A RAPID ITEM-SEARCH PROCEDURE
FOR BAYESIAN ADAPTIVE TESTING

C. David Vale
and
David ]. Weiss

RESEARCH REPORT 77-4
MAY 1977

PsvcHoMETRIC METHODS PROGRAM
DEPARTMENT OF PsycHoLOGY
UNIVERSITY oF MINNESOTA
MINNEAPOLIS, MN 55455

Prepared under contract No. N0O0014-76-C-0243, NR150-382
with the Personnel and Training Research Programs
Psychological Sciences Division

Office of Naval Research

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.



_ Unclassified
SECURITY CLASIIFICATION OF THIS PAGE (When Data Enfored)

PEBATT AT AT d ‘ ‘ KEAD INUTRUCTIONS - 3
E’\EI Ox(l b'O~.- ‘mt:hTA H lu.% PAGE e TOMPLETING FORM

1. RLPORT NUMBER 2. GOVT ACCESSION KOJ 3. RLCIFIENT'S CATALOG NUML ER

Research Report 77-4

4. TITLE (and Subtitle) $. TYPE OF REPORY & PCLRIOD COVERED

A Rapid Item-Search Procedure for Bayesian Technical Report
Adaptive Testing

6. PLERFORMING ORG. HEFORT NUMBER

7. AUTHOR(®) B. CONTRACT OR GRANT HUMBER(a)
C. David Vale and David J. Weiss N0O0014-76~-C~0243
S PERFORMING ORGANIZATION NZML AND ADDRESS 10, PROGFRAN ELEMENT. PROJECT, TAGK

AREA & WORK UNIT HUMEE RS
P.E.:61153N PROJ.:iRR042-04
T.A.:RR042-04-01
W.U.:NR150-382

Department of Psychology
University of Minnesota
Minneapolis, Minnesota 55455

et
11. CONTROLUING GFFICE KAME AND ADDRESS 12. REPORT DATE
Personnel and Training Research Programs May 1977
Office of Naval Research 13, NU#BER OF PAGES
Arlington, Virginia 22217 14
1L MONITORING AGENCY NAME & ADDKESS(1f differont from Controlilng Gilice) | 15. SECURITY CLASS. (cf thie report)
Unclassified
1Za, DECL ASSIFICATION/DOYNGRADING |
SCHUDULE
16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited. Reproduction in whole
or in part is permitted for any purpose of the United States Government.
S — e s

17. DISTRISUTION STATEMENT (of the abatract entered In Slock 20, If different from Reporl)

1B. SUPPLEMENTARY NCTES

15. KEY WORDS (Contisve on reverse «ive i1 ;_f;;e:bary end l;f:;l’ff)b:vglo;}

testing sequential testing programmed testing

ability testing branched testing response-contingent testing
computerized testing individualized testing automated testing

adaptive testing tailored testing

20. ABSTRACT (Coentinue on reverve a!ds If neceseery end {dentify by block nuher)

An alternative item-selection procedure for use with Owen's Bayesian
adaptive testing strategy is proposed. This procedure is, by design, faster
than Owen's original procedure because it searches only part (as compared
with all) of the total item pool. 1Item selections are, however, identical
for both methods. After a conceptual development of the rapid-search pro-
cedure, the supporting mathematics are presented. In a simulated comparison
with three item pools, the rapid-search procedure required as little as
one-tenth the computer time as Owen's technique,

b~ S AT T AU S e TR T RN N i b LT P T A T s ST b VA (oD TV .u.aJ

S L

FORM - .
DD ik s 1473  EDITION OF 1 NOV 65 15 CBSOLETE nel Fied
S/N 0102-014- 6601 | nclassifie




