: (1) test security is enhanced, because each examinee may potential-
ly be administered a different subset of testlets (depending on the size of the testlet pool); and (2)
the record-keeping burden associated with administering tests to repeat examinees is reduced, be-
cause the system must only keep track of the subset of five or six testlets administered to each ex-
aminee, as opposed to the (possibly) hundreds of individual test items.

Random Versus Adaptive Selection

The CMT design uses random testlet selection. The primary reasons for selecting random rather
than adaptive sampling were (1) computational efficiency-unlike adaptive selection, random selec-
tion does not require the estimation of examinee 0 levels at each stage of testing; (2) simplicity-the
CMT was already designed to be adaptive in the sense of an adaptive stopping rule, so the additional
complication of an adaptive testlet selection mechanism was not considered desirable; and (3) ease
of implementation-unlike adaptive selection, which requires a pool of content-balanced testlets span-
ning a range of difficulty levels, random testlet selection requires a pool of parallel testlets. The special-
ized pools required for adaptive testlet selection in many testing programs are difficult to construct,
whereas procedures for constructing parallel test forms are often available for use in constructing
pools of parallel testlets.

The Definition of Mastery

In Ferguson’s (1969a, 1969b) application of the SPRT to the mastery testing problem, the cutscore
separating masters from nonmasters was defined in terms of the minimum proportion of correct
responses needed to classify an examinee as a master. In Lord’s (1980) treatment of mastery testing,
an IRT model is used to characterize the relationship between observed test performance and true
mastery status, and the cutscore is defined as a point 0. on the latent achievement scale. Because
it may not always be feasible to specify 8c precisely, Lord also suggested an alternative mastery defi-
nition in which two values, 8n and 0., are specified. 8n is the highest level at which an examinee will
be considered a nonmaster, and [ is the lowest level at which an examinee will be considered a master.
Lord’s approach is followed in the present sequential testing procedure.

The Use of Loss Functions

In making mastery decisions, two types of errors are possible: (1) classifying a nonmaster as a
master (a false positive decision); and (2) classifying a master as a nonmaster (a false negative deci-
sion). Let a and 0 denote the probability of occurrence for these two different types of errors, respec-
tively. In the procedures proposed by Ferguson (1969a, 1969b) and Reckase (1983), the decision rule
is determined by specifying target values for a and (3. In one of the fixed-length mastery tests pro-
posed by Lord, the decision rule is determined by selecting a small value for a (e.g., .05) and then
determining the decision rule that minimizes (3.

The decision rule used here does not require the specification of values for a and 0. Instead, mis-
classification rates are controlled through a decision theory approach. Early applications of decision
theory to mastery testing include Cronbach and Gleser (1965), Hambleton and Novick (1973), Huynh
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(1976), Petersen (1976), Swaminathan, Hambleton, and Algina (1975), and van der Linden and Mellen-
bergh (1977). In this approach, the user’s preferences for alternative classification outcomes are es-
tablished by assigning a real-valued number to each possible combination of mastery decision and
true mastery status.
An example of a simple loss function defined for a fixed-length mastery test is given in Table 1.

This loss function specifies that a correct mastery decision incurs no loss and an incorrect mastery
decision incurs a loss that is equal to a real-valued constant (either A if the incorrect decision is a
false positive, or B if the incorrect decision is a false negative). Equal values of A and B indicate
that a false positive decision is just as undesirable as a false negative decision. When A is greater
than B, the loss function incorporates the belief that false positives are more serious than false negatives.

1’able 1
A Simple Loss Function Defined
For a Fixed-Length Mastery Test

To define a loss function for a variable-length mastery test, it is necessary to specify the losses
associated with each possible combination of mastery decision and true mastery status at each stage
of testing. An example of a loss function for a test in which each examinee may be administered
two testlets at most is given in Table 2. In this loss function, the value C represents the cost of ad-
ministering a single testlet. As indicated in the table, this cost is incurred regardless of whether a
correct or incorrect mastery decision is made, and the cost of administering the second testlet is as-
sumed to be equal to the cost of administering the first testlet. Unique loss functions also can be
defined to accommodate the demands of particular mastery testing applications. For example, the
cost of testing, C, can vary with the number of testlets administered.

