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Polytomous item response theory models and the re- priate for the same measurement objective, as well as
search that has been conducted to investigate a variety of applications of polytomous CAT in marketing and educa-
possible operational procedures for polytomous model- tional psychology, also are reviewed. Directions for fu-
based computerized adaptive testing (CAT) are reviewed. ture research using polytomous model-based CAT are
Studies that compared polytomous CAT systems based on suggested. Index terms: computerized adaptive testing,
competing item response theory models that are appro- polytomous item response theory, polytomous scoring.

y

Computerized adaptive testing (CAT) is one of the major innovations in measurement applications that
has benefitted from developments in item response theory (IRT). The advantages of CAT over traditional
paper-and-pencil (P&P) tests have been discussed by many researchers (e.g., Kingsbury & Weiss, 1983;
McBride & Martin, 1983) and more recently explicated by Wainer, Dorans, Flaugher, Green, Mislevy,
Steinburg, & Thissen (1990). The major benefit of CAT derives from procedures designed to administer
items that are matched in difficulty level to the examinee’s estimated trait level. cA’rs result in the admin-
istration of considerably fewer items and have equal or greater measurement precision than full-length P&P
versions of the same tests (McBride & Martin, 1983; McKinley & Reckase, 1980; Weiss, 1982).

Although CAT using polytomous items is the focus of this paper, most CAT implementations to date have
been limited to dichotomous items. CAT versions of many tests have been developed from the procedural
guidelines recommended for multiple-choice items that are scored dichotomously (Green, Bock, Humphreys,
Linn, & Reckase, 1984; Reckase, 1981; Weiss, 1981, 1983, 1985). For example, the Psychological Corpo-
ration has published an adaptive version of the Differential Aptitude Test (Henly, Klebe, McBride, &

Cudeck, 1989); the College Board has released the Computerized Placement Tests (College Board, 1993);
American College Testing has operational math, reading, and writing adaptive tests in their COMPASS pro-
gram (American College Testing, 1993); and Educational Testing Service has developed an adaptive ver-
sion of the Graduate Record Examination (Educational Testing Service, 1993). Licensure boards such as
the American Society of Clinical Pathologists (Lunz, Bergstrom, & Wright, 1992), the National Council of
State Boards of Nursing (Zara, 1988), and the American Board of Internal Medicine (Reshetar, Norcini, &

Shea, 1993) have been researching CAT for certification examinations. Based on the results of such re-
search, several licensure boards have implemented CAT versions of their certification tests. The U.S. De-
partment of Defense also has implemented a CAT version of the Armed Services Vocational Aptitude Battery
(Curran & Wise, 1994). In addition, school districts such as the Portland Public School District have
developed a variety of CATS to administer to students annually (Kingsbury & Houser, 1993).

To date, all CATs that have been implemented on a wide scale in practical settings have been based on
dichotomous IRT models that require each item to be scored either correct or incorrect. As the assessment
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field moves away from techniques that are based solely on dichotomously scored multiple-choice items,
the use of IRT models that are designed for item responses that are scored using more than two categories
should increase. For example, Likert-type attitude scale items are typically scored using an ordered set of
response categories. Also, items in mathematics, physics, and chemistry can be designed for partial-credit
scoring in which points are awarded for the completion of steps leading to the correct answer. In addition,
essay items are typically scored with integers (ordered categories) to represent the degree of quality of the
written response.

Polytomous IRT Models

Several polytomous IRT models have been developed over the last 25 years. In this section, polytomous
models that have been used in research with CAT as well as some promising models that have received little
or no attention in CAT research are discussed. No attempt is made to provide an exhaustive survey of all
known polytomous models: the lack of coverage of a particular model does not constitute a judgment on
the usefulness or importance of that model.
A useful way to describe these models is to place them within the taxonomy that was developed by

Thissen & Steinberg (1986). This taxonomy consists of a five-category classification scheme for grouping
dichotomous and polytomous IRT models. Three of the classification categories identified for polytomous
models include: difference models, divide-by-total models, and left-side added divide-by-total models.
The third category is based on a nominal class of models with the addition of parameters for a latent

response category for modeling examinees who are &dquo;totally undecided&dquo; (Lord, 1983; cited in Thissen &

Steinberg, 1984) as to which item response they should select. The multiple-choice model (Thissen &

Steinberg, 1984), Samejima’s (1969) multiple-choice model, and Sympson’s (1983) Model 6 are included
in the left-side added divide-by-total category. Given the fact that none of the models in this classification
category has been used for CAT, they are not discussed further.

The difference models and divide-by-total models are summarized in Figure 1. The models within each
category are arranged so that the most general model is listed at the top of the figure and the most con-
strained or simplistic models appear at the bottom. The line that connects two models indicates that, by
imposing certain constraints on the upper model, the lower model can be obtained. De Ayala (1993) pro-
vided a nontechnical introduction to these models. For an in-depth explanation of these models, the reader
is referred to the citations that accompany each model.