CONTENTS

Introduction ......coceeieecen. teeeeaes eeetaeeen Ceeeecear e Cetteet e 1
Owen's Original Procedure ...... eererasecesanens et rseaseaea eeee et eee 1
A More Efficient Search Procedure ......iiiuieiireeeeeeneeeenoesonesoeanoeson eee 2
Conceptualization ..v.ieeeeeeneaeesoerootesssesnanaeannanes cereetevseneans 2
EXample ..vveeernncescnnnesenennns P et e e et ettt et A 1
Mathematics Necessary for the Procedure .........c.cveuvun. e s e e ceaens 6
Block Size .......cv... Ceesesesesesescavanann teeceneaseaanas Ceeieteeeeaaes 7
Timing Comparisons in Three Item Pools .....civvvieeeann. ceseses beesnanan . 8
Conclusions ......... et et aa et ce ettt N eeess 10
References .......... feeeeae e er e et e e e ec ettt st 11
Appendix: Supplementary Figures .......... et eeeenaen et ieeneaa 12

Technical editing by Terryl Graham



A RapiD ITEM-SEARCH PROCEDURE FOR BAYESIAN ADAPTIVE TESTING

In recent years, a number of strategies for administering adaptive tests
have been developed. Among the more elegant of these is the strategy developed
by Owen (1969, 1975). This strategy is based on a statistical model developed
from Bayes' theorem (Phillips, 1973) and modern test theory (Lord & Novick, 1968).
At the beginning of test administration under this strategy, an initial estimate
of the testee's ability is needed. This is operationalized as a mean (reflect-
ing the test administrator's estimate of a testee's ability level) and a
variance (reflecting the confidence the administrator places on the estimate)
of a normal-shaped prior ability distribution. In the absence of any prior
information about the testee, the prior distribution may be simply the
distribution of ability in the population from which the testee was sampled.

During the course of testing, the goal of Owen's strategy is to refine the
initial ability estimate. Given the prior distribution, this goal is approached
by choosing as the first item to administer the item in a pool of items that
is expected to best refine the ability estimate. - Having administered this item,

a new ability estimate is calculated from the prior ability distribution and the
item response. This posterior distribution then becomes a new prior distribution,
and the process of item selection, administration, and scoring is repeated. The
process continues until either a certain degree of refinement is attained or a
pre-specified number of items have been administered.

Because of the complicated calculations required as each item is administered,
Owen's Bayesian adaptive testing strategy must be administered by computer.
However, the amount of calculation required between items is still great enough
that substantial time delays may occur between items. This is due partially
to the calculations required to refine the ability estimate after each item is
administered. But to a much greater extent, it is due to the inefficient
procedure suggested by Owen for finding the most appropriate item to administer.
Since Owen's item-search procedure works best with large item pools (Urry, 1971),
and because the time it requires increases with increasing item~pool size,
the search time required to select the appropriate item at any stage will be
large for properly constituted item pools. Although delays between item admin-
istrations will have no direct effect on the psychometric properties of the
procedure, they might well introduce undesirable psychological effects on test
scores (e.g., Betz & Weiss, 1976a, 1976b).

This paper reviews the conceptual and mathematical bases of Owen's item~
search procedure and proposes a more efficient and much faster technique that

is particularly useful with large item pools.

Owen's Original Procedure

At each stage of the testing process, Owen's strategy seeks to administer
that item which minimizes the expected variance of the posterior ability distri-
bution. This may be accomplished by minimizing what Owen refers to as the beta
(B) function.



Where 74 indexes an item, let:

a, Z normal ogive discrimination index of item <7,
bi = normal ogive difficulty index of item %,
¢. = probability of a correct response due to random
v guessing on item <,
M, = mean of the hypothesized normal prior ability distribution,
GZ = variance of the hypothesized normal prior ability distribution,

L 52 & oy
D~(bi “ob/ 2(ai + co) [1]

k=Y = ¥(1-ERFN(D)), [2]
and 2 x )
ERFN(x) =§7ﬁ:' i e-t dt [31]
Then:
- _ -1 —2 -2 =1 _ -1 2D?
Bi = (1 ci) (1 + OO ai ) (1-XK7%) [ci+(l Ci)K le . [4]

Bi is a function of five variables: ai, bi’ Ci’ uo, and O;. When searching

for an item, the prior distribution and, thus, UO and 0;, are constant. TFor
convenience, ci is also usually assumed to be constant. Therefore, when searching

for an item to administer, Bi is a function of only ai and bi'

Figure 1 is a plot of the values of the beta function for 313 items from a
real item pool plotted as a function of a and b with uo, O; and ¢ respectively

fixed at 0, 1, and .2. Given a finite pool of items such as this, Owen suggested
calculating the beta value for each item and choosing the item for which that
value was a minimum. This amounts to (symbolically) generating a plot like that
shown in Figure 1, and choosing the item corresponding to the lowest dot.