Table 2
A Simple Loss Function Defined for
a Variable-Length Mastery Test With

a Maximum of Two Testlets

Determining the Decision Rule

The object in adopting a decision theory approach is to determine a decision rule that reflects
in some way the preferences for alternative outcomes built into the loss function. However, because
the loss function depends on the true mastery status of individuals-and that status is never known
in practice-the optimal decision rule to associate with a particular loss function will not be unique.
Several methods for dealing with this problem are available. A Bayesian decision theory approach
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is followed here, as is discussed in Chernoff and Moses (1959), Lindley (1971), and Wetherill (1975),
among others. In this approach, the unique decision rule to associate with a particular loss function
is found by minimizing posterior expected loss at each stage of testing.

The Bayesian solution described here is based on the simple loss function defined above, in which
A represents the loss associated with a false positive decision, B represents the loss associated with
a false negative decision, and both A and B are expressed in the same units as C, the cost of ad-
ministering a single testlet. For the sake of simplicity, C is assumed to remain constant across stages.

Because this loss function considers only two levels of mastery (8n and 0.), it also includes the

implicit assumption that the loss of misclassification is the same, regardless of how incompetent (or
competent) a particular examinee might be-that is, the loss of passing an examinee who is at 9~
is assumed to be the same as the loss of passing an examinee who is far below 9n. Similarly, the loss
of failing an examinee who is at 8m is assumed to be the same as the loss of failing an examinee who
is far above 8m. In addition, this loss function also implies that there is no loss associated with mis-
classifying an examinee whose true 0 lies in the neutral region between 8n and 8&dquo;.. Thus, 9&dquo; and 0.
(the 8 levels associated with a maximally competent nonmaster and a minimally competent master),
should be selected to be as close together as possible, given measurement constraints.

One of the advantages of selecting such a simplified loss function is that it limits the amount of
prior information needed to determine posterior expected loss. In particular, prior beliefs about the
true mastery status of examinees can be quantified in terms of two probabilities: Pm, the prior prob-
ability that an examinee is at 8m’ and ~ = 1 - P., the prior probability that an examinee is at 9~.
£ can either be determined through a subjective assessment of the proportion of true masters in
the examinee population, or through an analysis of empirical data providing the observed propor-
tion of masters in the examinee population. Alternatively, £ = P = .5 could incorporate a notion
of equal prior odds.

To determine posterior expected loss, it is also necessary to have a model that characterizes the

relationship between true mastery status and observed test performance. A three-parameter logistic
IRT model was used here to provide the conditional probability of observing any particular pattern
of ordered item responses, given true mastery status. The parameters of the model allow each item
to be characterized in terms of its difficulty, discrimination, and guessing characteristics.

The Computerized Mastery Test

The Operational Format

The operational format of this approach is as follows. A pool of parallel testlets is developed and
calibrated. At each stage of testing, an n-item testlet is randomly selected from the pool and ad-
ministered. After responses to all n items have been observed, a decision is made either to classify
the individual, or to administer another testlet when the examinee’s cumulative number-correct score
indicates an intermediate level of mastery and the number of testlets administered is less than some

previously defined maximum. The decision to either classify or to continue testing is made by select-
ing the option that minimizes posterior expected loss. In determining the loss associated with the
option to continue testing, all possible outcomes of future testlet administrations are considered. Thus,
the action selected at each stage of testing is optimal with respect to the entire testing procedure.