Difference Models

In difference models, subtraction is used to obtain the probability of a response in a particular category.
Samejima’s (1969) graded response model (GRM) and Muraki’s (1990) rating scale model (MRSM) are two
examples of difference models. For both the GRM and MRSM, the probability of responding in a particular
category is calculated by subtracting the probability of responding in a given category or higher (condi-
tional on trait level, 0) from the probability of responding in the adjacent or lower category (conditional on
0). The equation describing the probability of responding in each category is referred to as the operating
characteristic function (OCF) for the model.

The graded response model. The GRM is appropriate when responses to an item can be classified into
more than two ordered categories to represent varying degrees of attainment of a solution to a problem or
agreement with an attitude statement. The responses to item i are classified into (m, + 1) ordered categories
so that lower-numbered categories represent less of the trait measured by the item than do higher-num-
bered categories. The category scores for item i are successive integers, denoted x, where x = 0, 1, ..., m,.
Samejima (1989) developed a two-stage process to obtain the probability that a given individual with a
certain 0 level will receive a given category score. In the first stage, the probability that an individual will
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Figure 1
Hierarchy of Polytomous IRT Models

(*Model is a member of the Rasch family of IRT models)
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receive a category score of x or higher on item i is expressed by

) - exp~Da, (8 - b~ )~ ~ 1a 
1 + exp~ Da, (9 - b,~ )~ ~ ~ ~

where
D is the scaling constant 1.7,
a, is the discrimination parameter of item i,
0 is the trait level, and

b,x is the category boundary associated with category x for item i.
For each item, one a, term and a set of m, category boundaries are estimated.

The second stage in obtaining the probability of responding in a particular category, Q~(0), involves the
subtraction of the cumulative probabilities for adjacent categories conditional on 0:

Pa(8) = p:(e) - Et+1(0) . (2)

In order to use Equation 2 to obtain the probability of responding in either of the two extreme categories,
it is necessary to define the probability of responding in the lowest category or higher, lflg(0) , as 1.0 and the
probability of responding in category m, + 1 or higher, P,,*,,, +, (0), as 0. Equation 2 is the OCF for the GRM.

The Muraki rating scale model. Muraki ( 1990) demonstrated that the MRSM is a restricted case of the
GRM for attitude scales. Muraki reparameterized the category boundary parameters (b.) of the GRM to include
a location parameter for the item (b,) and a set of threshold parameters for the scale (t,,). With the MRSM, the
probability of an examinee with a given 0 responding in category x or higher on item i is defined as

P (9) - expLDa, (9 - b, + tx )] 
. (3)~~~~ 

1 + exp[ Da, (0 - b, + tJ] 
Therefore, under the MRSM an item with m, + 1 categories is characterized by its location on the scale (b,),
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its discrimination power (a,), and a set of m, thresholds (tx) for the entire scale. The restriction that the tx
parameters be constant across items is consistent with the common practice of using a common rating scale
for all items. As is the case with the GRM, the probability of responding in category x on item i is obtained
by subtracting the adjacent P,,*(O) functions. When an item has only two categories (incorrect and correct),
the GRM and MRSM reduce to the two-parameter model (Samejima, 1969). As a result, the GRM may be
applied to tests that include both dichotomously and polytomously scored items.

Divide-by-Total Models

Unlike the difference models, the OCF is obtained directly in the divide-by-total models. For these
models, the probability of responding in a given category is obtained by dividing the numerator by the sum
of all category probability numerators so that the probabilities conditional on 0 sum to unity.

The nominal response model. The nominal response model (NRM) developed by Bock (1972) is the
most general model in the divide-by-total model classification category, and all the models discussed in
this section are restricted cases of the NRM. In contrast to the difference models, the NRM may be applied to
items that have alternatives that cannot be ordered to represent varying degrees of the trait measured by the
item. The NRM usually is used with multiple-choice items in which it is difficult to order distractors accord-
ing to their relative degree of correctness or to the relative amount of knowledge required to recognize that
each alternative is incorrect. The NRM attempts to increase the precision of the 0 estimates for individuals,
particularly those with low 0 levels, by using information from their incorrect responses.

For the NRM, the probability of an examinee with a given level of 0 responding in category x on item i
is defined as

( n exp[ C¡x + a¡x8] ,P~IA) = n,

Í exp[ C’h + a’h8] (4)
h=1

where

a,,, is the slope (discrimination) parameter for category x of item i,
c,, is the intercept parameter of the nonlinear response function associated with categoryx of item i, and
n, is the number of categories of item i (i.e., x = 1, ..., n,).

Therefore, in the NRM each category’s ability to discriminate among examinees is captured by avc. Cvc re-
flects the interaction between the difficulty of the category and how well that category discriminates. As a
result, the description of an item consists of n, discrimination and intercept parameters. When an item has
only two options (scored as incorrect and correct), the NRM reduces to the two-parameter logistic model
(2PLM), where the item difficulty parameter is equal to -c~ divided by a~.