With a pool of 500 items, Owen's search procedure may require over five
seconds of computer time for each item selected on a relatively sophisticated
minicomputer. This is equivalent to over five minutes of computer time just to
select items for a 60-item test. In a simulation study such as that reported by
McBride and Weiss (1976), selecting items for the 15,000 simulated subjects
needed to calculate one information curve would take over two weeks of computer
time if a real item pool were used. Obviously, some refinement in the search
procedure would be welcome, for use in both live-testing studies and computer
simulation studies with real item pools.

A More Efficient Search Procedure

Conceptualization

In Figure 1, it may be noted that the low dots (i.e., items) appear in one
area of the plot and that the dots get higher as a function of the distance from
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Figure 1
Beta Values of 313 Test Items with =0, o;=l.0, and c=.2
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that area. If Figure 1 is viewed as a continuous plot of the beta function,

for every value of g, there is one value,M, of b for which B is minimum. B appears
to be a monotonic increasing function of |b-M|, and a monotonic decreasing
function of @. These observations can be combined to create a more efficient
item-search strategy.

The best item for minimizing beta will be a highly discriminating item with
difficulty of b=M. Therefore, an efficient item search should begin at the
point where b=M and g is at the upper bound of item discrimination in the pool.
The search could then proceed by first evaluating items close to that point and
then working outward, while keeping track of the beta value of the best item
yet found. The search should end when no item in the area of the plot yet
unsearched could possibly have a lower beta value than the currently best item.

The point at which no possibly better items remain can be determined,
conceptually at least, by plotting an iso-beta contour (a curve described by the
intersection of a plane parallel to the a-b plane with the beta surface, like
the curve shown in Figure 2) through the currently best item. All points within
the curve have lower beta values than any points outside the curve. Therefore,
when all the area inside the curve has been searched, no better items will be
found.

Unfortunately, a digital computer is not equipped to handle this conceptual
graphic search very well, so a discrete approximation must be implemented. This
is accomplished by blocking the a X b item-pool plot into rectangles and searching
the rectangles one at a time. Figure 2 shows an item pool plot so divided with
each block numbered for ease of reference.

Example

The search procedure was implemented in the blocked item pool shown in
Figure 2. With uo, O;, and ¢ defined as before, when M was evaluated at ¢=2.8

(the g-value of the most discriminating item in this pool), M=-.274; thus, the
search began in block 3, which contained two items, the better item having a beta
value of .440. The conceptual iso-beta contour is plotted through this item in
Figure 2. The boundary values of beta at p=-1.0 with ¢=2.8 and 2.4 were evalu-
ated, and it was determined that all lower blocks in row 1 (blocks 1 and 2) fell
outside the iso-beta contour and thus were not searched. The upper boundaries of
block 3 were then evaluated and block 4 was searched. No better items were
found in block 4. The upper boundaries of block 4 were evaluated, and it was
determined that no higher blocks in row 1 could contain better items, so they
were not searched.

Next, a new value of M, with a fixed at 2.4, was calculated to be -.280,
and block 9 was searched but no better items were found. The upper boundary of
block 8, at b=-1.0, and the lower boundary of block 10, at 5=0.0, were evaluated.
These boundaries were both outside the iso-beta contour and therefore, no more
blocks in this row were searched. A new value of M was calculated at a=2.0
and the beta at that point was found to be .453, a value higher than that of
the currently best item. Since this was the minimum value of beta that could
be obtained with items of a=2.0 or less, the remainder of the item pool was
not searched. 1In all, three of the 36 blocks were searched.



2.