The Decision Rule for a Fixed-Length Test

The decision rule derived minimizes posterior expected loss for a fixed-length mastery test consist-
ing of a single n-item testlet; it is then generalized to a variable-length test. According to the loss
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function defined above for a fixed-length mastery test, there are only two possible decisions-pass
or fail-and two mastery states-0. and 8&dquo;. The prior expected loss of a pass decision is calculated as:

where Pm is the prior probability assumed for the master state (0~), fl = 1 - Pm is the prior proba-
bility assumed for the nonmaster state (0~), and £( -1-) is the loss function. Similarly, the expected
loss of a fail decision is given by

The decision rule that minimizes expected prior loss is thus

which is equivalent to

Note that this decision rule does not make use of observed item responses.
The additional information about mastery status derived from examinees’ observed item responses

is incorporated into the decision rule by taking expectations with respect to the posterior distribution
of e, rather than the prior distribution of O. The posterior distribution of e is obtained by condi-
tioning on observed number-correct score, X, as

where, as before, 1>;&dquo; and fl represent the prior probabilities for 0. and 6n, respectively, and the proba-
bility of observing any particular number-correct score X (on a single n-item testlet) is determined
from the assumed IRT model, as

where the summation is taken over all response patterns such that the total score is s (for s = 0,
..., n), x, = 1 or 0 (depending on whether the response pattern considered is defined with a correct
or incorrect response to the jth item), and ~(em) is the conditional probability of a correct response
to the jth item by an examinee with proficiency level 0. (as given by the IRT model).

In a departure from some IRT-based Bayesian procedures, posterior probabilities are calculated
here conditional on the observed number-correct score, rather than the entire vector of observed item

responses. This simplification was adopted because of the branching nature of the sequential testing
process. This simplification does not imply, though, that the number-correct score is sufficient for
estimating 0. It merely implies that the probabilities associated with response vectors having the same
number-correct score can be meaningfully grouped together and treated as a unit, and it will result
in a degradation of measurement accuracy only when the amount of information lost by combining
probabilities within number-correct score groups is significant.

The posterior expected losses can now be calculated as
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and

where the posterior probability of mastery Pmlx is given in Equation 5 and
The decision rule that minimizes posterior expected loss is thus

which is equivalent to

This decision rule does not require a large number of on-line calculations. The pass/fail cutoff point
Al(A + B) can be calculated prior to test administration. Also, even though the measure of examinee
performance P 1, is a function of data that will not be available until after the test has been ad-
ministered, it will not be difficult to determine ahead of time which values of X will result in values
of Pmlx that are above the cutoff point and which will result in values that are below the cutoff point.
Thus, on-line classification decisions can be made on the basis of observed number-correct scores.

The Assumption of Parallel Testlets

The testing procedure outlined above calls for administering a single n-item testlet to each examinee.
In the more general case, testlets are randomly sampled from a pool of parallel testlets, and the num-
ber of testlets administered to each examinee is determined from his or her vector of observed item

responses. In this context, &dquo;parallel testlets&dquo; refers to testlets that are both content-balanced and
equivalent with respect to the likelihood of each possible number-correct score at the two points 8&dquo;,
and 9&dquo;.

Let X, be the number-correct score observed for the ith testlet administered. For all pairs of test-
lets t and t’, the parallel assumption implies that

and

for all possible scores (s = 0, ..., n). (A graphical procedure for evaluating the validity of the parallel
testlet assumption is presented below.)
An in-depth treatment of the consequences of lack of parallelism in a testlet pool can be found

in Sheehan and Lewis (1989). They concluded that between-testlet variation affects the efficiency of
the testing procedure, but not the specification of an optimal decision rule. Thus, whether or not
testlets are parallel, the best estimate of the likelihood of a particular number-correct score on a ran-
domly selected testlet is the average of the probabilities calculated for that score on all testlets in
the pool. As long as conditioning does not occur on the particular testlet administered, the likeli-
hood of an observed number-correct score is the same, regardless of whether or not the testlets in
the pool are truly parallel.

Although the decision rule proposed above is unaffected by lack of parallelism in an achieved
testlet pool, there are still three reasons why the test designer should strive to make the testlets as
parallel as possible. First, the efficiency of the test is inversely related to the level of between-testlet
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variation, because the decision rule is based on the average likelihood of a number-correct score.
As between-testlet variation increases, the precision of the average likelihood as an estimate of the
likelihood for a specific testlet decreases, and efficiency thus decreases. Second, parallel testlet pools
promote fairness, which is related to degree of parallelism, because each examinee may potentially
be administered a different subset of testlets but the decision rule (as currently formulated) is the
same for all testlets. Third, parallel testlets minimize the effect in this application of performing sam-
pling without replacement.