The partial credit model. Thissen & Steinberg (1986) showed that by imposing the constraint that the
NRM slope parameters increase in steps of 1.0, it is possible to apply the NRM to ordered category scores for
an item and obtain Master’s (1982) partial credit model (PCM). Similar to the GRM, the PCM is appropriate
for items that are scored in a graded fashion. The examinees’ responses are categorized into m, + 1 scores
(i.e., x = 0, 1,..., m,) to represent varying degrees of the trait measured by item i. Masters proposed the
following general expression for the probability that an examinee with a given 0 will obtain a category
score of x on item i

x

Qr(0) * exp ~ (8 - b,k ) ~ , <5)~=&horbar;’~&horbar;&dquo;)’ , (5)

~exp 1:(O-b,,)
h=0 k=0
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where bit is the item step difficulty parameter associated with the transition from one category to the next
and there are m, step difficulties for item i. For notational convenience, Masters defined £(0 - blk) as being
equal to 0.0 when k is 0.

The PCM was conceptualized under the requirement that the steps within an item be completed in order,
although the steps need not be ordered in terms of difficulty (e.g., Step 2 can be easier than Step 1). When
the steps are not ordered in terms of difficulty, a reversal (Dodd & Koch, 1987) is said to exist. The PCM
also assumes that all items are equally effective in discriminating among examinees with varying 0 levels.
When an item is scored dichotomously, the PCM reduces to the Rasch model and thus can be used with tests
composed of both dichotomously and polytomously scored items.

The Andrich rating scale model. When the PCM is applied to a set of Likert-type items that share a
fixed set of rating points, the PCM may be simplified to obtain Andrich’s ( 1978a) rating scale model (ARSM).
Masters & Wright (1984) showed how each item step difficulty parameter from the PCM could be decom-
posed into two components

blk = bl + tk ’ 1 (6)

where b, is the location (i.e., scale value) of item i, and tk is the threshold parameter for the kth category
over the entire set of items. By substituting Equation 6 into Equation 5, simplifying, and letting

x

Kx =- Ilk (7)
k=l

and Ko = 0.0, the ARSM is derived from the PCM. Andrich ( 1978a, 1978b) defined the probability that a
person with a given 0 level will respond in category x to item i as

puce) = expf~+A-(e-~)1 )~ ’ (8)p .(0) = M, 

exp[Kx + ’&horbar;&horbar;-~ 
, (8)

:texp[ Kh + h(8 - b~ )~
h=O

where Kx is the negative sum of the thresholds passed.
Similar to the MRSM, the tks are estimated for the entire item set, whereas the item scale values (b,) are

estimated individually for each item (Andrich, 1978a). As is the case with the PCM and unlike the MRSM,
the ARSM assumes that items are equally effective at discriminating among examinees.

The successive intervals model. Rost (1988) developed the successive intervals model (SIM), which is
another polytomous Rasch model that is appropriate for attitude measurement. The probability that a per-
son with a given 0 level will respond in a particular category for an item may be expressed as

- exp~Kx + x9 -~xbj +j<:(w-~)~,1}p ,x(0) =M, ~L ~____L ’ + x(m - x)d, ’JJ ,

£ exp(K~ + h9 - ~hbi + h(m, - h)d, ~~ (9)
h=0

where

b, is the scale value (location parameter) for item i,
d, is the dispersion parameter for item i, which reflects the degree to which the threshold distances for

the item deviate from the threshold parameters for the entire scale, and
Kx is the negative sum of the threshold parameters associated with Categories 1 to x.

For notational convenience, to is defined as being equal to 0.0 so that Equation 9 also can be used to obtain
the probability of responding in category 0.

As is the case for the ARSM, the SIM is a special case of the PCM and estimates a scale value or item
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location parameter for each item, as well as a single set of response threshold values for the entire set of
items. Unlike the ARSM, however, the SIM contains a second item parameter, d,, for each item that reflects
the degree of difference between the threshold distances for the item and the threshold distances for the
entire scale. By imposing the restriction that all d, values equal 0.0, the SIM simplifies to the ARSM.

The generalized partial credit model. Muraki (1992) extended the PCM by removing the assumption
that all items discriminate equally well. The generalized PCM (GPCM) was developed in a fashion parallel to
the development of the PCM by substituting the two-parameter model for the Rasch model. The GPCM is
expressed as

x

p ~x (~) = 
exp ~a,(9-b,k) )) 

, (10)P~ 6 - ~exp m k ~a,(6-b,k) h , 10u 

~exp ~(e-~)
h=0 k=0 

where

P~(0) is the probability of an examinee with a given 0 responding in category x of item i with m, + 1
categories,

a, is the item discrimination, and
b,k is the step difficulty parameter associated with category k (k=1, ..., m,).

Muraki defined X(0 - b,) as being equal to 0.0 when k is 0. Similar to the PCM, the b,k terms are not
necessarily ordered and, therefore, reversals may occur. When a, equals 1.0, the GPCM simplifies to the
PCM. By further assuming that búc can be split into its component parts-the item’s location (b,) and the
threshold parameters for the entire scale (tk~the GPCM becomes the ARSM. Muraki (1992) also demon-
strated that the GPCM is a special case of the NRM for ordered response categories.