A Blocked Item Pool

Figure 2
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Mathematics Necessary for the Procedure

M is found by setting the first partial derivative of B with respect to b
equal to zero for the given value of a. ’

Let:
F=(1-¢) "' (I 2a?) [5]
H=lo+(1-o) k116 [6]
Then:
B=F(1-K~1)H. | [7]

"For fixed a, ¢, and 02, F is a constant. Therefore:

=1
—g—g— = F[(l—K"l)%Ebi + H—————a(lag )| | (8]
2
3Ky D - -%
e = - T 260D [9]
a -1 a —1 _Dz 1
(%Z—)K ) _ (Jafb ) _ _e}___ [2(a"'2+c;)]_/2 [10]
2
D
oH 1 [ e :I
= = HedD + = (c-1)| . [11]
%" ot on bV
Expanding and rearranging:
9B o*
B peaxl) e <[c+(1-c)1<’1] .
ab \/2(a'2+0;)
p? 1 1 )
4De”  + + (e-1)], [12]
( \/n—(l—K-l)) 3
i which is 'equal to zero if and only if
- p? 1 1
Q= <[c*i-(l—c)]< 1]<Z;De + )+ (c—l)) [13]
Vi (1-xh /) VT

is equal to zero.
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the Newton-Raphson iteration. The derivation of § needed in the procedure is
given below.

The root of § at which = 0 and B is a minimum can easily be found using

Let: S=(e¢ + (1-e)X™ 1) [14]
i ,
T=<4DeD + ———l———> [15]
Vi(1-k 1)
=57 + —== (c-1) [16]
\/T
0 _ . 9T 05 ,
% "% T T [17]
) ,
%%-= (c—l}/(eD \'2ﬂ(a"2+o;) ) , [18]
D? -2D?
aT e 2 e
s & . 448D - [19]
b -2, 2 ( m(1-K 1)2>
\/2(a +OO)

Block Size

Using (uo—c) as the initial value of b, the Newton-Raphson procedure typi-

cally converges to Ab<.0lin two cycles and to Ab<.0001 in four. The precision
needed is dependent on the size of blocks used. With block widths of 0.5b and
0.3a, no deficit in performance was noted (as would be evidenced by the rapid
search prodecure choosing an item different from the one chosen by the full
search procedure) when a convergence criterion as crude as Ab<.l1 was used. The
danger in using a crude estimate of M is that the search may stop a row too soon
and miss a good item. If a few misses could be tolerated, some time would be
saved by accepting as the minimum beta for a level of g that value of B obtained
when evaluated at b=l,-c. For research purposes, this may not be tolerable,
however, and the value of beta at b=M must be determined.

The equations necessary to determine the optimal size and spacing of the
blocks in the a X b grid have not been developed. Conceptually, it seems that--
given a pool of items and some assumptions about the distribution of ability
in the testee population-—-there should be an optimal size for each block to
minimize the required search time. But in the absence of the mathematically
optimal solution, there are two relevant considerations. First, each block
will require additional computer memory. Furthermore, the procedure requires
an amount of computer time slightly greater than that required to evaluate
one item in order to determine whether a block could conceivably contain a
better item.



Timing Comparisons in Three Item Pools

For timing comparisons reported below, grids of two levels of resolution
were used. For a small item pool containing 200 items, a 48-block grid (six
levels of a and eight levels of b) was used. For two larger item pools contain-
ing 313 and 580 items, a 96-block grid (eight levels of a and twelve levels of b)
was used. These sizes were chosen somewhat arbitrarily. An optimal grid size
should produce comparisons more favorable to the partial search technique.

Table 1 shows timing statistics for both Owen's full search technique and
the rapid search technique in three item pools. The basic item pool from which
these items (actually item statistics) were drawn was a real pool of 569 items
(McBride & Weiss, 1974). The 313-item pool consisted of those items with b-values
between *3.0 and a-values between 0.4 and 2.8. To evaluate the relative efficiency
of the two search techniques for a current project using a 200-item pool, 200
items were randomly sampled from the 313. The 580-item pool contains the item
statistics obtained from the 313-~item pool and 267 additional sets of item
statistics obtained from an earlier calibration of the same items. These three
pools are shown in blocked form in the Appendix.