The Decision Rule for a Variable-Length Test

A sequential testing design is now considered in which the decision to classify or continue testing
is reevaluated after each testlet has been administered. Assume that a maximum test length of k test-
lets has been specified. As in the case of a single testlet, the decision rule at each stage of testing
will require the posterior probability of mastery at that stage. To simplify the notation, let

where X, is the score observed for the ith testlet (i = 1, ..., k). This probability can be calculated
iteratively, with

P.. ,-, is the prior probability of mastery, Pm.
The expected losses associated with the decisions to pass or fail at stage i are expressed as func-

tions of Pm~,:

To determine the expected loss associated with the decision to administer another testlet at stage i
(for i < k), it is necessary to consider all possible outcomes at stage i + 1. For example, if stage
i + 1 were to result in a &dquo;pass immediately&dquo; decision, the loss of deciding to continue testing at
stage i would be equal to the loss of deciding to pass the examinee at stage i + 1. However, because
the set of all possible outcomes at stage i + 1 includes the option of administering another testlet,
all possible outcomes at stage i + 2 must also be considered.

The uncertainty associated with future testlet administrations can be accounted for by averaging
the expected loss associated with each of the various outcomes in proportion to the probability of
observing those outcomes. In particular, the probability of observing each possible score X,+, at stage
i + 1, given the scores for the first i stages, can be calculated as a function of the posterior probabili-
ty of mastery at stage i:

This is called the predictive probability at stage i.
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To determine the expected loss of the continue-testing option, it is useful to introduce risk func-
tions at each stage of testing. Beginning with stage k, define

The expected loss of deciding to administer another testlet at stage k - 1 can now be written in terms
of the risk at stage k:

E[t(continue testing) I

where P.1, is evaluated for each value that Xk may take on. The risk function at stage k - 1 may now
be defined as

In general, the risk at stage i is defined in terms of the risk at stage i + 1:

The decision rule that minimizes posterior expected loss at stage i for i = 1, ..., k - 1 can now be
defined as

and for stage i = k,

or equivalently,

This decision rule, which can be evaluated with respect to any pool of parallel testlets, provides the
optimal decision to make at each stage of testing in a multistage test.

Rationale for Conditioning With Respect to Observed Number-Correct Score

Conditioning should be performed with respect to an individual’s number-correct score, rather
than their complete vector of observed item responses. Consider a test with a maximum of six stages
and a testlet pool containing parallel 10-item testlets. To determine the expected loss associated with
the continue-testing option at stage 1, all possible outcomes must be considered at successive stages
of the test. When outcomes are grouped by number-correct score, the total number to consider is
115 = 161,051 (11 corresponds to the set of all possible number-correct scores on a single testlet, and
5 corresponds to the possible additional testlets that could be administered). For each of these
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outcomes, the probability that the outcome will occur (i.e., the predictive probability) must be calcu-
lated, as well as the loss that would be incurred if it did occur (i.e., the risk). When outcomes are
not grouped by number-correct score, the total number possible is (21°)5 ~ 1015. Thus, the reduction
in computation achieved by grouping outcomes by number-correct score is significant.

Determining Probability Metric Threshold Values

In the decision rule given above, the number of required on-line calculations increases with the
number of stages and the size of the testlet. It is conceivable that in some testing situations the num-
ber of required on-line calculations will be more than the test administration computers can handle
without noticeable delays between stages. One alternative testing procedure is to perform some of
the on-line calculations off-line before the test is administered. It is expected that this procedure will
be applicable to tests of any size, and that the testing computers will not require more than a mini-
mum level of sophistication.