Information

In contrast to dichotomous models in which the concept of information is defined at the item level, the
information function for polytomous models may be estimated for each response category as well as for
the item. Samejima (1969) proposed information functions for polytomous items that are applicable to all
of the models discussed here. Although other formulas for information that are computationally simpler
have been derived for specific models, Samejima’s formulation is presented because of its generality.

Samejima (1969) defined the category information function [I~(6)] for item i as

1,., (0) = I P., (())], ~)~’[~r~)’ ’ ~ )

where P~(9) is the probability of obtaining a category score of x for a fixed 0, and P~(6) and P.&dquo;(0) are the
first and second derivatives of 7~(0), respectively. Samejima (1969) defined the item information [/(8)] for
a polytomous item as 

’

II(e) = ~ I~x(e)p~x(e) ~ (12)
x=o 

&dquo;

Substituting the equality from Equation 11 into Equation 12 and simplifying yields
m, 12 

2 
m,I~(e> - ~ L pX(e)J _ ~ Px’(8). (13)~’~~~ 

x=0 0 Px (0) x=0 

Samejima (1969) demonstrated that the second term in Equation 13 equals 0.0 and thus can be deleted
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from the equation for the item information function. The test or scale information function is simply the
sum of the item information functions. It should be noted that polytomous scoring of an item provides
more information than dichotomous scoring of the item (Samejima, 1969); this is true of all the polytomous
models discussed here.

Model Selection

The selection of a particular polytomous model involves a number of factors: the type of data, model-
data fit, philosophical considerations, model assumptions, and parsimony. If the data consist of items that
have unordered alternatives, then the NRM is appropriate. When responses to an item are classified into
more than two categories that can be ordered to represent varying degrees of the trait measured by the item,
then either the GRM, GPCM, or the PCM could be used. If the ordered data are ratings, then more constrained
versions of these models, such as the MRSM, the SIM, or the ARSM, would be appropriate.

From a statistical perspective, a likelihood ratio for fit to the data using a general model (e.g., the GPCM)
could be obtained; then, by imposing constraints on the general model, the PCM and its respective likeli-
hood ratio could be determined. The difference between the likelihood ratios could be tested for signifi-
cance, and the simplest model that does not differ significantly in fit compared to the more complicated
model would be used. In a similar fashion, the SIM could be compared with the ARSM. This approach, or
some similar fit analysis method, can be extended to include a cross-validation sample (e.g., see Drasgow,
Levine, Tsien, Williams, & Mead, 1995).

An alternative approach is to use the ideal observer index (101) (Levine, Drasgow, Williams, McCusker,
& Thomasson, 1992). The 1m allows statistical models to be compared on the basis of response vector
probabilities. Using the IOI, competing models can be compared in terms of correct classification rates. In
contrast to the likelihood ratio approach described above, the 101 allows comparison of nonhierarchical
models.

Both the likelihood ratio approach and the 1m approach ignore philosophical differences among fami-
lies of models, such as the Rasch family (PCM, ARSM, SIM); differences concerning the interpretation of
model-data fit (e.g., whether the model should be selected to fit the data or the data should be selected to fit
the model); the fact that some models may not be identified; and particular model characteristics. For
example, the PCM assumes that items have equal discriminations; however, some individuals may prefer to
use models that allow items to vary in terms of discrimination, such as the GPCM or GRM.

Research on CAT With Polytomous Items

Basic research has investigated a variety of possible operational procedures for CAT based on one of the
difference models (GRM) and four of the divide-by-total models (NRM, PCM, ARSM, and SIM). The general
procedural guidelines that have emerged from these studies are discussed in terms of the major compo-
nents of a CAT system. Studies comparing the performance of CAT systems based on competing IRT models
that are appropriate for the same measurement objective and several live-testing applications of polytomous
CAT procedures are discussed after the basic research on operational procedures. Table 1 presents a brief
description of the polytomous CAT research studies.
Operational Procedures Research

There are four major components of an adaptive test: (1) the item bank, (2) the item selection procedure,
(3) the trait estimation procedure, and (4) the stopping rule (Kingsbury & Zara, 1989, 1991; Reckase,
1989; Wainer et al., 1990; Weiss, 1982). These four components are common to all CATS regardless of the
IRT model used.

Item bank. The size of the item bank and the characteristics of the items included in the bank can im-
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pact the properties of an adaptive test. With dichotomously scored items, it has been recommended that an
item bank consist of at least 100 items for use with the three-parameter logistic model (3PLM; Urry, 1977).
Considerably larger item banks (e.g., 500 to 1,000 items) may be desirable if content balancing and fixed
length CA’rs are used for high-stakes testing, such as certification examinations, in which security of the
item bank is a concern.