Table 1
Timing Statistics for Two Search Procedures

No. Grid Average Search Rapid as Time per ITtem
Items Size Time per Test Percent Evaluation Equivalent
a b Full Rapid of Full (Full Search)
200 0.4 0.75 3.195 1.071 33.526 574% 76.932
313 0.3 0.50 5.118 .976 19.080 571%* 71.404
580 0.3 0.50 9.705 1.020 10.512 572% 73.947

*Time per item in microseconds

Columns three and four of Table 1 show time in seconds required by a Control
Data Corporation 6400 computer, using the two procedures, to select 30 items.
These items were selected during a computer simulation of the Bayesian test (see
McBride and Weiss, 1976 for details of the simulation procedure). For each time
value shown in Table 1, 100 testees were simulated, sampling ability levels from a
normal distribution with mean of zero and standard deviation of 1.0. Table 1
shows the average search time required by Owen's full search procedure and the
rapid search procedure to administer a thirty-item test to each simulated testee.
Column six in Table 1 shows the percentage of time taken by the rapid search
procedure relative to the full search procedure. With a relatively small pool
(200 items) to search and a rough grid (6x8), the rapid search technique was
three times faster than the full search procedure. With a larger pool (580 items)
and a finer grid (8%12), the rapid search was almost ten times as fast.



Another way of comparing the relative efficiency of the two procedures is
by comparing the relative sizes of pools that can be searched in a given time.
Let: ‘

the number of items to be administered
the number of items in the pool

the number of item evaluations performed
the time spent in selecting the I items
the time required to evaluate one item

RN e I
ITRTI IR TTTERIT

Since at each stage of the test, one item is eliminated and thus not eval-
uated in further searches:

E=J+(J=-1)+(J=2)+ +++ +(J-(I-1))
(1-1)
=IJj- 2 %
_ I(1-1)
=T~ —5 [20]
and
=T/E ‘ [21]

The time to evaluate one item in the full search procedures, %, should
be constant across item pools of varying sizes, and, as shown in column seven of
Table 1, is nearly constant with a median of 572 microseconds.

Substituting and rearranging:

=T/(tI)+ -%1— [22]

Using .000572 for t, 3 for I, and the time values of column five in Table 1
(i.e., the time taken by the rapid search procedure) for T results in the values
shown in column eight, the size of the item pool that could have been searched
using the full search procedure in the amount of time taken by the rapid search
to effectively search the entire pool. Although the values are crude because
of the non-optimal block sizes used, it appears from column eight that by using
the rapid search procedure, an item pool of up to about 600 items can be searched
in the amount of time required by the full search procedure to search a pool of
about 80 items. Since 80 items are probably too few to allow the Bayesian
procedure to perform well with a 30-item test, this means that if time is avail-
able to administer a Bayesian test, then a relatively large item pool can be
used without increasing computer time, if the rapid search procedure is imple-
mented. Since the fidelity of Owen's procedure is a function of the number of
items available from which to choose, given a fixed testing time, the rapid
search procedure will result in higher test validites if a large item pool is
available.
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Conclusions

Data presented suggest that the proposed rapid search procedure can accom-
plish the task performed by Owen's full search procedure as well as the full
search procedure in as little as ten percent of the time when used with item
pools of typical size. There are two practical needs for this time saving: 1In
live testing, when four subjects are being tested by a minicomputer, a five~
second jitem search time can result in a presentation latency of up to 20
seconds when all testees respond at once or close to each other. This may be
sufficient time for a testee to get bored and lose interest in the test. In
computer simulations of testing, two weeks is too long to wait for one informa-
tion curve. Three days (a weekend) for two is tolerable.

Three areas of future research related to Bayesian item pool search
techniques are open. TFirst, relative to the rapid search technique, several
relationships between a, b, and B were assumed but not proved. Although the
relationships seem appropriate, rigorous proofs would be welcome. Second, a
method for determination of the optimal grid size as a function of the item pool
and an assumed prior ability distribution was not developed. This could further
speed up the rapid search procedure. Finally, the degradation in performance of
the Bayesian testing strategy using a simpler item evaluation technique should
be evaluated. It is possible that simply choosing items of the appropriate
difficulty would provide nearly as efficient a test with much less computer
time being required.
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Figure A-1

A 48-Block Grid Containing the 200-Item Pool
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Figure A-2
A 96-Block Grid Containing the 313-Item Pool
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Figure A-3
A 96-Block Grid Containing the 580-Item Pool
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