To determine the threshold values, first the risk is computed at stage k for a set of values of P.1,
(e.g., 0, .001, ..., 1). For each value of 7~, the decision is selected that minimizes expected posterior
loss by applying Equation 24. Next, the risk is computed at stage k - 1 for the same set of values
of Pmlk-¡- The task of computing the risk at stage k - 1 is simplified considerably by the fact that
the risk at stage k has already been determined. At each stage i < k, the largest values of Pm~, will
result in the decision &dquo;pass immediately,&dquo; and the smallest values will result in the decision &dquo;fail

immediately.&dquo; Thus the threshold values are defined as
Â.1, = largest value such that application of Equation 22 results in the decision to fail immediately

whenever Pm~, < ~,,&dquo;
Â.2, = smallest value such that application of Equation 22 results in the decision to pass immediate-

ly whenever P,&dquo;~, >_ X~,.
(Note that application of Equation 22 will result in the decision to continue testing whenever

The procedure outlined above can be used to determine the threshold values Xi, and Â.2&dquo; for i = 1,
... , k, prior to an actual test administration. Given that the threshold values have already been de-
termined, the testing procedure at each stage reduces to three steps: (1) administer a randomly select-
ed testlet and observe the number-correct score X,; (2) update the examinee’s estimate of P.1, using
Equation 14; and (3) make a decision by comparing the updated estimate of P.1, to a stored threshold
value. Use of this alternative procedure vastly reduces the number of required on-line calculations
because it is no longer necessary to calculate the risk at future stages of the test.

Translating Probability Metric Threshold Values to the Number-Correct Score Metric

In deriving the decision rule for the fixed-length test, the number of on-line calculations was reduced
by translating the threshold value X,, = Â.21 = A~(A + B) from the probability metric to the number-
correct score metric. A similar translation can be performed in the case of a variable-length test-
that is, by computing the posterior probabilities corresponding to all possible combinations of X,,
..., Xk, a set of approximate threshold values (Y,&dquo; Y2&dquo; i = 1, ... , k) can be determined, such that

where the summation is over X, for j = 1, ..., i. The translation from the posterior probability metric
to the number-correct score metric is a many-to-one transformation (i.e., many values of the
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posterior probability statistic are mapped into a single number-correct score). Thus, in many appli-
cations, on-line classification decisions can be made on the basis of cumulative number-correct scores.

An Application

Data

The procedure described above was used to design a variable-length mastery test for use in a profes-
sional certification program. The data available for this effort consisted of responses collected in
several past administrations of a fixed-length 60-item mastery test that was administered in the stan-
dard paper-and-pencil format. The results of this test were reported to examinees on a scale that ranged
from 0 to 100 with a cutscore of 75. The cutscore had been established using the procedure described
in Ebel (1972).

Some results of a typical paper-and-pencil administration of this exam are presented in Figure
1. Figure la provides an equating function that can be used to translate scores from the number-
correct metric to the reporting scale metric. The reported cutscore of 75 corresponds to a number-
correct score of 39. Figure lb provides the distribution of estimated abilities, which shows that
approximately 70% of the examinee population received a passing score.

Figure 1
An Equating Function and an Empirical 0 Distribution Estimated From a

Paper-and-Pencil Administration of the Fixed-Length 60-Item Form (N = 4,280)

a. Equating Function b. Empirical 0 Distribution

Repeated paper-and-pencil administrations of this exam previously resulted in an item pool con-
taining 110 items. The three-parameter logistic IRT model was fit to these data, and estimated model
parameters were available (Kingston, 1987). The estimated parameters indicated a wide variation in
the difficulty and discrimination levels of the items in the pool. The items also belonged to two non-
overlapping content categories.

Testlet Construction

Additional constraints imposed on this test development effort included the following: (1) the test
length was limited to between 20 and 60 items, and (2) the test content was constrained to include
the two content categories in a 60/40 ratio. A testlet length of 10 items was selected, and each ex-
aminee would be required to respond to at least two but no more than six testlets.

Because the item pool contained only 110 items, Lord’s procedure (1980) was not used to construct
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testlets. Instead, an alternative procedure was developed that retained some elements of Lord’s proce-
dure. First, 11 testlets were constructed by cross-classifying the item pool according to content category
and estimated item difficulty, and then sequentially assigning items to testlets. Each resulting testlet
contained six items from the first content category and four items from the second content category.
Second, the six testlets that appeared most &dquo;parallel&dquo; (in terms of median difficulty and discrimina-
tion) were then selected from the 11 that were available. The estimated item parameters of these six
selected testlets are summarized in Table 3.