One of the problems that frequently occurs with small item banks is the nonconvergence of 8 estimates
to a finite value when maximum likelihood estimation is used. With nonconvergence, even if finite esti-

mates can be obtained, they are typically accompanied by very large standard errors. This is typically due
to insufficient item information to estimate the given 0 at certain points within the item bank. Therefore,
approximately uniform (rectangular) distributions of item difficulty values for the items in the bank have
been recommended for CAT systems based on dichotomously scored items (Reckase, 1981; Urry, 1977).
When the item difficulty values are uniformly distributed, the item bank information function will be
relatively constant across the range of 8 with a moderate peak at 8 = 0.0 (Dodd, Koch, & De Ayala, 1989).

In contrast to the recommendations for dichotomously scored items, research on polytomous CAT based
on various models has shown that substantially smaller item banks may be used successfully. This research
has found that item banks with 30 items may be sufficient for accurate 8 estimation, with few nonconvergence
problems, for the GRM (Dodd et al., 1989), PCM (Dodd, Koch, & De Ayala, 1993; Koch & Dodd, 1989), SIM
(Koch & Dodd, in press), and ARSM (Dodd, 1987, 1990; Dodd & De Ayala, 1994). Several of the studies in
the context of Likert-type attitude measurement have found that item banks with as few as 24 items have
worked very well for the PCM (Koch & Dodd, 1985) and the ARSM (Dodd, 1990; Dodd & De Ayala).

However, these findings do not imply that any item bank composed of 30 or more items will be suffi-
cient for CAT based on polytomous IRT models. The characteristics of the individual items that comprise the
item bank have an impact on the success of any CAT system. Dodd et al. (1993) found that an item bank of
30 items worked well for a CAT based on the PCM, if the item bank information function was moderately
peaked at a point close to 8 = 0.0 or if the total information function was bimodal. Skewed item bank
information functions with predominantly easy or difficult items, however, proved problematic for item
banks of only 30 items. In addition, pragmatic issues concerning content validity, item exposure, and test
security for high stakes testing may require considerably larger item banks.

The finding that relatively small item bank size works well for polytomous CAT is due to the fact that the
information provided by a polytomous item is considerably more than that provided by a dichotomously
scored item. Not only is the modal level of information higher, but the information is typically distributed
across a wider range of the trait being measured. In essence, each pair of adjacent categories in the polytomous
item serves as a single dichotomous item and thus the set contributes more to the total item bank informa-
tion function than the typical dichotomously scored item (Dodd, 1987; Dodd & De Ayala, 1994; Dodd &
Koch, 1994; Koch, 1983).
A major limitation of much of the polytomous CAT research to date is that the item banks have been

simulated rather than real. The advantage of simulated item banks is that the known parameters can be
manipulated systematically to investigate basic variables of interest, but much more research is needed
with field tests of real items and real examinees.

Item selection procedure. The goal of item selection in CAT is to administer the next unused item
remaining in the item bank that provides the most information at the examinee’s current 8 estimate. To
achieve this, most CAT systems use item information functions as the basis for item selection. For the
polytomous models that have been studied for CAT-the GRM (Dodd et al., 1989), the NRM (De Ayala, 1989,
1992), and the PCM (Dodd et al., 1993; Koch & Dodd, 1985, 1989)-cA’rs have performed very well using
item information to select the next item for administration. De Ayala (1992) found that using category
information, rather than item information, as the item selection procedure resulted in one less item, on
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average, being administered for NRM CAT simulations. To date, no other studies have investigated the use
of category information for item selection in CAT. Other than information (item or category), no other item
selection procedure has been investigated for these models because they contain no location (scale value)
parameter.

An alternative item selection procedure has been studied for the ARSM (Dodd & De Ayala, 1994) and
SIM (Koch & Dodd, in press). Because both of these models contain a scale value item parameter for each
item that represents the location of the item along the 0 continuum, the two studies compared the method of
selecting the item with the closest scale value to the current 8 estimate with the maximum item information
selection procedure. Although the item information function for the ARSM (Dodd & De Ayala) and the SIM
(Dodd & Koch, 1994) does not peak precisely at the scale value of the item, it was found that selecting
items for administration based on the closest scale value did not substantially diminish the performance of
the CATs relative to the maximum item information selection procedure. Dodd & De Ayala and Koch &
Dodd (in press) recommended the scale value item selection procedure for these models over the maxi-
mum item information selection procedure because it is much simpler and requires much less computation
time.

Item selection procedures for polytomous CAT have not been studied under conditions in which it is
necessary to ensure content balancing of the items presented during the CAT. Selecting items based strictly
on item information or item scale values will frequently impact content validity negatively. More studies
are needed that investigate item selection strategies in realistic contexts.

Trait estimation procedure. For CATs based on dichotomous IR’r models, 8 levels can be estimated
with either a maximum likelihood method or with one of several Bayesian methods. To date, maximum
likelihood has been the only trait estimation method used in CATs based on the PCM (Dodd et al., 1993;
Koch & Dodd, 1985, 1989), the ARSM (Dodd, 1987, 1990; Dodd & De Ayala, 1994), the SIM (Koch & Dodd,
in press), and the GRM (Dodd et al., 1989).