1’able 3

Minimum, Median, and Maximum of Item
Parameter Estimates for Six Testlets

Ordered by Median Difficulty

As a final step, two checks were performed. First, each testlet was evaluated for unwanted item
dependencies, and several offending items were replaced with alternative items that had been matched
for content category and difficulty. Second, the validity of the testlet interchangeability assumption
was evaluated by comparing the theoretical distribution of number-correct scores estimated for each
testlet at the previously-selected points 8n and 6m. These distributions are plotted in Figure 2. The
points 6n and 6m correspond to ability levels of 69 (Figure 2a) and 81 (Figure 2b) on the test reporting
scale, respectively. The closeness of the curves indicates that for examinees near the cutscore, the
probability of observing a particular number-correct score is virtually the same regardless of the par-
ticular testlet administered. Based on this comparison, it was decided that the measurement accuracy
of the test would not be seriously degraded by treating the six selected testlets as if they were truly
interchangeable. (This procedure is not presented as an optimal method for constructing parallel testlets;
rather, it a method that can be used when the test designer must contend with a small item pool.
More appropriate methods would include a facility for matching test information curves, and would
provide a pool of at least 10 testlets.)
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Figures 2
Theoretically-Derived Number-Correct Score Distributions

for the Six Testlets (Different Line types Represent Different Testlets)
a. Nonmaster at Rescaled 0 = 69 b. Master at Rescaled 0 = 81

Choice of Decision Rule

To determine the decision rule that minimizes posterior expected loss for this particular pool of
six testlets, four additional parameters had to be specified: the prior probability of mastery 1>;&dquo;, and
the loss function parameters A, B, and C. Although the proportion of true masters in the population
was expected to be near .7, the value Pm = .5 was selected in order to incorporate a notion of equal
prior odds.

The loss function parameters, A, B, and C were selected as follows: (1) to set the scale of measure-
ment, the cost of administering a testlet (C) was set equal to 1; (2) to incorporate the belief that
a false positive decision was twice as serious as a false negative decision, A was set to 2B; and (3)
a simulation study was performed to evaluate the operating characteristics of the alternative decision
rules that resulted when B was allowed to vary between 2 and 100. The operating characteristics in-
vestigated in the simulation included average test length, expected passing rate, expected proportion
of false positive decisions, and expected proportion of false negative decisions.

Based on the simulation results, it was determined that the value B = 20 provided a decision rule
with desirable operating characteristics. Thus, the loss of passing a nonmaster was taken to be 40,
and the loss of failing a master was taken to be 20, on a scale in which one unit corresponded to
the cost of administering a single testlet. This is referred to as a 40/20 loss function.

Figure 3 gives a stage-by-stage view of the expected losses associated with the 40/20 loss function,
as applied to the six selected testlets. In each plot, the posterior probability of mastery P.1, is plot-
ted along the X axis, and the posterior expected loss curves calculated for each possible decision are
plotted along the Y axis. The plot for stage 6 (Figure 3f) is the final stage of the test, so only two
decisions are possible: pass or fail. The expected loss curve for the pass decision decreases linearly
as the posterior probability of mastery increases. The expected loss curve for the fail decision in-
creases linearly as the posterior probability of mastery increases. The point at which the two curves
intersect is the threshold value Â16 = Â26 = Al(A + B) = 2/3. Expected loss is minimized below this
point by making a fail decision, and above this point by making a pass decision. The region in which
a fail decision is optimal is indicated by negatively sloped diagonal lines, whereas positively sloped
diagonal lines indicate the region in which a pass decision is optimal.

Figures 3a through 3e include a third curve representing the expected loss of the continue-testing
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Figure 3
Posterior Expected Loss for the 40/20 Decision Rule

option. The area where this curve provides the minimum expected loss is shaded using a cross-hatched
pattern. For stage 5 (Figure 3e), expected loss is minimized by making a fail decision for low values
of 7~:, by making a pass decision for high values, and by deciding to administer a sixth testlet for
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intermediate values. Figures 3a through 3f show that the range of values of P.1, that will result in
the decision to continue testing decreases with the number of testlets administered. Thus, an examinee’s
chances of being classified increase with each testlet administered.