With maximum likelihood estimation, no maximum likelihood estimate is possible after the administra-
tion of the first item if the examinee responds in either the lowest or highest category. However, a maxi-
mum likelihood estimate can be calculated after only one item if the examinee responds in any category
other than the two extreme categories. Because such an estimate will be very unstable and will have a high
standard error associated with it, all of the research to date on polytomous CAT has used a systematic
procedure to estimate a preliminary 0 level based on either a fixed or variable stepsize until the examinee
receives item scores in two different categories, as an alternative to maximum likelihood estimation. With
a fixed stepsize, the new 0 estimate is increased or decreased by a prespecified amount (e.g., .4 or .7)
depending on whether the response to the previously administered item was in the upper or lower half of
the response scale.

With a variable stepsize, the new 8 estimate is set halfway between the current 8 estimate and one of the
two most extreme item parameter estimates in the item bank. Whether the highest or lowest item parameter
is used depends on the individual’s response to the previously administered item. If the individual re-
sponded in the upper half of the response scale, then the highest item parameter is used. If the response is
in the lower half of the response scale, then the lowest item parameter is used. The particular item param-
eter estimate in the variable stepsize procedure depends on the particular IRT model that is being used in the
CAT. Although the extreme step values are used for the PCM, the extreme category boundaries are used for
the GRM.

Both fixed and variable stepsize methods have been investigated to measure their impact on the opera-
tional characteristics of CATS using the PCM (Koch & Dodd, 1989), the ARSM (Dodd, 1990), and the GRM
(Dodd et al., 1989). In those studies, the use of the variable stepsize outperformed the fixed stepsize proce-
dure (i.e., there were fewer cases of nonconvergence of the 0 estimate with the variable stepsize proce-
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dure). CAT systems based on the ARSM and the SIM use the extreme scale value parameters to update the
current 0 estimate prior to maximum likelihood estimation.

Only two studies have used Bayesian methods to estimate 0 during a CAT based on a polytomous model.
De Ayala (1992) used expected a posteriori (EAP) estimation (Bock & Mislevy, 1982) in a CAT based on the
NRM. Chen, Hou, Fitzpatrick, & Dodd (1995) compared EAP and maximum likelihood estimation procedures
in CAT based on the ARSM. One advantage of EAP over maximum likelihood is that estimates still can be
obtained for individuals who respond in either the lowest or highest category score for every item. Another
advantage of EAP estimation is that the mean squared error associated with the estimator across the popula-
tion of 0 levels is smaller than that associated with maximum likelihood estimates (Bock & Mislevy).

Stopping rule. In addition to specifying some minimum/maximum static stopping rule (e.g., fixed test
length), two different dynamic stopping rules have been studied in research on polytomous CATs. The mini-
mum information stopping rule terminates the CAT when no remaining item in the bank has a prespecified
minimum level of item information given the examinee’s current 0 estimate. The second stopping rule that
has been used terminates the CAT when the standard error associated with the current 0 estimate falls below
a prespecified level. In these studies, if the specified stopping rule was not met after a given number of
items had been administered (usually 20), the CAT was terminated. Comparisons of these two stopping
rules in CATs based on the GRM (Dodd et al., 1989), the PCM (Dodd et al., 1993), the ARSM (Dodd, 1990),
and the NRM (De Ayala, 1989) revealed that using the standard error stopping rule was superior to the
minimum item information rule in terms of the mean number of items administered, frequencies of
nonconvergence of 0 estimates, and correlations of CAT 0 estimates with full-scale calibration 0 estimates
and known 0 levels.

Two studies used a static stopping rule that terminated the CAT when a prespecified number of items had
been administered. De Ayala (1992) employed a fixed test length of 30 items to investigate a variety of
operational characteristics of CAT based on the NRM. Koch & Dodd (1985) also used fixed CAT lengths in
their initial investigation of the operational characteristics of CAT based on the PCM. In general, dynamic
stopping rules result in more efficient use of the item bank in terms of item exposure and development cost
than fixed-length stopping rules (Kingsbury & Houser, 1993).

B 
Comparison Studies

To date, only four studies have compared the performance of CATS based on competing polytomous IRT
models. De Ayala (1989, 1992) compared CATS based on the NRM and the 3PLM in the context of achieve-
ment testing. Maximum likelihood estimation was used for 0 estimation in the 1989 study and Bayesian
estimation was used in the 1992 study. Although both studies revealed that the two models performed
equally well, considerably fewer items were administered by the NRM CAT than the 3PLM CAT. This is
because the NRM provides more information than the 3PLM for low 0 level examinees.

De Ayala, Dodd, & Koch (1992) compared the PCM and GRM. The purpose of their study was to deter-
mine the impact on a CAT of including misfitting items. The results showed that, although the GRM had
substantially better fit to more items, the CAT based on the PCM produced 0 estimates that were as accurate
as those produced by the GRM even though 45% of the items in the PCM item bank had poor fit to the model.