The threshold values obtained for the 40/20 loss function are listed in Table 4. For purposes of

comparison, the table also lists the threshold values that would have resulted if equal losses
(A = B = 20) had been specified. Values are reported both in the probability metric and the cumulative
number-correct score metric. The probability metric threshold values correspond to the intersection
points of the curves in Figure 3. The cumulative number-correct score values were obtained by com-
puting the posterior probabilities corresponding to all possible combinations of number-correct scores.
Although either one of these sets of values could be used in an actual on-line testing situation, the
cumulative number-correct score threshold values are the most likely choice because they are much
simpler to understand and easier to use.

Table 4

Probability Metric and Number-Correct Score Threshold
Values for 20/20 and 40/20 Loss Functions

The probability metric threshold values are the cutoffs that are to be applied to each examinee’s
updated posterior probability of mastery P,~~, at the completion of each additional testlet. Under the
20/20 rule, examinees with posterior probabilities below .1525 at stage 1 will be failed immediately,
examinees with posterior probabilities of .8525 or greater will be passed immediately, and examinees
with intermediate values will be required to respond to an additional testlet. The corresponding values
for the 40/20 rule are shifted slightly upward. For example, in order to be passed after responding
to just one testlet under the 40/20 rule, examinees must have a posterior probability of mastery that
meets or exceeds the higher cutoff value of .9275. This more stringent requirement reflects the asym-
metric nature of the 40/20 loss function.

Table 4 does not list number-correct score threshold values for stage 1. This is because a minimum
test length of two testlets had previously been established, and this restriction was incorporated into
all the decision rules considered by changing stage 1 probability metric threshold values to 0 and
1, respectively. Because it is impossible for an examinee to respond in such a manner as to achieve
a posterior probability of mastery less than 0 or greater than 1, all examinees are required to respond
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to at least two testlets, regardless of their score on the first testlet.
Table 4 shows that by stage 2, under the 20/20 rule, examinees with cumulative number-correct

scores of 11 or less will be failed, and those with cumulative number-correct scores of 15 or higher
will be passed; those with scores of 16 or higher will be passed under the 40/20 rule. In order to
determine the cutoff scores for stage 3, not all of the 113 = 1,331 possible score combinations need
be considered, so the number of required calculations remains manageable. Also, this method of
determining a decision rule is particularly attractive because these calculations can be performed in
advance of an actual on-line testing session.

Using Simulation Techniques to Select a Loss Function

Simulation Design

A number of alternative loss functions were evaluated before selecting the 40/20 loss function.
Each alternative function was evaluated with respect to a single set of simulated data. The simulated
dataset included item responses generated according to the three-parameter logistic IRT model for
each item in the six selected testlets (a total of 60 items). Data were simulated for 100 examinees
at each of 41 levels ranging from 55 to 98 on the reported score metric (total N = 4,100). The score
levels used in the simulation were selected to be representative of the range of abilities observed in
paper-and-pencil administrations of the items included in the six selected testlets (Stocking, 1987).

Although many different loss functions were evaluated, the three reported here include the 20/20,
the 40/20, and the 100/20 loss functions. For purposes of comparison, these loss functions were evalu-
ated with respect to a variable- and a fixed-length test. The variable-length test was defined such
that each examinee was required to respond to at least two testlets and no more than six testlets;
therefore, test lengths ranged from 20 to 60 items. The fixed-length test was defined to include the
same six testlets used to construct the variable-length test, for a total length of 60 items.

For each test, Table 5 provides the average test length, the expected pass rate, and the expected
error rates. These statistics were obtained by weighting the simulation results to reflect the expected
proportion of examinees at each of the 41 score levels considered, based on the distribution given
in Figure 1. The error rates given as a percent of the total population provide the number of incorrect
decisions (false positives or false negatives) expressed as a percent of the total decisions made. The
error rates given as a percent of a subpopulation provide the percent of nonmasters misclassified
as masters (false positives), and the percent of masters misclassified as nonmasters (false negatives).
The approximate percentages of masters and nonmasters in the examinee population were 70% and
30%, respectively.