Dodd, Koch, & De Ayala ( 1988) compared the ARSM and the GRM in terms of CAT attitude measurement
for both real and simulated datasets. The ARSM CAT outperformed the GRM CAT in terms of the accuracy of
the CAT 0 estimates relative to the full scale (all items) calibration 0 estimates and known Os used to gener-
ate the data. The GRM CAT did not perform as well as the ARSM CAT when the item bank information
function was skewed. The authors suggested that the ARSM CAT be used rather than the GRM CAT for attitude
measurement because (1) the ARSM CAT procedures showed less degradation of performance when the item
bank information function was skewed, (2) there are fewer item parameters to estimate with the ARSM, and
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(3) it is often reasonable to assume approximately equal discriminations for all items in a conventionally
constructed Likert-type scale.

The De Ayala et al. (1992) and Dodd et al. ( 1988) comparison studies illustrated the need to research the
properties of the item bank thoroughly before implementing a real CAT system, because the characteristics
of the item bank can have a profound effect on the performance of CAT. Researchers also should investigate
the appropriateness of competing IRT models prior to implementing any CAT system. If several competing
models perform equally well, the researcher should consider parsimony when selecting an IRT model.
More research also is needed to compare the entire array of polytomous models that are appropriate for the
same measurement problem for CAT applications in a wide variety of measurement situations.

Applications
~

Five CAT applications were found in the marketing literature. Kamakura & Balasubramanian (1989)
demonstrated the potential usefulness of CAT procedures in marketing research by using real data collected
on a personality measure to simulate a CAT based on Birnbaum’s (1968) 2PLM. In a second study,
Balasubramanian & Kamakura (1989) used the same CAT procedures as in their other study to implement
two live adaptive marketing surveys. Both studies demonstrated that CAT based on the 2PLM could save
considerable time and money for those individuals working in marketing research and survey fields. The
only drawback to these two studies was that polytomous responses to each item had to be dichotomized in
order to use the 2PLM. Polytomous IRT models could have used all the information in the response scale to
each item and thus most likely would result in even more efficient measurement.

Another application in the marketing research area was a real-data simulation study of CAT based on the
GRM by Singh, Howell, & Rhoads (1990). Although they used a Likert-type scale of consumer discontent,
their study was limited by their extremely small item bank of only 12 items.

In a live-testing study of a 14-item locus of control instrument, Singh (1993) found a 25% test length
reduction and a 25% reduction in administration time for a CAT based on the GRM relative to a P&P admin-
istration. In a second live-testing study, using three Likert-type marketing scales that contained 24, 18, and
12 items, respectively, Singh (1993) explored the use of bivariate and multiple regression to branch be-
tween the three correlated scales, based on a method originally proposed by Brown and Weiss (1977) for
use with dichotomous items. He found that using 0 estimates from the scales administered first substan-
tially reduced the overall length of the CAT based on the GRM. He observed a 50% reduction in administra-
tion time and test length when compared to computer administration of all items from the three scales.
Singh concluded from his field trials that adaptive surveys are not only practical but facilitate the quantity-
quality tradeoffs that occur in marketing research.

To date, only one real-data polytomous CAT application has been conducted outside of the marketing
field. Koch, Dodd, & Fitzpatrick (1990) measured 111 students’ attitudes toward alcohol with a CAT using
the ARSM and a P&P version of a 40-item attitude scale. Students took the P&P version first, followed by the
CAT two weeks later. There were no cases of nonconvergence of 0 estimation in the CATs. A correlation of
.89 was found between the scores obtained from the CAT and P&P versions. On average, there was a 64%
reduction in test length under the CAT condition when compared to the P&P version. A survey of the students’
reactions to the CAT revealed that the majority of the students found it more interesting to take the CAT version
of the attitude scale than the P&P version, and they preferred the CAT version over the P&P version. The
students also thought that CAT procedures would result in more honest answers than either a personal inter-
view or P&P procedure. This suggests that attitude surveys that deal with sensitive issues might benefit from
using CAT procedures.

The major limitation of the applications of polytomous CATS is that there have been so few studies using
real items with real examinees. Furthermore, the few studies conducted have been restricted to attitude
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measurement. Substantial real-data research is needed to assess the degree to which the promising results
from simulations transfer to live testing.

Directions for Future Research

The research on polytomous model-based CAT is in its early stages, just as dichotomous model-based
CAT was in the late 1970s and early 1980s. Much of the CAT research that still needs to be conducted with
polytomous models mirrors the research that has been conducted on dichotomous model-based CAT. Al-
though the research that has been conducted suggests promise for this type of CAT, much basic research
still needs to be performed before CATs based on polytomous IRT models are implemented on a wide scale.

Operational procedures for CAT based on polytomous models such as the GPCM and MRSM need to be
studied. Bayesian methods of 0 estimation need to be explored for various polytomous models and com-
pared to the maximum likelihood estimation methods that are currently being used. CATs based on compet-
ing IRT models that are appropriate for the same measurement objective need to be compared. Researchers
should evaluate the performance of the cA’rs in terms of precision of measurement, number of items ad-
ministered, bias of the 0 estimate, and parsimony. The use of multiple scoring schemes within a CAT system
warrants investigation. For example, some items may be scored in a graded fashion whereas others may be
nominally or dichotomously scored. It should be straightforward to develop CATS based on several hierar-
chical polytomous models that allow items within a test to be scored differently. Although research that
integrates multiple nonhierarchical polytomous models in CAT will be considerably more difficult to con-
duct, it could potentially produce CATS that would be better suited for certain types of tests than hierarchi-
cal polytomous models.

The impact of mode of presentation and content balancing needs to be assessed. Mode of presentation
could have an important effect on polytomous CAT if the items require multiple screens to present the
stimuli. In that case, using item responses from P&P versions of the test or instrument to calibrate the item
bank may be inappropriate. In addition, the need for content balancing might increase the item bank size
requirements considerably above the minimal level of 30 items used in simulations. For example, the table
of specifications for a mathematics CAT could require content balancing that could drastically increase the
item bank size requirements in order to have adequate content representation in the CAT and yet not have
problems with over-exposure of the item bank for test security reasons.

If mode of presentation effects are found for a given measurement instrument, the validity evidence for
the P&P version may not be generalizable to the CAT version of the instrument. Even if mode effects are not
present, it cannot be assumed that the validity evidence for the P&P version of the instrument will extend to
the CAT version of the same instrument. Validity studies will, therefore, be necessary if the CAT version will
replace a P&P version of existing tests or instruments.

Equating procedures and item banking techniques should be explored in greater detail. To date, equating
and item banking procedures have been investigated only for the GRM (Baker, 1992), the PCM (Masters &

Evans, 1986), and the NRM (Baker, 1993). Much more research is needed in this area if adequate item banks
are to be available for CATS based on other polytomous IRT models. The issue of equating is particularly
crucial if performance assessment is to be implemented using CAT systems based on polytomous IRT models.
In general, a few tasks or items are included in a given performance assessment because it usually takes the
examinee considerable time to complete each task. As a consequence, an item bank of 30 performance tasks
cannot be constructed without item banking and equating procedures. When considering the possibility of
CATs based on a polytomous model for performance tasks, the test developer must weigh the increased costs
associated with the development of an adequate item bank against the advantages of CAT. It is quite possible
that for certain item types, the cost of item development might prohibit the use of CAT.

Before polytomous CATS are implemented on a wide scale in practical settings, considerably more live-
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testing studies are necessary. More information is necessary about examinee reactions to CATs and practi-
cal administration concerns, such as testing time, so that multiple administrations can be scheduled to
effectively use the computers. In addition, live testing is necessary to determine the comparability of scores
from P&P and CAT versions of a measurement instrument.

The polytomous models discussed in this paper all require that the test or instrument measure a unidi-
mensional trait. Measurement instruments, however, often measure more than one dimension. For ex-

ample, word problems in areas such as mathematics have been found to measure not only mathematical
skills but also verbal comprehension (Reckase, 1985). Unidimensional polytomous models may have par-
ticular difficulties in multidimensional situations. For instance, in a multiple-choice item, different abilities
may be used by an examinee in deciding between different response options, so that the option parameters
are not on the same scale. Research is necessary on ways to handle these types of measurement problems
through the use of multidimensional polytomous IRT models.

The possibility of integrating polytomous CATs with computer-assisted instruction programs needs to
be studied. Merging the two computer-based components could result not only in adaptive assessment, but
also adaptive instruction. Each student could potentially benefit from such a system because he/she would
be receiving material that is appropriate for his/her trait level. Bright students would not be bored by too
low a level of instruction and testing, whereas low ability students would not be frustrated by receiving too
high a level of material. The system could be used to bring students to a specified level of proficiency and
to facilitate diagnostic testing of examinee errors.

Presently, many CATS simply administer P&P items on a computer. As such, CAT is not fully exploiting
the capabilities of the computer. New item types should be explored that will take advantage of the computer’s
resources and capabilities. For example, in a spatial ability test, the computer could allow the examinee to
rotate the items graphically, which cannot be done on P&P instruments, and the degree of accuracy of the
solution for each item could be used to score the item polytomously. Allowing the examinee to interact
with the computer on problem-solving tasks also could enrich the polytomous scoring of items. Careful
construction of items could prove useful for diagnostic testing. Frederiksen, Mislevy, & Bejar (1993) and
Bennett & Ward (1993) provide insights into ways to reconceptualize test items, which should facilitate the
development of creative item types that could be used in polytomous model-based CAT. The development
of innovative items might also make viable the implementation of CAT-based performance assessment.

Although the research on polytomous CAT that has been conducted provides a good foundation, consid- B
erably more work is needed in order to develop CAT systems based on polytomous models. As computer Btechnology continues to advance, the ways in which examinees interact with the computer will evolve. B
Capitalizing on these developments should facilitate the development of new item types and creative scor- I
ing algorithms based on polytomous models, and thus broaden the areas of measurement that can take }advantage of the benefits of CAT. 
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