The results presented for the three variable-length tests show that, as expected, more severe losses
led to longer tests. For example, when the loss of incorrectly passing a nonmaster is considered to
be 20 times the cost of administering another testlet, on the average examinees will be required to
respond to about 25 items. When this loss is considered to be 100 times the cost of administering
another testlet, an average test length of about 30 items can be expected.

The error rates listed in Table 5 were obtained by comparing the true mastery status of each simulee
to the mastery classifications that resulted from applying the various decision rules. The error rates
listed for the fixed-length tests are those expected for a standard paper-and-pencil test developed from
the same item pool as the variable-length tests and scored with a similar loss function. For each loss
function considered, the variable-length testing procedure achieved similar decision accuracy as the
fixed-length testing procedure, but used fewer items. For example, under the 100/20 decision rule,
the average test length was decreased by half, but there was only a slight change in the expected error
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Table 5

Average Test Length, Pass Rate, and Error Rates as a Percent
of Total Population and Subpopulation for Variable- and
Fixed-Length Mastery Tests and Three Decision Rules

rates. Thus, on a per-item basis, the decision accuracy of the variable-length test exceeded that of
the fixed-length test for each loss function considered.

The adaptive nature of the 40/20 CMT is illustrated in Figure 4, which provides the bivariate dis-
tribution of true 0 and test length. The plot shows that examinees with true 0 levels located near
the cutscore of 75 will be administered tests of 50 or 60 items, whereas those with 0 levels at either
of the two extremes will be administered a test of 20 or 30 items, at most.
An alternative view of the operating characteristics of these three loss function specifications is

provided in Figure 5. The percent of simulees classified as masters is plotted as a function of 0.
Results for the three variable-length tests are given in Figure 5a, and results for the three fixed-length
tests are given in Figure 5b. All curves were obtained by smoothing the unweighted simulation results.

Figure 4
Bivariate Distribution of 0 and Test Length for a
Variable-Length CMT With a 40/20 Decision Rule
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Figure 5
Percent Classified as Master Under Three Alternative Decision Rules

The plots show that the more extreme loss function specifications tend to result in fewer classifica-
tion errors for both modes of administration.

The trade-off between classification accuracy and test length is illustrated in Figure 6. In Figure
6a, the results of applying the 20/20 decision rule under a fixed-length testing format (i.e., all ex-
aminees respond to 60 items) are compared to the results of applying the same decision rule in a
variable-length testing format (i.e., test lengths from 20 to 60 items). Figure 6b provides a similar
comparison for the 40/20 decision rule. The plots show that the shorter average test lengths associat-
ed with the variable-length testing format for these decision rules are accompanied by observable
decreases in classification accuracy.

Discussion

The sequential mastery testing procedure described here provides a theoretical framework for balanc-
ing the competing goals of classification accuracy and test efficiency. Implementation of this ap-
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Figure 6
Percent Classified as Master as a Function of True 0 Level

for Fixed-Length and Variable-Length Tests

proach depends on the availability of (1) a computerized test delivery system, (2) a pool of pretested
items, and (3) a model relating observed test performance to true mastery status. Although the proce-
dure was developed using an IRT model, alternative models may also prove useful.

This approach to sequential mastery testing incorporates three simplifications: (1) all examinees
are assumed to be at one of two ability levels, 8n or 8m; (2) conditioning is performed with respect
to observed number-correct scores, rather than the entire vector of observed item responses; and

(3) posterior distributions are estimated using pool-wide average likelihood functions, rather than
testlet-specific likelihood functions. These simplifications, however, were not incorporated into the
simulated data that were used to determine the operating characteristics of alternative decision rules.
Instead, the simulated data assumed the range of 8s given in Figure 1, and responses were gen-
erated according to the three-parameter logistic IRT model, which allows for between-testlet vari-
ation as well as variation in the likelihoods of response vectors having the same number-correct score.

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



386

Thus, the reasonable error rates obtained in the simulation can be interpreted as evidence that the
simplifying assumptions have not seriously degraded the measurement accuracy of the test.
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